JPS61182467A - Ingiting device for internal-combustion engine - Google Patents

Ingiting device for internal-combustion engine

Info

Publication number
JPS61182467A
JPS61182467A JP60020875A JP2087585A JPS61182467A JP S61182467 A JPS61182467 A JP S61182467A JP 60020875 A JP60020875 A JP 60020875A JP 2087585 A JP2087585 A JP 2087585A JP S61182467 A JPS61182467 A JP S61182467A
Authority
JP
Japan
Prior art keywords
ignition
coil
voltage
transistor switch
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60020875A
Other languages
Japanese (ja)
Inventor
Takeshi Watanabe
武 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Electric Drive Systems Co Ltd
Original Assignee
Kokusan Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusan Denki Co Ltd filed Critical Kokusan Denki Co Ltd
Priority to JP60020875A priority Critical patent/JPS61182467A/en
Publication of JPS61182467A publication Critical patent/JPS61182467A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/045Layout of circuits for control of the dwell or anti dwell time
    • F02P3/0453Opening or closing the primary coil circuit with semiconductor devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/155Analogue data processing
    • F02P5/1558Analogue data processing with special measures for starting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

PURPOSE:To enable widening of the width of a lead angle and to improve starting properties of an engine, by a method wherein a capacitor, which is charged into the one polarity by means of the induction voltage of the other half-cycle of an ignition coil, is provided, and the charged charge is discharged at a given time. CONSTITUTION:An ignition device has a transistor switch 3 for controlling a main current to which a circuit between a collector and an emitter in parallel to an ignition source coil (prmary coil 1a of an ignition coil 1) inducing an a.c. voltage in synchronism with rotation of an engine. The switch 3 is energized when a voltage of one half-cycle is induced to the coil, and is brought into a shut off state with a switch 4 for controlling shut off energized with a voltage between the collector and the emitter is increased to a given value. In which case, a capacitor 5, which is charged by means of an induction voltage of the other half-cycle, is provided, and the charged charge is discharged through the coil and the switch 3 from a point of time when charging is completed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電流遮断式の内燃1lIl用点火装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a current interrupt type ignition device for internal combustion.

[発明の概要] 本発明は、点火電源コイルに対して並列に接続されたト
ランジスタスイッチを該点火電源コイルの一方の半サイ
クルの出力で導通させて、点火時期に該トランジスタス
イッチを遮断状態にすることにより点火用の高電圧を得
る電流遮断式の内燃機関用点火装置において、 前記点火電源コイルの他方の半サイクルの出力で充電さ
れるコンデンサと、該コンデンサの電荷を前記点火電源
コイルとトランジスタスイッチとを通して放電させる放
電回路とを設けることにより、 充分な進角幅を有する進角特性を得ることができるよう
にして、機関の低速時及び中高速時の点火時期を適正に
設定し得るようにしたものである。
[Summary of the Invention] The present invention makes a transistor switch connected in parallel to an ignition power supply coil conductive at the output of one half cycle of the ignition power supply coil, and puts the transistor switch in a cut-off state at the ignition timing. A current interrupt type ignition device for an internal combustion engine that obtains a high voltage for ignition by a capacitor that is charged by the output of the other half cycle of the ignition power supply coil, and a charge of the capacitor that is transferred to the ignition power supply coil and a transistor switch. By providing a discharge circuit that discharges through This is what I did.

[従来の技術] トランジスタスイッチを電流制御用スイッチとして用い
た電流遮断式の内燃機関用点火装置においては、点火電
源コイルに対して並列に主電流制御用トランジスタスイ
ッチを接続し、点火電源コイルに一方の半サイクルの電
圧が誘起した時に該トランジスタスイッチを導通させて
点火電源コイルを短絡する。そして、トランジスタスイ
ッチの両端の電圧を検出して、該電圧が所定の値になっ
たときにトランジスタスイッチを遮断状態にする。
[Prior Art] In a current interrupt type ignition system for an internal combustion engine using a transistor switch as a current control switch, the main current control transistor switch is connected in parallel to the ignition power supply coil, and one side is connected to the ignition power supply coil. When a half-cycle voltage is induced, the transistor switch is made conductive to short-circuit the ignition power supply coil. Then, the voltage across the transistor switch is detected, and when the voltage reaches a predetermined value, the transistor switch is turned off.

このトランジスタスイッチの遮断により点火電源コイル
を流れていた短絡電流が遮顕されるため、該点火電源コ
イルに高い電圧が誘起する。この電圧は点火コイルによ
り更に昇圧され、該点火コイルの2次コイルに点火用の
高電圧が得られる。
Since the short-circuit current flowing through the ignition power supply coil is blocked by shutting off the transistor switch, a high voltage is induced in the ignition power supply coil. This voltage is further boosted by the ignition coil, and a high voltage for ignition is obtained in the secondary coil of the ignition coil.

従来のこの種の点火装置では、第3図に曲線aで示した
ように、Vs関の低速時に僅かに(2度乃至5度程度)
点火時期αが進み、その後は更に回転数N(rpm)が
上昇しても点火時期αは略一定となる。
In the conventional ignition system of this type, as shown by curve a in Fig. 3, at low speeds at Vs, there is a slight (approximately 2 to 5 degrees)
The ignition timing α advances and thereafter remains approximately constant even if the rotational speed N (rpm) further increases.

ところで、この種の点火装置においては、機関の中高速
領域における点火時期α1 (第3図参照)を機関の上
死点より進んだ適当な位置(II関により異なる)に定
めるように発電機内における点火電源コイルの取付は位
置を設定するが、このように機関の中高速領域における
点火時期を定めると、機関の低速時における点火時期は
、点火装置の進角特性の進角幅によって自ずから定まる
ことになる。機関の中高速領域における適正な点火時期
は例えば機関の上死点TDCより25度程度進んだ位置
であるが、従来のこの種の点火装置では、進角幅が2度
乃至5度であったので、中高速領域での点火時期を上死
点前25度の位置に設定すると、低速時の点火時期は上
死点前20度乃至23度程度となっていた。
By the way, in this type of ignition system, the ignition timing α1 (see Fig. 3) in the medium and high speed range of the engine is set at an appropriate position (different depending on engine II) ahead of the top dead center of the engine. The installation position of the ignition power supply coil is determined by setting the position, but if the ignition timing is determined in the medium and high speed range of the engine in this way, the ignition timing at low engine speeds is automatically determined by the advance width of the ignition system's advance characteristic. become. The appropriate ignition timing in the mid-high speed range of an engine is, for example, about 25 degrees ahead of the engine's top dead center TDC, but in conventional ignition systems of this type, the advance angle range was 2 degrees to 5 degrees. Therefore, if the ignition timing in the medium and high speed range was set at 25 degrees before top dead center, the ignition timing at low speeds was about 20 to 23 degrees before top dead center.

[発明が解決しようとする問題点1 機関の低速時の点火動作を安定にし、機関の始動性を良
好にするためには、低速時の点火時期をできるだけ上死
点に近付けることが好ましい。機関の低速時の点火時期
が進んでいると、始動時に機関が逆転しようとする、い
わゆるケッチン現象が生じて、機関の始動性が悪くなる
だけでなく、キックスタートの場合には、始動時に運転
者の足に、またリコイルスタータ等では運転者の手に大
ぎな反発力が作用し、酷い場合には運転者が怪我をする
ことがある。
[Problem to be Solved by the Invention 1] In order to stabilize the ignition operation at low speeds of the engine and improve the startability of the engine, it is preferable to bring the ignition timing at low speeds as close to top dead center as possible. If the ignition timing is advanced when the engine is running at low speed, the so-called "Ketchin" phenomenon occurs, in which the engine attempts to reverse the rotation when starting, which not only makes it difficult to start the engine, but also prevents the engine from starting when starting with a kick start. A large repulsive force acts on the driver's legs, and in severe cases, the driver may be injured.

上記、従来の電流遮断式点火装置では、進角幅を僅かに
2度乃至5度程度しかとることができなかったため、1
1関の低速時の点火時期が上死点TDCより20度乃至
23度も進んだ位置になるのを避けられなかった。この
ように、機関の低速時の点火時期が進んでいると、上記
のようにケッチン現象が生じるのを避けられず、始動性
が悪くなるのを避けられなかった。また始動性を向上さ
せるために低速時の点火時期を適正な位置に設定すると
今度は機関の高速時の点火時期が遅れ過ぎ、機関の性能
が悪くなるのを避けられない。
With the above-mentioned conventional current interrupt type ignition device, the advance angle width could only be about 2 degrees to 5 degrees.
It was unavoidable that the ignition timing at low speed for the first engine was 20 to 23 degrees ahead of top dead center TDC. As described above, if the ignition timing is advanced when the engine is running at low speed, the above-mentioned ketching phenomenon cannot be avoided, and the startability becomes unavoidable. Furthermore, if the ignition timing at low speeds is set to an appropriate position in order to improve starting performance, the ignition timing at high speeds of the engine will be delayed too much, which inevitably deteriorates engine performance.

本発明の目的は、充分な進、色幅を得て機関の低速時及
び中高速時の点火時期を共に適正な位置に設定し得るよ
うにした内燃機関用点火装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an ignition system for an internal combustion engine that can obtain sufficient advance and color width and set the ignition timing at appropriate positions at both low and medium speeds of the engine.

[問題点を解決するための手段] 本発明が対象とする点火装置は、その一実施例を示す第
1図に見られるように、内燃機関の回転に同期して交流
電圧を誘起する点火電源コイル(この例では点火コイル
1の1次コイル1a)に対してコレクタエミッタ間回路
が並列に接続された主電流制御用トランジスタスイッチ
3を備え、該トランジスタスイッチ3は点火電源コイル
に一方の半サイクルの電圧が誘起した時にベース電流が
与えられて導通する。トランジスタスイッチ3には、遮
断&lll用スイッチ4が接続され、該スイッチ4はト
ランジスタスイッチ3のコレクタエミッタ間の電圧が所
定値に達した時に導通して該トランジスタスイッチ3を
遮断状態にする。
[Means for Solving the Problems] The ignition device to which the present invention is directed, as shown in FIG. A main current control transistor switch 3 is provided with a collector-emitter circuit connected in parallel to the coil (in this example, the primary coil 1a of the ignition coil 1), and the transistor switch 3 controls the ignition power supply coil in one half cycle. When a voltage is induced, a base current is applied and conduction occurs. A cut-off &llll switch 4 is connected to the transistor switch 3, and the switch 4 becomes conductive when the voltage between the collector and emitter of the transistor switch 3 reaches a predetermined value to turn the transistor switch 3 into a cut-off state.

本発明は、この様な点火装置において、点火電源コイル
の他方の半サイクルの誘起電圧により一方の極性に充電
されるコンデンサ5と、コンデンlす5の充電が完了し
た時点から該コンデンサ5の電荷を点火電源コイルとト
ランジスタスイッチ3とを通して放電させる放電回路と
を設けたことを特徴とする。
In such an ignition device, the present invention provides that the capacitor 5 is charged to one polarity by the induced voltage of the other half cycle of the ignition power supply coil, and that the charge of the capacitor 5 is reduced from the time when the charging of the capacitor 5 is completed. The present invention is characterized in that it is provided with a discharge circuit for discharging through the ignition power supply coil and the transistor switch 3.

[発明の作用] 上記のように、コンデンサ5を設けて、該コンデンサ5
を点火電源コイル(この例では点火コイルの1次コイル
1a)の一方の半サイクルの出力で充電し、コンデンサ
5の充電が完了した時点から該コンデンサの電荷を点火
電源コイル及びトランジスタスイッチ3を通して放電さ
せるようにすると、このコンデンサの放電電流が、点火
電源コイルの一方の半サイクルの電圧により点火電源コ
イルから1〜ランジスタスイツチを通して流れる短絡電
流に重畳されて流れることになる。このように、コンデ
ンサの放電電流をトランジスタスイッチを流れる電流に
重畳すると、点火電源コイルを流れる電流(点火電源コ
イルの誘起電圧をトランジスタスイッチにより短絡する
ことによって流れる短絡電流にコンデンサの放電電流を
重畳した電流、以下主電流という。)の波形は、機関の
回転数NがN1 、N2  (>N1)、N3  (>
N2 )のように上昇した時に第2図A乃至Cに実線で
示すように変化し、その立上がり部の波形が回転数の上
昇に伴って大幅に変化するようになる。従って、点火電
源コイルを流れる主電流が所定のIIXIIi値に達す
る位相が機関の回転数の上昇に伴って大幅に変化するよ
うになり、点火時期における電流の遮断値を一定とする
と、進角幅は、従来よりも大幅に広くなる。
[Operation of the invention] As described above, the capacitor 5 is provided, and the capacitor 5
is charged by the output of one half cycle of the ignition power supply coil (in this example, the primary coil 1a of the ignition coil), and from the time when charging of the capacitor 5 is completed, the charge of the capacitor is discharged through the ignition power supply coil and the transistor switch 3. In this case, the discharge current of this capacitor flows superimposed on the short-circuit current flowing from the ignition power supply coil through the transistor switch 1 to the transistor switch due to the voltage of one half cycle of the ignition power supply coil. In this way, when the discharge current of the capacitor is superimposed on the current flowing through the transistor switch, the current flowing through the ignition power supply coil (the short-circuit current flowing when the induced voltage of the ignition power supply coil is short-circuited by the transistor switch) The waveform of the current (hereinafter referred to as main current) is as follows when the engine speed N is N1, N2 (>N1), N3 (>
When the rotational speed increases as shown in FIG. 2A to C, the waveform of the rising portion changes significantly as the rotational speed increases. Therefore, the phase at which the main current flowing through the ignition power supply coil reaches the predetermined IIXIIi value will change significantly as the engine speed increases, and if the current cutoff value at the ignition timing is constant, the advance angle width will change significantly as the engine speed increases. will be significantly wider than before.

従って、中高速時の点火時期を適正な位置に設定した場
合に、低速時の点火時期を上死点に近い位置に設定する
ことができ、機関の低速時における動作を安定にして、
始動性を向上させることができる。
Therefore, when the ignition timing at medium and high speeds is set to an appropriate position, the ignition timing at low speeds can be set to a position close to top dead center, making the operation of the engine stable at low speeds,
Startability can be improved.

[実施例] 以下添附図面を参照して本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明の一実施例を示したもので、同図におい
て、1は鉄心に1次コイル1a及び2次コイル1bを巻
回した点火コイルで、点火コイル1の1次コイル1aの
一端は接地され、1茨コイル1aの(l!!端が2次コ
イル1bの一端に接続されている。2次コイル1bの他
端は機関の気筒に取付けられた点火プラグ2の非接地側
端子に高圧コードを介して接続されている。点火コイル
1の少なくとも1茨コイル1aは機関により駆動される
磁石発電機内に電機子コイルとして配置され、機関の回
転に同期して、1次コイル1aに交流電圧が誘起するよ
うになっている。すなわち、この例では、1次コイル1
aが点火電源コイルを兼ねている。
FIG. 1 shows an embodiment of the present invention. In the figure, 1 is an ignition coil in which a primary coil 1a and a secondary coil 1b are wound around an iron core. One end is grounded, and the (l!! end of the thorny coil 1a is connected to one end of the secondary coil 1b. The other end of the secondary coil 1b is the non-grounded side of the spark plug 2 attached to the cylinder of the engine. It is connected to the terminal via a high voltage cord.At least one thorn coil 1a of the ignition coil 1 is arranged as an armature coil in a magnet generator driven by the engine, and is connected to the primary coil 1a in synchronization with the rotation of the engine. In other words, in this example, the primary coil 1
A also serves as the ignition power supply coil.

トランジスタスイッチ3はダーリントン接続されたNP
NトランジスタTR1及びTR2からなり、トランジス
タスイッチ3のコレクタ(TR1及びTR2のコレクタ
)が点火コイルの1次コイル1aの一端に接続されてい
る。トランジスタスイッチ3のエミッタ(・トランジス
タTR2のエミッタ)はカソードが1次コイル1aの他
端に接続されたダイオード6のアノードに接続され、ト
ランジスタスイッチ3のベース(トランジスタTR1の
ベース)は抵抗7と抵抗8とを介して1次コイル1aの
一端に接続され、抵抗7及び8の接続点にアノードをト
ランジスタスイッチ3のエミッタに接続したダイオード
9のカソードが接続されている。トランジスタスイッチ
3は、1次コイル(点火電源コイル>1aが図示の実線
矢印方向の一方の半サイクルの電圧を誘起した時にベー
ス電流が与えられて導通し、1次コイル1aを短絡する
Transistor switch 3 is Darlington connected NP
It consists of N transistors TR1 and TR2, and the collector of the transistor switch 3 (the collector of TR1 and TR2) is connected to one end of the primary coil 1a of the ignition coil. The emitter of the transistor switch 3 (the emitter of the transistor TR2) is connected to the anode of a diode 6 whose cathode is connected to the other end of the primary coil 1a, and the base of the transistor switch 3 (the base of the transistor TR1) is connected to the resistor 7. The diode 9 is connected to one end of the primary coil 1a via a diode 8, and the cathode of a diode 9 whose anode is connected to the emitter of the transistor switch 3 is connected to the connection point of the resistors 7 and 8. When the primary coil (ignition power supply coil>1a) induces a voltage of one half cycle in the direction of the solid arrow shown in the drawing, the transistor switch 3 is supplied with a base current and becomes conductive, shorting the primary coil 1a.

遮断制御用スイッチ4はエミッタをトランジスタスイッ
チ3のエミッタに接続したNPNトランジスタTR3か
らなり、トランジスタTR3のコレクタは抵抗7及び8
の接続点に接続されている。
The cutoff control switch 4 consists of an NPN transistor TR3 whose emitter is connected to the emitter of the transistor switch 3, and the collector of the transistor TR3 is connected to resistors 7 and 8.
connected to the connection point.

トランジスタスイッチ3のコレクタエミッタ間には、抵
抗10及び11の直列回路からなる分圧回路が接続され
、抵抗10及び11の接続点にトランジスタTR3のベ
ースが接続されている。抵抗10及び11からなる分圧
回路はトランジスタスイッチ3・の両端の電圧を検出し
、トランジスタスイッチ3の]レクタエミッタ間の電圧
が設定値に達した時に、トランジスタTR3に所定のベ
ース電流を流して該トランジスタTR3を導通状態にす
る。トランジスタTR3が導通するとトランジスタスイ
ッチ3が遮断状態になり、1次コイル1aに高い電圧が
誘起する。この電圧が点火コイル1により昇圧されて2
次コイル1bに点火用の高電圧が誘起し、該高電圧によ
り点火プラグ2に火花が生じて点火動作が行われる。
A voltage dividing circuit consisting of a series circuit of resistors 10 and 11 is connected between the collector and emitter of the transistor switch 3, and the base of the transistor TR3 is connected to the connection point of the resistors 10 and 11. A voltage divider circuit consisting of resistors 10 and 11 detects the voltage across the transistor switch 3, and when the voltage between the rectifier and the emitter of the transistor switch 3 reaches a set value, it causes a predetermined base current to flow through the transistor TR3. The transistor TR3 is made conductive. When the transistor TR3 is turned on, the transistor switch 3 is turned off, and a high voltage is induced in the primary coil 1a. This voltage is boosted by ignition coil 1 and 2
A high voltage for ignition is induced in the next coil 1b, and a spark is generated in the ignition plug 2 due to the high voltage, thereby performing an ignition operation.

トランジスタスイッチ3のコレクタエミッタ間には、ア
ノードをトランジスタスイッチ3のエミッタ側に向けた
ダイオード12が並列接続されている。
A diode 12 having an anode directed toward the emitter of the transistor switch 3 is connected in parallel between the collector and emitter of the transistor switch 3 .

本発明は、この様な点火装置において、点火電源コイル
の他方の半サイクルの出力で充電されるコンデンサ5を
設け、該コンデンサの充電が完了した時点から該コンデ
ンサ5を点火電源コイルとトランジスタスイッチ3とを
通して放電させるようにしたものである。
The present invention provides such an ignition device with a capacitor 5 that is charged by the output of the other half cycle of the ignition power supply coil, and from the time when charging of the capacitor is completed, the capacitor 5 is connected to the ignition power supply coil and the transistor switch 3. It is designed to cause discharge through the

本実施例では、コンデンサ5がダイオード6の両端に並
列に接続され、1次コイル(点火電源コイル)1aに図
示の破線矢印方向の、他方の半サイクルの電圧が発生し
た時にコンデンサ5が図示の極性に充電されるようにな
っている。
In this embodiment, a capacitor 5 is connected in parallel to both ends of a diode 6, and when a voltage of the other half cycle in the direction of the dashed arrow shown in the figure is generated in the primary coil (ignition power supply coil) 1a, the capacitor 5 is connected in parallel to both ends of the diode 6. It is designed to be charged polarized.

上記の実施例において、1次コイル1aは機関の回転に
同期して交流電圧を誘起する。1次コイル1aに図示の
破線矢印方向の電圧が発生すると、コンデンサ5がダイ
オード12を通して図示の極性に充電される。1次コイ
ル1aの破線矢印方向の電圧がピークに達するとコンデ
ンサ5の充電が完了し、以後は該コンデンサ5の電荷が
、1次コイル1a及びトランジスタスイッチ3を通して
放電していく。1次コイル1aに図示の実線矢印方向の
一方の半サイクルの電圧が発生すると、該電圧によりト
ランジスタスイッチ3を通して短絡電流が流れるが、上
記コンデンサ5の放電電流は、この短絡電流に重畳して
流れる。ここで、トランジスタTR3が無いものとし、
トランジスタスイッチ3が遮断しないものとすると、1
次コイル1aに流れる主電流(コンデンサ5の放電電流
と1次コイル1aの実線矢印方向の誘起電圧をトランジ
スタスイッチ3によって短絡することにより流れる短絡
電流とを重畳した電流)■の波形は第2図A乃至Cに示
すようになる。尚、第2図A乃至Cにおいて破線で示し
た波形は、コンデンサ5及びダイオード6が無い場合に
1次コイル1aを流れる主電流の波形である。
In the above embodiment, the primary coil 1a induces an alternating current voltage in synchronization with the rotation of the engine. When a voltage in the direction of the dashed arrow shown in the figure is generated in the primary coil 1a, the capacitor 5 is charged through the diode 12 to the polarity shown. When the voltage of the primary coil 1a in the direction of the dashed arrow reaches its peak, charging of the capacitor 5 is completed, and thereafter the charge of the capacitor 5 is discharged through the primary coil 1a and the transistor switch 3. When a voltage of one half cycle in the direction of the solid arrow shown in the figure is generated in the primary coil 1a, a short circuit current flows through the transistor switch 3 due to the voltage, but the discharge current of the capacitor 5 flows superimposed on this short circuit current. . Here, it is assumed that there is no transistor TR3,
Assuming that the transistor switch 3 does not shut off, 1
The waveform of the main current flowing in the secondary coil 1a (current that is a superimposition of the discharge current of the capacitor 5 and the short-circuit current that flows when the induced voltage in the direction of the solid line arrow of the primary coil 1a is short-circuited by the transistor switch 3) is shown in Figure 2. As shown in A to C. The waveform shown by the broken line in FIGS. 2A to 2C is the waveform of the main current flowing through the primary coil 1a when the capacitor 5 and diode 6 are not provided.

すなわち、ll関の回転数Nが始動回転数付近の回転数
N1である場合に1次コイル1aを流れる電流の波形を
時間t [sec]に対して示すと第2図Aの通りで、
このように回転数が低い場合には、コンデンサ5の放電
電流がピークを過ぎてから、1次コイル1aの短絡電流
が立上がってくる形になるため、1次コイル1aに流れ
る主電流Iの立上がり時に小さなピークp1が生じる。
That is, when the rotational speed N of the ll function is a rotational speed N1 near the starting rotational speed, the waveform of the current flowing through the primary coil 1a with respect to time t [sec] is as shown in FIG. 2A,
When the rotation speed is low in this way, the short-circuit current of the primary coil 1a rises after the discharge current of the capacitor 5 has passed its peak, so that the main current I flowing through the primary coil 1a increases. A small peak p1 occurs at the rising edge.

機関の回転数がN2→N3のように上昇すると、コンデ
ンサ5の充電電圧が高くなってその放電電流が大きくな
り、放電電流が流れる時間が長くなるため、該放電電流
がピークを過ぎる以前に1次コイルの短絡電流が立上が
ってくるようになる。従って、機関の回転数が上昇して
いくと、第2図B及びCに示したように1次コイル1a
を流れる主電流Iの立上がりのピークが消え、該立上が
りが急峻になっていく。
When the engine speed increases from N2 to N3, the charging voltage of the capacitor 5 increases and its discharging current increases, and the time for which the discharging current flows becomes longer. The short-circuit current in the next coil begins to rise. Therefore, as the engine speed increases, the primary coil 1a as shown in FIG. 2B and C.
The peak of the rise of the main current I flowing through the main current I disappears, and the rise becomes steeper.

このように、機関の回転数の変化に伴って立上がりが大
幅に変化する主電流Iが得られると、第3図に曲線すま
たはCで示したような、進角幅が広い特性を得ることが
できる。すなわち、点火時期における遮断電流値を例え
ば第2図に示した11のように、低速時(N=N1の時
)に生じるピークp1よりやや大きい程度に設定する(
主電流Iが遮断電流値11に達した時にトランジスタT
R3が導通してトランジスタスイッチ3が遮断するよう
に設定する)と、第3図に曲線すで示したように機関の
回転数が設定回転数Nsに達してピークp1が遮断電流
値11に達するようになった時に点火時期が急速に進角
する特性が得られる。
In this way, if we obtain a main current I whose rise changes significantly as the engine speed changes, we can obtain characteristics with a wide advance angle width, as shown by the curve or C in Figure 3. I can do it. That is, the breaking current value at the ignition timing is set to be slightly larger than the peak p1 that occurs at low speeds (when N=N1), for example, as shown in 11 in FIG.
When the main current I reaches the breaking current value 11, the transistor T
R3 is conductive and transistor switch 3 is cut off), the engine speed reaches the set speed Ns and the peak p1 reaches the cutoff current value 11, as shown in the curve in Figure 3. When this happens, the ignition timing can be rapidly advanced.

また主電流が十分大きい遮断電流値I2に達した時にト
ランジスタTR3が導通してトランジスタスイッチ3が
遮断するように設定すると、ビークρ1の存在が進角特
性に影響を与えなくなるため、第3図に曲線Cで示した
ようにスムースに進角する特性が得られる。
Furthermore, if the transistor TR3 is set to conduct and the transistor switch 3 is cut off when the main current reaches a sufficiently large cut-off current value I2, the presence of the peak ρ1 will not affect the advance angle characteristic, so as shown in FIG. As shown by curve C, a characteristic of smoothly advancing the angle can be obtained.

上記の実施例では、点火コイル1の1次コイルが点火電
源コイルを兼ねているが、点火コイルを磁石発電機の外
部に設けて、点火電源コイルを点火コイルと別個に設け
る場合にも本発明を適用することができる。この場合に
は、点火電源コイルを1〜ランジ、スタスイッチ3及び
1次コイル1aの双方に対して並列に接続する。
In the above embodiment, the primary coil of the ignition coil 1 also serves as the ignition power supply coil, but the present invention also applies when the ignition coil is provided outside the magnet generator and the ignition power supply coil is provided separately from the ignition coil. can be applied. In this case, the ignition power supply coil is connected in parallel to both the star switch 3 and the primary coil 1a.

上記のように、コンデンサ5の両端にダイオード6を設
けると、該コンデンサ5が点火電源コイルの図示の実線
矢印方向の電圧によりほとんど充電されることが無いの
で、コンデンサの充電を容易にすることができる。また
ダイオード6に対して直列に小抵抗を接続して、該ダイ
オード6と小抵抗との直列回路の両端にコンデンサ5を
並列接続する構成にして、トランジスタスイッチ3が導
通した時にダイオード6と該小抵抗との直列回路の両端
に生じる電圧をコンデンサ5に印加するようにすること
もできる。このように、構成すると、コンデンサ5が図
示の極性に充電される前に逆バイアスされることになる
ので、コンデンサ5の充電が完了する時期が遅れること
になる。従ってダイオード6に直列接続する小抵抗の抵
抗値によって、ビークp1が生じる時期を調整すること
ができ、進角特性を調整することができる。
As mentioned above, when the diode 6 is provided at both ends of the capacitor 5, the capacitor 5 is hardly charged by the voltage in the direction of the solid arrow shown in the ignition power supply coil, so that the capacitor can be easily charged. can. In addition, a small resistor is connected in series with the diode 6, and a capacitor 5 is connected in parallel between both ends of the series circuit of the diode 6 and the small resistor, so that when the transistor switch 3 is conductive, the diode 6 and the small resistor are connected in parallel. It is also possible to apply the voltage generated across the series circuit with the resistor to the capacitor 5. With this configuration, since the capacitor 5 is reverse biased before being charged to the polarity shown, the time when the capacitor 5 is completely charged is delayed. Therefore, the timing at which the peak p1 occurs can be adjusted by adjusting the resistance value of the small resistor connected in series with the diode 6, and the advance angle characteristic can be adjusted.

上記のように、本発明では、進角幅を広くとることがで
きるので、第3図において中高速時の点火時期α2を適
正な大きさに設定すると、低速時の点火時1■を機関の
上死点に近付けることができ、機関の低速時の点火動作
を安定にすることができる。
As mentioned above, in the present invention, the advance angle width can be widened, so if the ignition timing α2 at medium and high speeds is set to an appropriate size in FIG. It is possible to bring the engine closer to top dead center, making it possible to stabilize the ignition operation at low speeds of the engine.

上記の例では、遮断制御用スイッチ4をトランジスタT
R3により構成したが、このスイッチをサイリスタによ
り構成することもできる。
In the above example, the cutoff control switch 4 is connected to the transistor T
Although this switch is configured using R3, it is also possible to configure this switch using a thyristor.

[発明の効果] 以上のように、本発明によれば、進角幅を広くとること
ができるので、機関の低速時及び中高速時の点火時期を
共に適正な位置に設定することができ、機関の始動性を
向上させてしがも中高速領域で機関の性能を上方に発揮
させることができる利点がある。
[Effects of the Invention] As described above, according to the present invention, since the advance angle width can be widened, the ignition timing can be set at appropriate positions at both low and medium speeds of the engine. This has the advantage of improving the startability of the engine, and also improving the performance of the engine in the medium and high speed range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回路図、第2図A乃至
Cは第1図の動作を説明するための波形図、第3図は同
実施例により得られる進角特性の一例を従来の装置の進
角特性とともに示した線図である。 1・・・点火コイル、1a・・・1次コイル(この例で
は点火電源コイルを兼ねる。)、3・・・トランジスタ
スイッチ、4・・・遮断制御用スイッチ、5・・・コン
デンサ。
Fig. 1 is a circuit diagram showing an embodiment of the present invention, Fig. 2 A to C are waveform diagrams for explaining the operation of Fig. 1, and Fig. 3 is an example of lead angle characteristics obtained by the same embodiment. FIG. 2 is a diagram showing the advance angle characteristics of a conventional device. DESCRIPTION OF SYMBOLS 1... Ignition coil, 1a... Primary coil (also serves as ignition power supply coil in this example), 3... Transistor switch, 4... Shutdown control switch, 5... Capacitor.

Claims (1)

【特許請求の範囲】 内燃機関の回転に同期して交流電圧を誘起する点火電源
コイルに対してコレクタエミッタ間回路が並列に接続さ
れて該点火電源コイルに一方の半サイクルの電圧が誘起
した時に導通する主電流制御用トランジスタスイッチと
、前記トランジスタスイッチのコレクタエミッタ間電圧
が所定値に達した時に導通して前記トランジスタスイッ
チを遮断状態にする遮断制御用スイッチとを備え、前記
トランジスタスイッチの遮断時に前記点火電源コイルに
誘起する電圧を昇圧して点火用の高電圧を得る内燃機関
用点火装置において、 前記点火電源コイルの他方の半サイクルの誘起電圧によ
り一方の極性に充電されるコンデンサと、前記コンデン
サの充電が完了した時点から前記コンデンサの電荷を前
記点火電源コイルとトランジスタスイッチとを通して放
電させる放電回路とを具備したことを特徴とする内燃機
関用点火装置。
[Claims] When a collector-emitter circuit is connected in parallel to an ignition power supply coil that induces an alternating current voltage in synchronization with the rotation of an internal combustion engine, and one half cycle of voltage is induced in the ignition power supply coil. A main current control transistor switch that conducts, and a cutoff control switch that becomes conductive and turns the transistor switch into a cutoff state when the collector-emitter voltage of the transistor switch reaches a predetermined value, and when the transistor switch is cut off. The ignition device for an internal combustion engine obtains a high voltage for ignition by boosting the voltage induced in the ignition power supply coil, the capacitor being charged to one polarity by the induced voltage of the other half cycle of the ignition power supply coil; An ignition device for an internal combustion engine, comprising a discharge circuit that discharges the electric charge of the capacitor through the ignition power supply coil and the transistor switch from the time when charging of the capacitor is completed.
JP60020875A 1985-02-07 1985-02-07 Ingiting device for internal-combustion engine Pending JPS61182467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60020875A JPS61182467A (en) 1985-02-07 1985-02-07 Ingiting device for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60020875A JPS61182467A (en) 1985-02-07 1985-02-07 Ingiting device for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS61182467A true JPS61182467A (en) 1986-08-15

Family

ID=12039351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60020875A Pending JPS61182467A (en) 1985-02-07 1985-02-07 Ingiting device for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS61182467A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5992380A (en) * 1997-03-18 1999-11-30 Ngk Spark Plug Co., Ltd. Ignition timing control system for industrial engines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5992380A (en) * 1997-03-18 1999-11-30 Ngk Spark Plug Co., Ltd. Ignition timing control system for industrial engines

Similar Documents

Publication Publication Date Title
US4566425A (en) Ignition system of the condensor-discharge type for internal combustion engine
US4402298A (en) Ignition system trigger circuit for internal combustion engines
US4343273A (en) Ignition system with overrun prevention
US3280810A (en) Semiconductor ignition system
JPS61182467A (en) Ingiting device for internal-combustion engine
EP0727578B1 (en) Inductive ignition system for internal-combustion engines with electronically controlled spark advance
US7028676B2 (en) Inductive ignition system for internal combustion engines
JPS59101582A (en) Ignition device for internal-combustion engine
JPS6141984Y2 (en)
JPH0335881Y2 (en)
JP3351319B2 (en) Capacitor discharge type ignition system for internal combustion engine
US5048502A (en) Capacitive-discharge ignition system with step timing advance
JPS6132150Y2 (en)
JPS6346267B2 (en)
JPH0545824Y2 (en)
JPH041341Y2 (en)
JPS5819334Y2 (en) Ignition system for internal combustion engines
JPH0350384A (en) Ignition system for internal combustion engine
JP4200804B2 (en) Ignition device for current interrupting internal combustion engine
JPH0312075Y2 (en)
JPH0467589B2 (en)
JPS60182357A (en) Ignition device for internal-combustion engine
JPS61268871A (en) Ignitor for internal-combustion engine
JPS63309775A (en) Capacitor discharge type ignition device for internal combustion engine
JPS60249668A (en) Igniter for internal-combustion engine