JPS61180819A - Denitration of burnt exhaust gas in waste heat recovery boiler - Google Patents

Denitration of burnt exhaust gas in waste heat recovery boiler

Info

Publication number
JPS61180819A
JPS61180819A JP20766884A JP20766884A JPS61180819A JP S61180819 A JPS61180819 A JP S61180819A JP 20766884 A JP20766884 A JP 20766884A JP 20766884 A JP20766884 A JP 20766884A JP S61180819 A JPS61180819 A JP S61180819A
Authority
JP
Japan
Prior art keywords
exhaust gas
reducing agent
reactor
gas
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20766884A
Other languages
Japanese (ja)
Inventor
Akira Sakai
彰 坂井
Taiji Inui
泰二 乾
Yasuaki Yokoi
横井 泰明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20766884A priority Critical patent/JPS61180819A/en
Publication of JPS61180819A publication Critical patent/JPS61180819A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE:To keep high denitration power and reduce NOx concentration in exhaust gas by installing a denitration device in such a manner that reducing agent is injected into exhaust gas from many jet nozzles and then mixed fluid of reducing agent and exhaust gas is denitrated by passing through a reactor. CONSTITUTION:A denitration device is composed of reducing agent injection nozzles 32 which inject reducing agent such as ammonia gas from reducer system into exhaust gas and a reactor where exhaust gas with injected reducing agent is reacted through the catalyst layer of iron oxide system and said gas is reduced and decomposed into nitrogen and steam. Dampers 38 control the flow rate of gas passing through it and make uniform the flowing volume into the catalyst layer 41. The reactor 31 is composed of the catalyst layer 41 loaded with catalyst of iron oxide system, support members 35 and partition plate 37. When the exhaust gas flowing down from the dampers 38 flows up through the catalyst layer 41 from the under side of support members 35, NOx is decomposed by the action of catalyst.

Description

【発明の詳細な説明】 本発明は、ガスタービン装置の燃焼排ガスを熱源として
他の蒸気原動機の駆動蒸気を発生する排熱回収ボイラに
おける燃焼排ガスの脱硝方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for denitrating combustion exhaust gas in an exhaust heat recovery boiler that uses the combustion exhaust gas of a gas turbine device as a heat source to generate driving steam for another steam motor.

第1図は、従来技術によるガスタービン装置10と、そ
の燃焼排ガスを熱源として蒸気を発生する排熱回収ボイ
ラ20と、この発生蒸気を駆動蒸気とする蒸気タービン
装W40とを備えた複合サイクルプラントを示している
。ここで排熱回収ボイラ20は排ガス流3の上流から下
流に沿って過熱器21.蒸発器229節炭器23及び煙
突24を備えていて、過熱器21で生じた蒸気を配管2
を通じて蒸気タービン装!!40に導き発電機41にに
て負荷をとり、蒸気タービン装置40からは給水が配管
1を通じて節炭器23に導かれている。
FIG. 1 shows a combined cycle plant comprising a conventional gas turbine device 10, an exhaust heat recovery boiler 20 that generates steam using its combustion exhaust gas as a heat source, and a steam turbine device W40 that uses the generated steam as driving steam. It shows. Here, the exhaust heat recovery boiler 20 is connected to a superheater 21 . It is equipped with an evaporator 229, a economizer 23, and a chimney 24, and the steam generated in the superheater 21 is transferred to the pipe 2.
Through the steam turbine installation! ! 40 and a generator 41 takes a load thereon, and feed water from the steam turbine device 40 is led to the economizer 23 through the pipe 1.

また、ガスタービン装置1oは導入空気4を加圧する圧
縮機11と、加圧空気に燃料系統5から供給された燃料
を加えて、燃料を燃焼させる燃焼器14と、燃焼により
生じた燃焼ガスにより作動されるタービン12と、負荷
をとる発電機13と燃焼ガス中のNOx濃度を低減する
ための水或は蒸気注入系統7とを備えている。これらの
構成から成る複合サイクルプラントにおいて、ガスター
ビン装[10から排出される排ガスに含まれるNOx濃
度低減策としては燃焼器14内に系統7を通じて水或は
水蒸気を流入することが行われている。
The gas turbine device 1o also includes a compressor 11 that pressurizes introduced air 4, a combustor 14 that adds fuel supplied from a fuel system 5 to the pressurized air, and combusts the fuel, and a combustion gas generated by combustion. It comprises a turbine 12 to be operated, a generator 13 to take up the load, and a water or steam injection system 7 to reduce the NOx concentration in the combustion gases. In a combined cycle plant having these configurations, water or steam is introduced into the combustor 14 through the system 7 as a measure to reduce the concentration of NOx contained in the exhaust gas discharged from the gas turbine system [10]. .

しかしながら第2図に示した如<NOx排出量を少くす
るために注入水量或は蒸気量を増加させるとそれだけガ
スタービン装置f!10における熱効率が低下すること
になる。更にNOx排出量の総量が規制されるようにな
ると、もはや水成は蒸気注入によるNOx低減手段では
規制値達成が困難となる。このために燃焼ガス流中に脱
硝装置を設置することが考えられているが、この脱硝方
式の一つである乾式接触還元分解法は燃焼ガス中にアン
モニアを注入し、酸化鉄系の触媒を充填した反応器中を
通過させることによりNOxを無害の窒素分と、水蒸気
とに還元分解する方法である。そしてこの脱硝方法にお
いては、第3図に示すように、脱硝効率は触媒層反応温
度、すなわち、脱硝装置の触媒層を通過する燃焼ガス温
度に大きく依存することが知られている。つまり第3図
から明らかなように、脱硝効率は反応温度が200℃か
ら300℃に上昇するにしたがって急激に上昇し、33
0℃において、はぼ最高の脱硝効率に近づき、更に、4
00℃を越えると触媒の寿命に問題があるとされている
However, as shown in FIG. 2, if the amount of injected water or steam is increased in order to reduce NOx emissions, the gas turbine equipment f! The thermal efficiency at 10 will be reduced. Furthermore, when the total amount of NOx emissions is regulated, it becomes difficult to achieve the regulated value using NOx reduction means such as steam injection. For this purpose, it has been considered to install a denitrification device in the combustion gas stream, but one method of denitration, the dry catalytic reduction cracking method, involves injecting ammonia into the combustion gas and using an iron oxide catalyst. This method reduces and decomposes NOx into harmless nitrogen and water vapor by passing it through a filled reactor. In this denitrification method, as shown in FIG. 3, it is known that the denitrification efficiency largely depends on the reaction temperature of the catalyst layer, that is, the temperature of the combustion gas passing through the catalyst layer of the denitrification device. In other words, as is clear from Fig. 3, the denitrification efficiency increases rapidly as the reaction temperature rises from 200°C to 300°C;
At 0°C, the denitrification efficiency approaches the highest, and
It is said that if the temperature exceeds 00°C, there will be a problem with the life of the catalyst.

一方、第1図に示した複合サイクルプラントの排熱回収
ボイラ20においては、第4図に示すように、ガスター
ビン装置から導かれる約550℃の排ガスは、過熱器2
1.蒸発器229節炭器23を順次流下して熱回収され
、約200℃に低下して排出される。逆にボイラ給水は
加熱されて、約450℃の蒸気に変換されるようになっ
ている。
On the other hand, in the exhaust heat recovery boiler 20 of the combined cycle plant shown in FIG. 1, as shown in FIG.
1. The heat is recovered by sequentially flowing down the evaporator 229 and the economizer 23, and the temperature is lowered to about 200° C. before being discharged. Conversely, boiler feed water is heated and converted to steam at approximately 450°C.

したがって、脱硝装置を排熱回収ボイラの出口側に設置
しても、排ガス温度が200℃程度であることから、第
3図に示した脱硝装置の温度特性から明らかな如く、脱
硝効率が低くなり過ぎて所望のNOx低減値を満足でき
ないことになる。
Therefore, even if the denitrification device is installed on the outlet side of the waste heat recovery boiler, the exhaust gas temperature is around 200°C, so the denitrification efficiency will be low, as is clear from the temperature characteristics of the denitrification device shown in Figure 3. If the temperature is too high, the desired NOx reduction value cannot be achieved.

また、脱硝装置を排熱回収ボイラの入口側に設置すると
排ガス温度が500℃以上と高温のため触媒を充填した
反応器の耐熱性及び触媒の寿命低下等の問題が生じるこ
とになる。
Furthermore, if the denitrification device is installed on the inlet side of the exhaust heat recovery boiler, the exhaust gas temperature will be as high as 500° C. or higher, which will cause problems such as the heat resistance of the reactor filled with the catalyst and a reduction in the life of the catalyst.

一方、反応器を通過する排ガスには還元剤が均一に混合
していないと十分な脱硝性能が得られないという問題が
ある。
On the other hand, there is a problem in that sufficient denitrification performance cannot be obtained unless the reducing agent is uniformly mixed in the exhaust gas passing through the reactor.

本発明の目的は、脱硝装置を有する排熱回収ボイラにお
いて、脱硝性能を高く維持し、排ガス中のNOx濃度を
低減させる脱硝方法を提供することにある。
An object of the present invention is to provide a denitrification method that maintains high denitrification performance and reduces the NOx concentration in exhaust gas in an exhaust heat recovery boiler having a denitrification device.

本発明の特徴は、ガスタービン装置から排出される燃焼
排ガスを熱源として導き、排ガスによって給水を蒸発さ
せる蒸発器を備えた排熱回収ボイラ装置において、前記
蒸発器の直下流側に排ガス中のN Ox成分を除去する
触媒層を有する反応器を設置し、前記反応器の上流側に
排ガスの流れに交叉する面内に多数の噴口を有する還元
剤注入ノズルを設け、前記多数の噴口から排ガス中に還
元剤を注入した後、還元剤と排ガスの混合流体を前記反
応器に導入して脱硝することにある。
A feature of the present invention is that in an exhaust heat recovery boiler device equipped with an evaporator that guides combustion exhaust gas discharged from a gas turbine device as a heat source and uses the exhaust gas to evaporate feed water, a portion immediately downstream of the evaporator contains nitrogen in the exhaust gas. A reactor having a catalyst layer for removing Ox components is installed, a reducing agent injection nozzle having a large number of nozzles in a plane intersecting the flow of exhaust gas is provided on the upstream side of the reactor, and a reducing agent injection nozzle is installed in the exhaust gas from the many nozzles. After a reducing agent is injected into the reactor, a mixed fluid of the reducing agent and exhaust gas is introduced into the reactor for denitrification.

次に、本発明の方法を実施する排熱回収ボイラを備えた
複合サイクルプラントの例につき説明する。
Next, an example of a combined cycle plant equipped with an exhaust heat recovery boiler that implements the method of the present invention will be described.

第5図において、複合サイクルプラントはガスタービン
装置10と、このガスタービン装置から排出される排ガ
スを熱源として蒸気を発生する排熱回収ボイラ20と、
とのボイラで発生した蒸気で駆動される蒸気タービン装
置j40と、ガスタービン装置!!fioから排出され
る排ガス中のN Oxを除去する脱硝装置30とを備え
ている。
In FIG. 5, the combined cycle plant includes a gas turbine device 10, an exhaust heat recovery boiler 20 that generates steam using exhaust gas discharged from the gas turbine device as a heat source,
A steam turbine device j40 that is driven by steam generated in a boiler and a gas turbine device! ! The denitrification device 30 removes NOx from the exhaust gas discharged from the fio.

そしてガスタービン装置10は導入空気を加圧する圧縮
機11と燃焼系統から供給された燃料を加圧空気により
燃焼する燃焼器14と、燃焼により生じた燃焼ガスによ
り駆動されるガスタービン12と、負荷をとる発電機1
3を有している。
The gas turbine device 10 includes a compressor 11 that pressurizes introduced air, a combustor 14 that uses pressurized air to combust fuel supplied from a combustion system, a gas turbine 12 that is driven by combustion gas generated by combustion, and a load. Generator 1 that takes
It has 3.

また、排熱回収ボイラ20は、ガスタービン装置1oか
ら導かれる排ガス流の上流から下流に沿って過熱器21
.蒸発器221節炭器23及び煙突24を有していて、
過熱器21で生じた蒸気を配管2を通じて蒸気タービン
装!40に導びき、発電機41にて負荷をとる。そして
蒸気タービン装!!40からは給水が配管1を通じて節
炭器23に導かれるようになっている。更にこの排熱回
収ボイラ装置20の蒸発器22の直下流側、すなわち節
炭器23との間には脱硝装置30が設置されるようにな
っている。この脱硝装置30の構造について、第6図を
用いて説明する。
Further, the exhaust heat recovery boiler 20 includes a superheater 21 along the upstream to downstream of the exhaust gas flow led from the gas turbine device 1o.
.. It has an evaporator 221, a economizer 23, and a chimney 24,
The steam generated in the superheater 21 is passed through the pipe 2 to the steam turbine! 40, and a generator 41 takes the load. And a steam turbine! ! From 40, the water supply is led to the economizer 23 through the pipe 1. Furthermore, a denitrification device 30 is installed immediately downstream of the evaporator 22 of the exhaust heat recovery boiler device 20, that is, between it and the economizer 23. The structure of this denitrification device 30 will be explained using FIG. 6.

脱硝袋!l!30は、排ガス中に還元剤系統36からア
ンモニアガス等の還元剤を多数の噴口から噴出する還元
剤注入ノズル32と、還元剤を注入した排ガスを酸化鉄
系の触媒層41を通して反応させ、窒素分と水蒸気とに
還元分解させる反応器31とを備えている。すなわち、
排熱回収ボイラ20における蒸発器22の排ガス流の下
流側に還元剤を噴出するノズル32が設置され、ここで
還元剤と混合した排ガスは、3個のダンパ38によって
流路を3つに分流され、触媒層41に流下する。ダンパ
38は、ここを流下する排ガス量を制御して触媒層41
への流入量を均一にしている。
Denitration bag! l! 30 is a reducing agent injection nozzle 32 that spouts a reducing agent such as ammonia gas from a reducing agent system 36 into the exhaust gas from a large number of nozzles, and the exhaust gas injected with the reducing agent is reacted through an iron oxide catalyst layer 41 to generate nitrogen. The reactor 31 is equipped with a reactor 31 for reductive decomposition into water vapor and water vapor. That is,
A nozzle 32 for spouting a reducing agent is installed downstream of the exhaust gas flow from the evaporator 22 in the exhaust heat recovery boiler 20, and the exhaust gas mixed with the reducing agent here is divided into three flow paths by three dampers 38. and flows down to the catalyst layer 41. The damper 38 controls the amount of exhaust gas flowing down through the damper 38 to
The amount of inflow into the area is made uniform.

また、反応器31は酸化鉄系の触媒を充填した触媒層4
1と支持材35と仕切板37とより構成される。ダンパ
38から流下した排ガスは、支持材35の下方より触媒
層41内を上方へ貫流するとき、触媒の作用でNOxが
分解される。
In addition, the reactor 31 has a catalyst layer 4 filled with an iron oxide catalyst.
1, a supporting member 35, and a partition plate 37. When the exhaust gas flowing down from the damper 38 flows upward through the catalyst layer 41 from below the support member 35, NOx is decomposed by the action of the catalyst.

反応器31でNOxを除去された排ガスは、そのあと伸
縮継手を通って節炭器23へ流下するようになっている
。以上の構成からなる排熱回収ボイラの作用について説
明する。
The exhaust gas from which NOx has been removed in the reactor 31 then flows down to the economizer 23 through an expansion joint. The operation of the exhaust heat recovery boiler having the above configuration will be explained.

第5図及び第6図において、ガスタービンの入口空気4
は圧縮機11で加圧後、燃焼器14にて燃料を燃焼させ
、高温の燃焼ガスとなり、ガスタービン12を駆動する
。その後、燃焼排ガスは、排熱回収ボイラ2oに導入さ
れるが、この排ガスは約550℃で過熱器21に流入し
、蒸発器23を通過した後に約330℃の温度となって
脱硝装置3oに流入することになる。脱硝装置3oの内
部においては、排ガス中にまずノズル32の多数の噴口
より還元剤を噴射して均一に混合させ、その後、ダンパ
38を通して反応器31に流入させる1反応器31内に
流入する排ガスはダンパ38によって流量を制御され、
多段の触媒層41のそれぞれに、はぼ均一に流入するこ
とになる。そしてこの触媒層41において排ガス中のN
 Oxは触媒の作用により無害の窒素分と水蒸気とに還
元分解され、はとんどのNOX成分が除去された排ガス
が後流の節炭器を通り煙突24から排出される。
5 and 6, the gas turbine inlet air 4
After being pressurized by the compressor 11, the fuel is combusted in the combustor 14 to become high-temperature combustion gas, which drives the gas turbine 12. After that, the combustion exhaust gas is introduced into the exhaust heat recovery boiler 2o, but this exhaust gas flows into the superheater 21 at about 550°C, and after passing through the evaporator 23, the temperature reaches about 330°C, and then enters the denitrification device 3o. There will be an influx. Inside the denitrification device 3o, the reducing agent is first injected into the exhaust gas from multiple nozzles of the nozzle 32 to mix it uniformly, and then the exhaust gas flowing into the reactor 31 is made to flow into the reactor 31 through the damper 38. The flow rate is controlled by the damper 38,
It flows into each of the multistage catalyst layers 41 almost uniformly. In this catalyst layer 41, N in the exhaust gas is
Ox is reduced and decomposed into harmless nitrogen and water vapor by the action of the catalyst, and the exhaust gas from which most of the NOX components have been removed passes through the downstream energy saver and is discharged from the chimney 24.

そして、この排ガスを熱源としてボイラ20では、給水
を蒸気化して蒸気タービン装置40を駆動するようにな
っている。
The boiler 20 uses this exhaust gas as a heat source to vaporize feed water and drive the steam turbine device 40.

脱硝装置30においては、排ガス温度が約330℃と高
いので、第3図から明らかなようにその脱硝率は90%
以上と高くなる。このことは、NOxの排出規準が従来
と同一レベルであれば、脱硝装置が小型化できることを
示している。また、NOx低減のために水あるいは蒸気
の注入量を減少でき。
In the denitrification device 30, the exhaust gas temperature is as high as approximately 330°C, so as is clear from Fig. 3, the denitrification rate is 90%.
It gets higher than that. This shows that the denitrification device can be downsized if the NOx emission standards are at the same level as conventional ones. Additionally, the amount of water or steam injected can be reduced to reduce NOx.

複合サイクルプラントの熱効率も向上できる。The thermal efficiency of combined cycle plants can also be improved.

更に、アンモニアガスなどの還元剤は、第6図に示す如
く、排ガス流に交叉する面内に多数の噴口を有するノズ
ル32から排ガス中に噴射されるので、排ガスとの混合
が均一化されやすく、反応器31内での脱硝性能が良く
なる。
Furthermore, as shown in FIG. 6, the reducing agent such as ammonia gas is injected into the exhaust gas from a nozzle 32 having a large number of nozzles in a plane that intersects with the exhaust gas flow, so that the reducing agent can be easily mixed with the exhaust gas evenly. , the denitrification performance within the reactor 31 is improved.

本発明の方法によれば、排ガス温度が触媒の脱硝効率の
最も良くなる温度位置で反応器に導入されること及び、
排ガスに還元剤が均一に混合されることがあいまって高
い脱硝効率をあげることができる。
According to the method of the present invention, the exhaust gas is introduced into the reactor at a temperature position where the denitrification efficiency of the catalyst is maximized;
Combined with the fact that the reducing agent is uniformly mixed with the exhaust gas, high denitrification efficiency can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は公知の複合サイクルプラントの系統図、第2図
は、水噴射量と熱効率の関係を示す特性図、第3図は、
脱硝効率の温度特性図、第4図は、排熱回収ボイラにお
ける排ガス温度と給水温度との関係を示す特性図、第5
図及び第6図は、本発明の方法を実施するための排熱回
収ボイラを示し。 第5図は、複合サイクルプラントの系統図、第6図は、
排熱回収ボイラの部分構造図である。 10・・・ガスタービン装置、20・・・排熱回収ボイ
ラ。 21・・・過熱器、22・・・蒸発器、23・・・節炭
器、30・・・脱硝装置、31・・・反応器、32・・
・還元剤注入ノズル、41・・・触媒層。 12面の・′:ゼ Iじ・二ン−・し〕第  l  国 一ベロ9λ走量1:神1’6=に噴射量の比(oA)第
 3  目 →反几温度(°C) 第 !5  目 手続補正書C方式) 昭和 6ル 8137
Figure 1 is a system diagram of a known combined cycle plant, Figure 2 is a characteristic diagram showing the relationship between water injection amount and thermal efficiency, and Figure 3 is a diagram showing the relationship between water injection amount and thermal efficiency.
Figure 4 is a temperature characteristic diagram of denitrification efficiency, and Figure 5 is a characteristic diagram showing the relationship between exhaust gas temperature and feed water temperature in the exhaust heat recovery boiler.
6 and 6 show an exhaust heat recovery boiler for carrying out the method of the invention. Figure 5 is a system diagram of a combined cycle plant, and Figure 6 is:
It is a partial structural diagram of an exhaust heat recovery boiler. 10... Gas turbine device, 20... Exhaust heat recovery boiler. 21... Superheater, 22... Evaporator, 23... Carbon saver, 30... Denitration device, 31... Reactor, 32...
- Reducing agent injection nozzle, 41...catalyst layer. 12th side ・′:ze Iji・2in・・shi] No. 1 Country's first tongue 9λ travel distance 1: God 1'6 = ratio of injection amount (oA) No. 3 → reaction temperature (°C) No. ! 5th Procedural Amendment Form C) Showa 6 Ru 8137

Claims (1)

【特許請求の範囲】[Claims] 1、ガスタービン装置から排出される燃焼排ガスを熱源
として導き、排ガスの保有する熱量によつて給水を蒸発
させる蒸発器を有する排熱回収ボイラにおいて、前記排
ガスの流れに関し、前記蒸発器の直下流側に排ガス中の
NOx成分を除去する触媒層を有する反応器を設置し、
前記反応器の上流側に排ガスの流れに交叉する面内に多
数の噴口を有する還元剤注入ノズルを設け、前記多数の
噴口から排ガス中に還元剤を注入した後、還元剤と排ガ
スの混合流体を前記反応器に導入して脱硝することを特
徴とする排熱回収ボイラにおける燃焼排ガスの脱硝方法
1. In an exhaust heat recovery boiler having an evaporator that guides combustion exhaust gas discharged from a gas turbine device as a heat source and evaporates feed water using the amount of heat contained in the exhaust gas, with respect to the flow of the exhaust gas, A reactor with a catalyst layer for removing NOx components in exhaust gas is installed on the side,
A reducing agent injection nozzle having a large number of nozzles in a plane intersecting the flow of the exhaust gas is provided on the upstream side of the reactor, and after the reducing agent is injected into the exhaust gas from the multiple nozzles, a mixed fluid of the reducing agent and the exhaust gas is injected. A method for denitrating combustion exhaust gas in an exhaust heat recovery boiler, characterized in that the denitration is performed by introducing the nitrogen into the reactor.
JP20766884A 1984-10-03 1984-10-03 Denitration of burnt exhaust gas in waste heat recovery boiler Pending JPS61180819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20766884A JPS61180819A (en) 1984-10-03 1984-10-03 Denitration of burnt exhaust gas in waste heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20766884A JPS61180819A (en) 1984-10-03 1984-10-03 Denitration of burnt exhaust gas in waste heat recovery boiler

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50116474A Division JPS609201B2 (en) 1975-09-29 1975-09-29 Exhaust heat recovery boiler equipment

Publications (1)

Publication Number Publication Date
JPS61180819A true JPS61180819A (en) 1986-08-13

Family

ID=16543578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20766884A Pending JPS61180819A (en) 1984-10-03 1984-10-03 Denitration of burnt exhaust gas in waste heat recovery boiler

Country Status (1)

Country Link
JP (1) JPS61180819A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241701A (en) * 1975-09-29 1977-03-31 Hitachi Ltd Waste heat reclaiming boiler system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241701A (en) * 1975-09-29 1977-03-31 Hitachi Ltd Waste heat reclaiming boiler system

Similar Documents

Publication Publication Date Title
US4353207A (en) Apparatus for removing NOx and for providing better plant efficiency in simple cycle combustion turbine plants
US6348178B1 (en) Method for reducing NOx from exhaust gases produced by industrial processes
US4466241A (en) Waste heat recovery boiler
US8397482B2 (en) Dry 3-way catalytic reduction of gas turbine NOx
US4353206A (en) Apparatus for removing NOx and for providing better plant efficiency in combined cycle plants
US5555718A (en) Method and apparatus for injecting reactant for catalytic reduction in a gas turbine combined cycle system
WO1986001579A1 (en) Boiler capable of recovering waste heat and having denitration devices
JP3924150B2 (en) Gas combustion treatment method and apparatus
US6682709B2 (en) Method for reducing NOx from exhaust gases produced by industrial processes
EP3259528B1 (en) Exhaust system for power generating apparatus
US9359918B2 (en) Apparatus for reducing emissions and method of assembly
KR20200130261A (en) Method for producing heat in the plant
JPS61180819A (en) Denitration of burnt exhaust gas in waste heat recovery boiler
KR102672465B1 (en) Circulating fluidized bed combustion system performing hybrid de-nox operation in the combustor
KR102458302B1 (en) Combined cycle power plant for reducing air pollutants and Method of reducing air pollutants in combined cycle power plant
JP3775761B2 (en) Exhaust gas denitration system and exhaust gas denitration method
JP2587469B2 (en) NOx reduction treatment method for coal gasified fuel
Newburry et al. Selective Catalytic Reduction (SCR) System Installation and Commissioning at the Chow II Power Plant in Chowchilla, California
KR20210079919A (en) Spray Nozzle for Ammonia Injection Grid
JPS596927A (en) Catalytic denitration apparatus
JPH086883B2 (en) Exhaust heat recovery boiler
JPH0465284B2 (en)
Kraemer et al. Dry 3-way catalytic reduction of gas turbine NO x
CN105782959A (en) Circulating fluidized bed boiler
JPH0440057B2 (en)