JPS61182845A - Method for reconditioning molding sand for cold box method - Google Patents

Method for reconditioning molding sand for cold box method

Info

Publication number
JPS61182845A
JPS61182845A JP2469485A JP2469485A JPS61182845A JP S61182845 A JPS61182845 A JP S61182845A JP 2469485 A JP2469485 A JP 2469485A JP 2469485 A JP2469485 A JP 2469485A JP S61182845 A JPS61182845 A JP S61182845A
Authority
JP
Japan
Prior art keywords
sand
cao
reconditioned
sands
calcination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2469485A
Other languages
Japanese (ja)
Inventor
Yusuke Furui
古居 佑介
Hiromi Tomishige
博美 冨重
Masanari Endo
遠藤 真生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2469485A priority Critical patent/JPS61182845A/en
Publication of JPS61182845A publication Critical patent/JPS61182845A/en
Pending legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To eliminate replenishment of new sand by allowing reconditioned sand to contact with flowing air mixing prescribed time, and converting CaO on the surface 8 the sand to CaCo3, in the process of fluidizing classification removal of fine grains in the sand. CONSTITUTION:The sands containing CaO in their superficial layer recovered in the shaking-out stage are once stored in the recovery hopper 1, and then sent to a calcination oven 2 at a constant flow rate, where coal powder contained in the sand and resin film on the surface are burnt. Calcination, after being cooled, is sent to the superficial layer removing device 3 in which mechanical impacts using the centrifugal force is applied to deposit of binder such as bentonite stuck on the surface of sands as a result of calcination to grind the surface of sands and remove the deposit material. Then, the sand is introduced in the fluidization classification device 4 where the sand comes in contact with the flowing air containing more than 0.5%, preferably 2-3% Co2 for 5min or more. Fine powder classified is collected by the dust collector 5, and reconditioned sand is stored in the hopper 6. CaO on the surface of the sand is changed into CaCO3 being an inert compound against resins, giving reconditioned sand capable of forming casting molds stronger than normally reconditioned sand.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はコールドボックス鋳型用の鋳物砂の再生方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for regenerating foundry sand for cold box molds.

〔従来技術〕[Prior art]

鋳造に使用される鋳型の造型法の一つであるコールドボ
ックス法は、鋳型全室温で硬化させる関係上、エポキシ
樹脂などの樹脂aまたは木製の模型が使・用できるし、
速硬性でしかも熱崩壊性が非常に良好であるという優れ
た性1Rを有しており、省エネルギー化、省力化という
点からも優れていることから、多品種、少量生産に適す
るものとして各種部品の鋳造に利用されている。
The cold box method, which is one of the methods for making molds used in casting, allows the mold to harden at room temperature, so resins such as epoxy resin or wooden models can be used.
It has an excellent 1R property of fast hardening and very good heat disintegration properties, and is also excellent in terms of energy saving and labor saving, so it is suitable for high-mix, low-volume production and is used for various parts. It is used for casting.

アッシュランド法はその代表的な方法で、イソシアネー
ト基をもつ樹脂とフェノール樹脂゛を粘結剤として砂粒
に混合し、該配合砂を室温で中子取中にブローインク法
で吹込み、続いてアミンガスを送入して硬化させる方法
であり、中子用として最も適当なものとされている。
The Ashland method is a typical method, in which resins with isocyanate groups and phenolic resins are mixed into sand grains as binders, and the mixed sand is blown into the core at room temperature using the blow ink method. This is a method of curing by supplying amine gas, and is said to be the most suitable method for cores.

このコールドボックス法においても、一般的な鋳型造型
におけると同様、砂資源を有効利用するために、回収再
生しているが、回収の段階で主型砂中に任意の割合で混
合されることになる。即ち鋳物砂型は主型と中子型で構
成され、鋳造後は同時にばらされるので、砂落しの際に
主型砕が中子型に混入した状態で回収され、該回収砂は
一般に、基砂となる珪砂、ベントナイトなどの粘結材、
石炭粉及びその他の結合材からなっている。
In this cold box method, as in general mold making, sand resources are recovered and recycled in order to make effective use of them, but they are mixed into the main mold sand at a desired ratio during the recovery stage. . In other words, a foundry sand mold consists of a main mold and a core mold, which are taken apart at the same time after casting, so when the sand is removed, the main mold is recovered mixed with the core mold, and the recovered sand is generally mixed with the base sand. Caking materials such as silica sand and bentonite,
Consists of coal powder and other binding materials.

そこで回収砂は通常、乾式または湿式の再生装置で処理
され、その中、乾式再生装置は、回収砂を貯蔵し、送り
出すホッパー、被覆砂の樹脂や石炭粉などを除く焙焼炉
、焙焼により生じ走ベントナイトなどの溶着物を除去す
る表面剥離装置、微粉を除去する流動分級装置、送風機
、除去した微粉を捕集する集塵機、再生砂を貯蔵するホ
ッパー等から構成されている。
Therefore, the recovered sand is usually processed in a dry or wet regeneration device, and the dry regeneration device consists of a hopper that stores and sends out the recovered sand, a roasting furnace that removes resin and coal powder from the coated sand, and a roasting furnace that removes resin and coal powder from the coated sand. It consists of a surface stripping device that removes welded substances such as atomized bentonite, a fluid classifier that removes fine powder, a blower, a dust collector that collects the removed fine powder, and a hopper that stores recycled sand.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに上記のような再生装置ま念は再生方法で処理さ
れた砂を単独で使用すると、後に述べる理由で鋳型の強
度が低下し、特に中子の造型には不適当で、新砂を多量
に使用することが必要となり、従って回収砂のうち、廃
棄物として排出される量が多くなり、公害対策上問題と
なる。
However, the problem with the above-mentioned recycling equipment is that if sand treated by the recycling method is used alone, the strength of the mold will decrease for reasons that will be explained later, making it particularly unsuitable for molding cores, and a large amount of fresh sand must be used. Therefore, a large amount of recovered sand is discharged as waste, which poses a problem in terms of pollution control.

中子砂として用いられ六被覆砂中の樹脂中生砂中の石炭
粉は高温焙焼過程で除去されるが、再生砂中には、砂表
面に魚卵状(オールディック)層を生成して固く溶着し
、表面剥離装置で除去しきれないベントナイトや、砂表
面のCaOが残留している。そこで夏季の多湿時には砂
表面のCaOが水分と反応してCaC0H)z等の活性
物質に変化し、この際残留ベントナイトがこの反応に関
与しているとも思はれる。次にこのような再生砂に樹脂
を添加して混練すると上記のCa(OH)tが樹脂を硬
化させ、その後に造型しても十分な強度を有する鋳型が
得難くなると考えられる。
The coal powder in the resin-encrusted sand used as core sand is removed in the high-temperature roasting process, but in the recycled sand, an roe-like (oldic) layer is formed on the sand surface. Bentonite and CaO remain on the sand surface, which is firmly welded and cannot be completely removed by the surface stripping device. Therefore, during humid summer months, CaO on the sand surface reacts with moisture and changes into active substances such as CaC0H)z, and it is thought that residual bentonite is involved in this reaction. Next, when a resin is added to such recycled sand and kneaded, the Ca(OH)t described above will harden the resin, making it difficult to obtain a mold with sufficient strength even if it is subsequently molded.

上記のような理由でCaOの存在が混練砂のライフ(可
使時間)時間を短縮するので、良好な鋳型を得る方法と
しては汚れの少ない新砂全多量に使用することを迫られ
ることになる。新砂中のCaOは既に大気中のCotに
よりCaC0,に変化しており造型には影響しないが砂
収支のアンバランスから廃棄する砂が増加し、新砂購入
費の増加、公害の発生等、種々の問題が発生する0 本発明は上記の問題を解消するためになされたもので鋳
型の強度に悪影響を及ぼさない再生砂の得られる回収砂
再生方法を提供しようとするものである。
For the reasons mentioned above, the presence of CaO shortens the life (pot life) of the kneading sand, so in order to obtain a good mold, it is necessary to use a large amount of fresh sand with less dirt. CaO in the new sand has already been changed to CaC0 by Cot in the atmosphere, so it does not affect the molding, but due to an imbalance in the sand balance, the amount of sand to be discarded increases, resulting in an increase in the purchase cost of new sand, the occurrence of pollution, etc. 0 Problems Occurrence The present invention has been made to solve the above problems, and it is an object of the present invention to provide a method for regenerating recovered sand that can obtain recycled sand that does not adversely affect the strength of the mold.

〔問題点全解決するための手段〕[Means to solve all problems]

本発明のコールドボックス法用の鋳物砂再生方法は回収
鋳物砂の中の微粒子を流動分級して除去するに際し、流
動空気に0.5重IFチ以上のCotガスを混合して回
収鋳物砂と5分以上接触させ、該鋳物砂表面の酸化カル
シウム(CaQ)を炭酸カルシウム(CaCO3)K変
化せしめルコとを特徴とするものである。
The foundry sand regeneration method for the cold box method of the present invention involves mixing Cot gas of 0.5 IF or more with fluidized air when removing fine particles in the recovered foundry sand by fluid classification. The method is characterized in that calcium oxide (CaQ) on the surface of the foundry sand is changed into calcium carbonate (CaCO3)K by contacting the molding sand for 5 minutes or more.

〔作用〕[Effect]

本発明方法は前記従来の砂再生装置に若干の機器類を添
加するだけで容易に実施することができる。即ち液化c
o、’6加熱・気化して送風機の直前で一定量のco2
ガス金混合し、流動分級装置中に送入すればよく、混合
方法は特に限定されたものではない。この際、砂が上記
装置中に滞留している間に砂表面のCaOが十分cac
o。
The method of the present invention can be easily implemented by simply adding some equipment to the conventional sand reclamation apparatus. That is, liquefaction c
o, '6 Heating and vaporizing a certain amount of CO2 just before the blower
The mixing method is not particularly limited, as long as the gas gold is mixed and fed into a fluid classifier. At this time, while the sand is staying in the above device, the CaO on the sand surface is sufficiently
o.

に変化するように、砂の供給ti調整するか、あるいは
装置の容fを調節すればよい。
It is only necessary to adjust the sand supply ti or adjust the capacity f of the device so as to change the value.

流動空気に対するCotガスの混合率は回収砂中のCa
O含有量に関係するが本発明者等の試験結果では0.5
重fチ以上が好ましくまた流動分級装置における砂の滞
留時間は5分以上が好まてま しい。さらに流動空気をあらかじめ除湿することによっ
て一層の効果が得られることも明らかになった。
The mixing ratio of Cot gas to fluidized air is determined by the Ca in the recovered sand.
It is related to the O content, but according to the test results of the present inventors, it is 0.5
The residence time of the sand in the fluidized fluid classifier is preferably 5 minutes or more. Furthermore, it has become clear that even greater effects can be obtained by dehumidifying the flowing air beforehand.

〔実施例〕〔Example〕

本発明を図面を参照して実施例により説明するO 実施例1゜ 第1図は本発明を実施する念めの砂再生の工程図を表わ
し、1は回収砂ホッパ口、2は焙焼炉、3は表面剥離装
置、4は流動分級装置、5は集塵器、6μ再生砂ホツパ
ー、7は送風機、8は液化C〜タンク、9は蒸発器を示
す。
The present invention will be explained by way of examples with reference to the drawings.Example 1 Figure 1 shows a process diagram of sand regeneration to carry out the present invention, 1 is a recovery sand hopper mouth, 2 is a roasting furnace. , 3 is a surface stripping device, 4 is a fluid classifier, 5 is a dust collector, 6μ recycled sand hopper, 7 is a blower, 8 is a liquefaction tank, and 9 is an evaporator.

鋳型のばらし工程で回収され表面に0.0002〜0.
4%のCaOを含む砂は、回収砂ホッパー1に一旦貯蔵
された後、一定量の流啜で焙焼炉2に送り込まれ、砂中
の被覆砂の樹脂が石炭粉などが焼却される。冷却後、表
面剥離装置3に送り、前記焙焼により砂の表面に生じた
ベントナイトなどの粘結剤の溶着物(オールティック層
)に遠心力全利用した機械的衝撃を加え、砂の表面を研
摩して溶着物を除去する。次に砂を流動分級装置4に導
入し、2ないし3%のco、を含む流動空気と5分間流
動接触させる。なおCotガスは液化CO1を蒸発器9
のヒーターloにより加熱・気化することによって容易
に得ることができる。流動分級装置4で分級された微粉
末は集塵器5に捕集され、再生された砂は再生ホッパー
6に貯蔵される。
0.0002 to 0.0.
The sand containing 4% CaO is once stored in a recovery sand hopper 1, and then sent in a fixed amount to a roasting furnace 2, where the resin of the coating sand and coal powder etc. in the sand are incinerated. After cooling, the sand is sent to a surface peeling device 3, where a mechanical shock is applied to the welded material (alltic layer) of a binder such as bentonite generated on the surface of the sand by the roasting process, making full use of centrifugal force to remove the surface of the sand. Polish to remove deposits. The sand is then introduced into a fluid classifier 4 and brought into fluid contact with fluidized air containing 2 to 3% CO for 5 minutes. Note that Cot gas is liquefied CO1 in evaporator 9.
It can be easily obtained by heating and vaporizing with a heater lo. The fine powder classified by the fluid classifier 4 is collected in a dust collector 5, and the regenerated sand is stored in a regeneration hopper 6.

このようにして再生された硬の表面のCaOが樹脂に対
して不活性なCaC0,に変化しており、従って夏季の
多湿条件下においても樹脂の化学反応を促進する物質が
生成しないので強度の高い鋳型’klることかできる。
The CaO on the surface of the hard surface regenerated in this way changes to CaCO, which is inert to the resin, and therefore, even under humid summer conditions, substances that promote the chemical reaction of the resin are not generated, resulting in increased strength. It is possible to make a high mold.

すなわち再生砂3匂に粘結剤としてのポリイソシアネー
ト樹脂37.5 F 、フェノール樹脂37゜5?を添
加し、スピードマラー(混線装置)で1分間混練し、混
練30分後にl OwX 30 wX85■の金型に吹
き込んだ後、トリエチルアミンを通気して硬化させテス
トピースとし、抗折強度を測定した。
In other words, recycled sand has 3 odor, polyisocyanate resin as a binder has 37.5F, and phenolic resin has 37.5? was added and kneaded for 1 minute with a speed muller (mixing device), and after 30 minutes of kneading, it was blown into a mold of 1 OwX 30 wX 85■, and triethylamine was aerated to harden it to make a test piece, and the bending strength was measured. .

その結果、CO,ガスを流動空気に混合せずに処理した
再生砂は新砂を80重量%添加しないと実用強度の鋳型
が得られないのに対し、本例による再生砂では20%の
添加で同等の強度を有する鋳型が得られた。なお!3図
は再生砂100%の鋳型の新砂100チの鋳型に対する
強度比(強度率)を表わし、相対湿度46チの大気に2
重tチのCO8を添加し念流動空気により流動分級した
再生砂により約70%の強度率の得られることを示して
いる。
As a result, recycled sand treated without CO or gas mixed with fluidized air cannot produce a mold with practical strength unless 80% by weight of new sand is added, whereas with the recycled sand in this example, only 20% of new sand is added. A mold with comparable strength was obtained. In addition! Figure 3 shows the strength ratio (strength ratio) of a mold made of 100% recycled sand to a mold made of 100 cm new sand.
It is shown that a strength ratio of about 70% can be obtained by using recycled sand that has been fluidized and classified using telefluidized air to which 100% of CO8 has been added.

実施例2゜ 本例では第2図に示すように送風機7の吸引側に除湿器
11を設け、除湿乾燥した空気(絶対湿度15に9H!
0/Kf乾燥空気)を用いており、その他の条件は実施
例1と同様である。この上うに除湿とCO,ガス混合と
を組合せると新砂の添加tiosにすることができる。
Embodiment 2 In this example, as shown in FIG. 2, a dehumidifier 11 is provided on the suction side of the blower 7 to dehumidify and dry air (absolute humidity 15 to 9H!).
0/Kf dry air) was used, and the other conditions were the same as in Example 1. Furthermore, by combining dehumidification with CO and gas mixing, it is possible to add new sand.

第4図は大気湿度の高い7月末〜9月末と大気湿度の低
い10月以降に分けて除湿とCOlの併用効果をグラフ
で表わしたもので図中Gで示す曲@は、湿度の高低に拘
らず、抗 折強度の高い鋳型の得られることを示してい
る。次に6各のカーブについて説明すると、Aは大気湿
度、Bは除湿後の湿度を表わす。Cは混練直後に造型し
た後金の抗折強度を示し、流動空気の処理または未処理
に拘らず最も高い値を示す。
Figure 4 is a graphical representation of the combined effect of dehumidification and COl, divided into the periods of high atmospheric humidity from the end of July to the end of September and the periods of low atmospheric humidity from October onwards. This shows that a mold with high flexural strength can be obtained regardless of the size. Next, the six curves will be explained. A represents the atmospheric humidity, and B represents the humidity after dehumidification. C indicates the bending strength of the gold molded immediately after kneading, and shows the highest value regardless of whether the gold is treated with flowing air or not.

D、E、F、Gは混練後30分経過してから造型した場
合の抗折強度を示し、各カーブD、E。
D, E, F, and G indicate the bending strength when molded 30 minutes after kneading, and curves D and E respectively.

F、Gの処理条件は次の通りであり、本発明の効果が混
線後あ5程度の時間を経過してから造型した場合に現れ
ている。
The processing conditions for F and G are as follows, and the effect of the present invention appears when the molding is carried out approximately 5 hours after the crosstalk.

D:除湿のみ、CO,なし、 E:除湿せずにCO,を混合、 F:未処理、 G:除湿とCO!を併用。D: Dehumidification only, CO, none, E: Mixing CO without dehumidification, F: untreated, G: Dehumidification and CO! Used together.

〔発明の効果〕〔Effect of the invention〕

上記の如く本発明方法によって再生した砂のみを使用し
ても、夏季の多湿条件下で十分な強度を有する鋳型を安
定して造型できるため、新砂を使用する必要がなく、砂
資源を有効に活用できる。従って新砂の購入費、廃棄物
対策費、新砂と再生砂との配合エネルギー費が節減され
、操業管理が容易になって鋳造コストが低下する。
As described above, even if only the sand recycled by the method of the present invention is used, molds with sufficient strength can be stably made under humid summer conditions, so there is no need to use new sand, and sand resources can be used effectively. Can be used. Therefore, the cost of purchasing new sand, the cost of dealing with waste, and the cost of energy for mixing new sand and recycled sand are reduced, operational management becomes easier, and casting costs are reduced.

さらに、使用する砂の品質が安定するため樹脂の添加量
を減らすことができ、その結果、鋳造時のガス欠陥が減
少し、不良品の発生率が低下する。
Furthermore, since the quality of the sand used is stable, the amount of resin added can be reduced, resulting in fewer gas defects during casting and a lower incidence of defective products.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1の工程図を表わし、 第2図は実施例2の工程図を表わし、 第3図はCOt混合率と鋳型の強度率の関係を示すグラ
フを表わし、 第4図は流動空気の除湿及びCO2混合効果に関するグ
ラフを表わす。 図中、 l・・・・・・・・・回収砂ホッパー 2・・・・・・・・・焙焼炉 3・・・・・・・・・表面剥離装置 4・・・・・・・・−流動分級装置 5・・・・・・・・・集塵器 6・・・・・・・・・再生砂ホッパ− 7・・・・・・・・・送風機 8・・・・・・・・液化CO2タンク 9・・・・・・・・蒸発器 IO・・・・・・ ヒーター 11・・・・・・除湿器 (ほか1名) 第1図    5 第2図
FIG. 1 shows a process diagram of Example 1, FIG. 2 shows a process diagram of Example 2, FIG. 3 shows a graph showing the relationship between COt mixing ratio and mold strength rate, and FIG. Figure 3 represents a graph regarding the dehumidification and CO2 mixing effect of flowing air. In the figure, l......Recovered sand hopper 2...Roasting furnace 3...Surface peeling device 4... - Fluid classifier 5... Dust collector 6... Recycled sand hopper 7... Blower 8... ...Liquefied CO2 tank 9...Evaporator IO...Heater 11...Dehumidifier (1 other person) Fig. 1 5 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 回収鋳物砂の中の微粒子を流動分級して除去するに際し
、流動空気に0.5重量%以上のCO_2ガスを混合し
て回収鋳物砂と5分以上接触させ、該鋳物砂表面の酸化
カルシウム(CaO)を炭酸カルシウム(CaCO_3
)に変化せしめることを特徴とするコールドボックス法
用の鋳物砂再生方法。
When removing fine particles in recovered foundry sand by fluid classification, CO_2 gas of 0.5% by weight or more is mixed with fluidized air and brought into contact with the recovered foundry sand for 5 minutes or more to remove calcium oxide ( CaO) to calcium carbonate (CaCO_3
) A method for regenerating foundry sand for cold box method.
JP2469485A 1985-02-12 1985-02-12 Method for reconditioning molding sand for cold box method Pending JPS61182845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2469485A JPS61182845A (en) 1985-02-12 1985-02-12 Method for reconditioning molding sand for cold box method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2469485A JPS61182845A (en) 1985-02-12 1985-02-12 Method for reconditioning molding sand for cold box method

Publications (1)

Publication Number Publication Date
JPS61182845A true JPS61182845A (en) 1986-08-15

Family

ID=12145273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2469485A Pending JPS61182845A (en) 1985-02-12 1985-02-12 Method for reconditioning molding sand for cold box method

Country Status (1)

Country Link
JP (1) JPS61182845A (en)

Similar Documents

Publication Publication Date Title
JP3878496B2 (en) Mold sand and manufacturing method thereof
US5045090A (en) Process and device for reclaiming used foundry sands
US4952246A (en) Plant and method for reconditioning green foundry sand
JP5718509B1 (en) Foundry sand recycling equipment
US4978076A (en) Method for separating hazardous substances in waste foundry sands
JPS6026620B2 (en) Method of manufacturing recycled sand
US5219123A (en) Process for the selective reclamation treatment of used foundry sand
US2261947A (en) Foundry practice
JP4607698B2 (en) How to recycle waste green sand
JP2022145836A (en) Casting sand regeneration method
US5992499A (en) Method for cold reclamation of foundry sand containing clay
JPS61182845A (en) Method for reconditioning molding sand for cold box method
US4449566A (en) Foundry sand reclamation
JP3162218B2 (en) Casting sand recycling method
JP2018164914A (en) Manufacturing method of molding sand
KR20020061534A (en) A method for making sand covered with bentonite, the sand, and a method for recycling molding sand for a mold using the sand covered by bentonite
JPH0413438A (en) Method and system for regenerating used sand at foundry
JPH0647479A (en) Artificial molding sand and its production
JPH0561016B2 (en)
JP3160101B2 (en) Casting sand recycling method
JP2020104125A (en) Reclamation sand regeneration process
JPH0117401Y2 (en)
Piwonka Aggregate molding materials
JPH10230340A (en) Method for regenerating molding sand for cold box method
EP0032881A1 (en) Granulated material, and production method of same, as additive for improving properties of foundry molding sands