JPS61182517A - Measuring instrument of azimuth - Google Patents

Measuring instrument of azimuth

Info

Publication number
JPS61182517A
JPS61182517A JP2189085A JP2189085A JPS61182517A JP S61182517 A JPS61182517 A JP S61182517A JP 2189085 A JP2189085 A JP 2189085A JP 2189085 A JP2189085 A JP 2189085A JP S61182517 A JPS61182517 A JP S61182517A
Authority
JP
Japan
Prior art keywords
magnetic field
optical fiber
light
detector
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2189085A
Other languages
Japanese (ja)
Inventor
Haruyoshi Kuno
久野 治義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2189085A priority Critical patent/JPS61182517A/en
Publication of JPS61182517A publication Critical patent/JPS61182517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To display an azimuth and an elevation angle to a projector forming the 1st and 2nd optical fibers, a magnetic field detecting element tightly adhered to these fibers, the 1st and 2nd detectors, a means for detecting the size of a magnetic field, and a storage. CONSTITUTION:Light projected from a light source 11 is detected by a detector 17 through an optical fiber 14. On the other hand, light coupled with the optical fiber 15 side is transmitted through the optical fiber 15 wound around a magnetic distortion element 18 and detected by a detector 19. A phase difference corresponding to the size of a magnetic field in the X direction which corresponds to the distortion of a magnetic distortion element 18 is generated between the light rays detected by the detectors 17, 19. The output signals of the detectors 17, 19 are inputted to a signal processing circuit 4, which detects the phase difference between both the output signals and the size of the magnetic field component in the X axis direction. Similarly, the size of the magnetic field components in the Y and Z axis directions is detected by signal processing circuits 5, 6 respectively. The data of the size of the magnetic fields in respective directions in a space previously stored in a storage 8 are compared with data outputted from the signal processors 4-6 by a comparator 7 to display the azimuth and elevation angle.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、磁界例えば地磁気の方向を測定して方位表示
を行う方位測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an azimuth measuring device that measures the direction of a magnetic field, such as earth's magnetism, and displays the azimuth.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、携行飛翔体では、目標を捜索する者と飛翔体の発
射手とが組となシ、目標を捜索する者が目標を捜索した
のち発射手が飛翔体を目標方向に指向させていた。この
従来の方法では、発射手は仰角、方位角を知ることがで
きず1例えば中央のレーダ装置で目標を発見して目標位
置が検出されても発射手は要求された方向に飛翔体を向
けることは困難であった。発射手にとっては、飛翔体の
指向方向を把握できることが、飛翔体の指向方向が指示
される場合やその指向方向に正確に飛翔体を向けるため
には必要である0 〔発明の目的〕 不発明は、上記した事情を考慮してなされたもので発射
中に万位、仰角を表示することができる方位測定装置を
提供することを目的とする○〔発明の概要〕 本発明による方位測定装置は、磁界の大きさに対応して
磁歪素子に生じる応力を元ファイノ(に伝達し、この光
7アイパの出力光と磁界には影響されない光ファイバと
の出力光との位相差を検出して磁界の大きさを検出する
とともに1予じめ測定された空間の各方向における磁界
の大きさと検出した磁界の大きさとを比較して磁界の方
向を検知し方向の表示を行うものである0〔発明の実施
例〕 以下、本発明による方位測定装置の一実施例を図面を参
照して説明する0 第1図は、本発明による方位測定装置の一実施例を説明
する回路構成図である0この第1図の構成では、X軸、
X軸、Z軸の直りする3軸それぞれの方向の磁界の大き
さを検出するX軸41を出回路(1)、 YM@出回路
f2)、 Z軸ff出回路(3)が設けられる。X軸検
出回路(1)、X軸検出回路(2)、Z軸検出回路(3
)は、磁歪素子がそれぞれ直交するように配設されるが
他は同一構成であるので、X軸検出回路(1)について
説明を行いX軸及びZ軸については説明を省略する0光
源αυは、例えばレーザダイオードである0この光源σ
υからの光は、光ファイバα2を通って光分配手段(1
3例えば3 dBB10に導かれる0光分配手段Q3は
、光ファイバμ2からの光を光ファイバI側に透過する
光と光ファイバuS側に結合する光とに分離する。端子
ueは無反射終端である○光ファイバα荀側に透過した
光は、検知器(17)で検知される〇−刀、光ファイバ
ttS側に結合した元は、磁歪素子(18に巻回された
光7アイパ(15内を伝播して検知器(至)で検知され
る0磁歪素子鰻には、磁界の大きさに対応して歪が発生
する0光フアイバjl!19は、この磁歪素子(18の
歪に対応して伸縮するよう磁歪素子α枠に密着して巻回
されているoしたがって、光ファイバ(19を伝播する
光は、X軸方向の磁界の大きざに対応した光路長変化に
よシ位相変化を受ける0光7アイバ(l養及び光ファイ
バa!9は、磁界が零の場合に互いの出力光が同位相と
なるような長さKそれぞれ設定される0万位測定装置が
磁界中に置かれると、磁歪素子αQがX軸方向の磁界の
大きさに対応して歪む0この歪みに対応して光ファイバ
(Isを伝播する光が位相変化を受けるため、検出器u
乃及び検出器tllで検出される光の間には、歪に対応
したすなわち磁界の大きさに対応した位相差が生じる0
信号処理回路(4)は、検出器αη及び検出器(旧の出
力信号が供給され、両出力信号の位相差を検出してX軸
方向の磁界成分の大きさを検出する0同様に、信号処理
回路(5)及び(6)により、それぞれX軸方向、Z軸
方向の磁界成分の大きさが検出サレ6o ’N 号外j
ilal路(4)、 15) 、 (6)7) X軸、
Y@。
Conventionally, in portable flying vehicles, a person searching for a target and a person who launches the projectile are paired together, and after the person searching for the target searches for the target, the launcher directs the projectile toward the target. In this conventional method, the launcher cannot know the elevation angle and azimuth angle.1 For example, even if the target is detected by a central radar device and the target position is detected, the launcher directs the projectile in the requested direction. That was difficult. For the launcher, it is necessary to be able to grasp the pointing direction of the projectile in order to be able to accurately point the projectile in the direction in which the projectile is directed.0 [Object of the invention] Non-invention This was made in consideration of the above-mentioned circumstances, and the purpose is to provide an azimuth measuring device that can display the ten-man position and elevation angle during launch. [Summary of the Invention] The azimuth measuring device according to the present invention is , the stress generated in the magnetostrictive element in response to the magnitude of the magnetic field is transmitted to the original phino(), and the phase difference between the output light of the optical fiber and the output light of the optical fiber, which is not affected by the magnetic field, is detected and the magnetic field is In addition to detecting the magnitude of the magnetic field and comparing the magnitude of the magnetic field measured in advance in each direction of the space with the magnitude of the detected magnetic field, the direction of the magnetic field is detected and the direction is displayed0 [Invention Embodiment] Hereinafter, an embodiment of the direction measuring device according to the present invention will be described with reference to the drawings. FIG. 1 is a circuit configuration diagram illustrating an embodiment of the direction measuring device according to the present invention. In the configuration shown in Figure 1, the X axis,
An X-axis 41 output circuit (1), a YM@output circuit f2), and a Z-axis ff output circuit (3) are provided to detect the magnitude of the magnetic field in each of the three directions of the X-axis and Z-axis. X-axis detection circuit (1), X-axis detection circuit (2), Z-axis detection circuit (3)
), the magnetostrictive elements are arranged orthogonal to each other, but the other configurations are the same, so we will explain the X-axis detection circuit (1) and omit the explanation of the X- and Z-axes.The 0 light source αυ is , this light source σ is for example a laser diode.
The light from υ passes through the optical fiber α2 to the optical distribution means (1
For example, the zero light distribution means Q3 guided to 3 dBB10 separates the light from the optical fiber μ2 into light transmitted to the optical fiber I side and light coupled to the optical fiber uS side. Terminal ue is a non-reflection terminal. The light transmitted to the optical fiber α side is detected by the detector (17). The source coupled to the optical fiber ttS side is the magnetostrictive element (wound around The transmitted light propagates through the magnetostrictive element (15) and is detected by the detector (towards). Strain occurs in response to the magnitude of the magnetic field. The optical fiber (jl!19) The magnetostrictive element (18) is tightly wound around the α frame so as to expand and contract in response to the strain of the element (18). Therefore, the light propagating through the optical fiber (19) follows an optical path corresponding to the magnitude of the magnetic field in the X-axis direction. The optical fibers 7 and 9, which undergo phase changes due to changes in length, are each set to a length K such that their output lights are in phase when the magnetic field is zero. When the position measuring device is placed in a magnetic field, the magnetostrictive element αQ is distorted in response to the magnitude of the magnetic field in the X-axis direction.In response to this distortion, the light propagating through the optical fiber (Is) undergoes a phase change. detector u
A phase difference occurs between the light detected by the light and the light detected by the detector tll, which corresponds to the strain, that is, the magnitude of the magnetic field.
The signal processing circuit (4) receives the signal from the detector αη and the detector (0 which is supplied with the old output signal and detects the phase difference between the two output signals to detect the magnitude of the magnetic field component in the X-axis direction). The processing circuits (5) and (6) detect the magnitude of the magnetic field components in the X-axis direction and the Z-axis direction, respectively.
ilal path (4), 15), (6) 7) X axis,
Y@.

Z軸方向の磁界成分を表わすそれぞれの出力信号は、比
較回路(7)に供給される0比較回路(7)は、記憶器
(8)で予じめ記憶された空間の各方向における磁界の
大きさのデータと信号処理回路(4)。
Each output signal representing the magnetic field component in the Z-axis direction is supplied to a comparator circuit (7). The 0 comparator circuit (7) calculates the magnetic field components in each direction of the space stored in advance in the memory (8). Magnitude data and signal processing circuit (4).

15) 、 (6)からのデータとを比較し、丙データ
が一致した場合にその方向を示す信号を出力する0予じ
め測定された空間の各方向における磁界のデータは、記
憶器(8)で各方向毎に記憶されるが、メモリするデー
タとしては1例えば第1図の方位測定装置を用いて測定
したデータを利用してもよい。表示器(9)には、比較
回路(7)からの方向を示す信号が供給され、方向表示
を行う0方向表示は、数値的に表示がなされてもよく、
また、ベクトル図的になされてもよい0この方位測定装
置は、携行飛翔体に利用して有用である。すなわち、携
行飛翔体にこの方位測定装置を搭載し、方向表示器に飛
翔体の向き(仰角、方位角)が表示されるよう方位測定
装置のx@、y@。
15) and the data from (6) are compared, and if the C data matches, a signal indicating the direction is output.0 The data of the magnetic field in each direction of the space measured in advance is stored in ), but the data to be stored may be data measured using the direction measuring device shown in FIG. 1, for example. The indicator (9) is supplied with a signal indicating the direction from the comparator circuit (7), and the 0 direction display for indicating the direction may be numerically displayed.
Furthermore, this azimuth measuring device, which may be constructed in a vector diagram, is useful for use in portable flying objects. That is, this azimuth measuring device is mounted on a portable flying object, and the x@, y@ of the azimuth measuring device is adjusted so that the orientation (elevation angle, azimuth angle) of the flying object is displayed on the direction indicator.

Z軸を設定しておくo発射子が飛翔体の向きを変えると
それに応じてX軸、X軸、Z軸の検出磁界成分が変化し
、あらたに得られた各磁界成分と記憶器(8)のデータ
との比較に基づき方向表示器にあらたな方向の表示がな
される0地磁気は場所によって異なるが、更に付近にあ
る磁性体によって犬さく影響きれるので、当初に地磁気
を測定して地磁気のマン1を作っておくのがよい。
Set the Z-axis o When the projectile changes the direction of the projectile, the detected magnetic field components of the X-axis, X-axis, and Z-axis will change accordingly, and each newly obtained magnetic field component and memory ) A new direction will be displayed on the direction indicator based on the data of It is better to make Man 1 in advance.

この方位測定装置によれば、発射中が携行飛翔体を任意
の方向に向けるとその方向の表示がなされるので、外部
からの方向指示に容易に従うことができる。  。
According to this azimuth measuring device, when the portable flying object is pointed in any direction during launch, that direction is displayed, so it is possible to easily follow direction instructions from the outside. .

第2図は円筒形の磁歪素子u8を示すもので。Figure 2 shows a cylindrical magnetostrictive element u8.

例えばニッケル等の磁性体である○光ファイバ(19は
、この磁歪素子嗜の変形がよく伝わるように密着して巻
回されるo′また、第3図は、光ファイバのクラッド(
至)の外周部6υを磁歪性の材料で形成したもので、こ
のような構成においても磁界の変化に対応して光ファイ
バが伸縮するので磁界検出素子に利用することができる
0〔発明の効果〕 以上説明したように本発明による方位測定装置によれば
、空間の任意の方向を容易に表示することができるので
、例えば携行飛翔体寺の向きを外部からの方向指示に従
って正確に設定することかでき実用上の効果は犬である
For example, an optical fiber (19) made of a magnetic material such as nickel is wound tightly so that the deformation of the magnetostrictive element is well transmitted.
(to) is made of a magnetostrictive material, and even in such a configuration, the optical fiber expands and contracts in response to changes in the magnetic field, so it can be used as a magnetic field detection element.0 [Advantages of the Invention] ] As explained above, according to the direction measuring device according to the present invention, any direction in space can be easily displayed, so that, for example, the direction of a portable flying object can be accurately set according to direction instructions from the outside. The practical effect is a dog0

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による方位測定装置の一実施例を説明
する回路構成図、第2図及び第3図は磁界検出素子を説
明する図である。 μυ・・・光源、αL(14)、C15・・・元ファイ
バ、(13・・・分配手段、α$・・・磁歪素子、αη
、(11・・検出器、(4)。 +5) 、 C6)・・・信号処理回路、(7)・・比
較回路、(8)・・・記憶器、(9)・・・表示器。 一一廿 一] 「 薯 砿 ■ −」
FIG. 1 is a circuit diagram illustrating an embodiment of an azimuth measuring device according to the present invention, and FIGS. 2 and 3 are diagrams illustrating a magnetic field detection element. μυ...Light source, αL (14), C15... Original fiber, (13... Distribution means, α$... Magnetostrictive element, αη
, (11...Detector, (4). +5), C6)... Signal processing circuit, (7)... Comparison circuit, (8)... Memory device, (9)... Display device. 11廿一] “薯翿■ -”

Claims (1)

【特許請求の範囲】[Claims] 光を出力する光源と、この光源からの光を2分する分配
手段と、この分配手段で分配された一方の光が導かれる
第1の光ファイバと、前記分配手段で分配された他方の
光が導かれる第2の光ファイバと、磁界の大きさに対応
した歪が生じこの歪を前記第2の光ファイバに伝達して
前記第2の光ファイバを伸縮させる磁界検出素子と、前
記第1の光ファイバからの出力光を検出する第1の検出
器と、前記第2の光ファイバからの出力光を検出する第
2の検出器と、この第2の検出器の出力信号と前記第1
の検出器の出力信号との位相差を検出し磁界の大きさを
検出する手段と、空間の各方向における磁界の大きさの
測定値を予じめ記憶する記憶器と、この記憶器で記憶さ
れた情報と前記手段で検出された磁界の大きさとを比較
して磁界の大きさに対応した空間の方向を検出する手段
と、この手段からの信号が供給され方向の表示を行う表
示手段とを具備する方位測定装置。
A light source that outputs light, a distributing means that divides the light from the light source into two, a first optical fiber to which one of the lights distributed by the distributing means is guided, and the other light distributed by the distributing means. a second optical fiber to which the magnetic field is guided; a magnetic field detection element that generates a strain corresponding to the magnitude of the magnetic field and transmits the strain to the second optical fiber to expand and contract the second optical fiber; a first detector that detects the output light from the optical fiber; a second detector that detects the output light from the second optical fiber; and an output signal of the second detector and the first detector.
means for detecting the phase difference with the output signal of the detector to detect the magnitude of the magnetic field; a memory device for storing in advance the measured value of the magnitude of the magnetic field in each direction of space; means for detecting the direction of the space corresponding to the magnitude of the magnetic field by comparing the information obtained by the magnetic field with the magnitude of the magnetic field detected by the means; and a display means that is supplied with a signal from the means and displays the direction. A direction measuring device equipped with.
JP2189085A 1985-02-08 1985-02-08 Measuring instrument of azimuth Pending JPS61182517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2189085A JPS61182517A (en) 1985-02-08 1985-02-08 Measuring instrument of azimuth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2189085A JPS61182517A (en) 1985-02-08 1985-02-08 Measuring instrument of azimuth

Publications (1)

Publication Number Publication Date
JPS61182517A true JPS61182517A (en) 1986-08-15

Family

ID=12067700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2189085A Pending JPS61182517A (en) 1985-02-08 1985-02-08 Measuring instrument of azimuth

Country Status (1)

Country Link
JP (1) JPS61182517A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274084A (en) * 1988-04-27 1989-11-01 Fujikura Ltd Optical fiber antenna
JPH0285785A (en) * 1988-09-22 1990-03-27 Ube Ind Ltd Device and method for automatically measuring magnetic flux density

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274084A (en) * 1988-04-27 1989-11-01 Fujikura Ltd Optical fiber antenna
JPH0285785A (en) * 1988-09-22 1990-03-27 Ube Ind Ltd Device and method for automatically measuring magnetic flux density

Similar Documents

Publication Publication Date Title
US5023845A (en) Embedded fiber optic beam displacement sensor
Ferrin Survey of helmet tracking technologies
US4626100A (en) Wide field of view two-axis laser locator
JPS5984107A (en) Static shaft aligning method and device and method and device for monitoring shaft alignment
US5298964A (en) Optical stress sensing system with directional measurement capabilities
CN111337019B (en) Quantum sensing device for combined navigation
US20030098972A1 (en) Streamlined method and apparatus for aligning a sensor to an aircraft
US4600883A (en) Apparatus and method for determining the range and bearing in a plane of an object characterized by an electric or magnetic dipole
US5052800A (en) Boresighting method and apparatus
US4560272A (en) Three-axis angle sensor
JPH0192676A (en) Scalar magnetometer having vector function and compensation of rotation
JPS61182517A (en) Measuring instrument of azimuth
US3370460A (en) Optical-inertial navigation system
US3409781A (en) Electro-optical angle sensor
US3310877A (en) Vehicle optical alignment device
US6727491B1 (en) Sensor and method for detecting changes in distance
EP0459066A1 (en) Position-controlled electromagnetic assembly
USH315H (en) Method of measuring optical properties of a transparency
EP0081651A2 (en) Three-axis angle sensor
Meĭtin et al. Developing algorithms for automatically adjusting a two-mirror telescope
Shargorodsky et al. Nanosatellite reflector for optical calibrations: attitude control and determination aspects
Morrison Telescope fine guidance
JPS6256968B2 (en)
Emmerich et al. A vertical azimuth transfer system
JPS6156953B2 (en)