JPS6118038B2 - - Google Patents

Info

Publication number
JPS6118038B2
JPS6118038B2 JP7509280A JP7509280A JPS6118038B2 JP S6118038 B2 JPS6118038 B2 JP S6118038B2 JP 7509280 A JP7509280 A JP 7509280A JP 7509280 A JP7509280 A JP 7509280A JP S6118038 B2 JPS6118038 B2 JP S6118038B2
Authority
JP
Japan
Prior art keywords
condensate
pressure
valve
passage
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7509280A
Other languages
Japanese (ja)
Other versions
JPS57402A (en
Inventor
Masakatsu Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP7509280A priority Critical patent/JPS57402A/en
Publication of JPS57402A publication Critical patent/JPS57402A/en
Publication of JPS6118038B2 publication Critical patent/JPS6118038B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Description

【発明の詳細な説明】 本発明は蒸気系内で発生した復水をボイラへ回
収する場合等に用いる復水回収装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a condensate recovery device used for recovering condensate generated in a steam system to a boiler.

蒸気系内で発生する復水は一般にスチームトラ
ツプから排出される。この復水を回収してボイラ
等の所望の箇所に圧送する為、スチームトラツプ
の出口側を復水ポンプ装置に連結することが行わ
れている。この場合、スチームトラツプの出口側
圧力が高くなり、スチームトラツプの入口側と出
口側の圧力差が小さくなつて復水排出量が減少す
る問題、及びスチームトラツプの入口側に復水を
滞留させて蒸気使用機器等の熱効率を悪くする問
題が生じ、第5・6図に示す様な復水回収装置が
用いられていた。
Condensate generated within the steam system is generally exhausted from a steam trap. In order to collect this condensate and pump it to a desired location such as a boiler, the outlet side of the steam trap is connected to a condensate pump device. In this case, the pressure on the outlet side of the steam trap increases, the pressure difference between the inlet side and the outlet side of the steam trap becomes small, and the amount of condensate discharged decreases. A problem arose in that condensate stagnation degraded the thermal efficiency of steam-using equipment, etc., so a condensate recovery device as shown in Figures 5 and 6 was used.

第5図に於いて、1は蒸気供給通路、2は該通
路の蒸気の通過を制御御する弁、3は蒸気使用機
器、4は該機器の復水排出側に取り付けられたス
チームトラツプ、5は復水ポンプ手段、6はスチ
ームトラツプ4から排出された復水を復水ポンプ
手段5に導く復水流入通路、7は復水流入通路6
から分岐した放圧通路、8は圧力調節弁、9は復
水ポンプ手段5からボイラ等の所望の箇所に復水
を導く復水流出通路を示す。そして、上記圧力調
節弁8には第6図に示すものが使用されていた。
第6図に於いて、10は弁ケーシング、11は入
口、12は弁口、13は出口、14は弁体、15
は弁体14と連結したピストン、16は導圧通
路、17は弾性体、18は調節棒を示す。
In FIG. 5, 1 is a steam supply passage, 2 is a valve that controls the passage of steam through the passage, 3 is steam-using equipment, and 4 is a steam trap attached to the condensate discharge side of the equipment. 5 is a condensate pump means, 6 is a condensate inlet passage that guides the condensate discharged from the steam trap 4 to the condensate pump means 5, and 7 is a condensate inlet passage 6.
8 is a pressure regulating valve, and 9 is a condensate outflow passage that leads condensate from the condensate pump means 5 to a desired location such as a boiler. The pressure regulating valve 8 shown in FIG. 6 was used.
In FIG. 6, 10 is a valve casing, 11 is an inlet, 12 is a valve port, 13 is an outlet, 14 is a valve body, 15
1 shows a piston connected to the valve body 14, 16 a pressure guiding passage, 17 an elastic body, and 18 an adjustment rod.

上記復水回収装置に於いて、圧力調節弁8のピ
ストン15の下面には導圧通路16を通して復水
流入通路6側圧力が作用し、ピストン15の上面
には弾性体17の弾性力が作用し、復水流入通路
手段6側圧力が設定圧力よりも高くなつた場合に
開弁し、復水流入通路6側の流体を放圧通路7を
通して排出し、復水流入通路6側の圧力を設定圧
力以下に保つ。そして、スチームトラツプ4の入
口側と出口側の圧力差を適当に保ち、スチームト
ラツプ4の復水排出量の減少、及び復水の滞留に
よる蒸気使用機器等の熱効率の悪化を防止せんと
する。ところが、蒸気系には圧力変動があり、ス
チームトラツプ4の入口側圧力も変動する。従つ
て、入口側の圧力変動に対してスチームトラツプ
4の出口側圧力は常に低くなければならず、圧力
調節弁8の設定圧力はスチームトラツプ4の入口
側圧力の変動の最低値をを考慮して、極めて低く
設定されていた。この場合、復水流入通路6側の
流体が放圧通路7を通して多量に排出され、ボイ
ラ等の所望の箇所へ回収される復水量が減少し、
復水の回収ロスが大きくなつていた。
In the above condensate recovery device, the pressure on the condensate inlet passage 6 side acts on the lower surface of the piston 15 of the pressure regulating valve 8 through the pressure guiding passage 16, and the elastic force of the elastic body 17 acts on the upper surface of the piston 15. However, when the pressure on the condensate inflow passage means 6 side becomes higher than the set pressure, the valve opens, and the fluid on the condensate inflow passage 6 side is discharged through the pressure relief passage 7, and the pressure on the condensate inflow passage 6 side is reduced. Keep the pressure below the set pressure. The pressure difference between the inlet side and the outlet side of the steam trap 4 is maintained appropriately to prevent a decrease in the amount of condensate discharged from the steam trap 4 and a deterioration in the thermal efficiency of steam-using equipment due to accumulation of condensate. do. However, there are pressure fluctuations in the steam system, and the pressure on the inlet side of the steam trap 4 also fluctuates. Therefore, the pressure on the outlet side of the steam trap 4 must always be low with respect to pressure fluctuations on the inlet side, and the set pressure of the pressure control valve 8 must be set to keep the minimum value of the fluctuations in the pressure on the inlet side of the steam trap 4. Considering this, it was set extremely low. In this case, a large amount of fluid on the condensate inflow passage 6 side is discharged through the pressure relief passage 7, and the amount of condensate recovered to a desired location such as a boiler is reduced.
The loss of condensate recovery was increasing.

本発明は上記事情に鑑みて、復水の回収ロスの
小さい復水回収装置の提供を目的とする。本発明
は上記目的を、スチームトラツプ等の復水排出手
段と復水ポンプ手段を連通する復水流入通路手段
から分岐して放圧通路を設け、復水排出手段の前
後の圧力差を設定値に維持するように、復水流入
通路の流体を放圧通路を通して排出させる差圧調
節弁を放圧通路に配することにより達成する。
In view of the above circumstances, it is an object of the present invention to provide a condensate recovery device with a small recovery loss of condensate. The present invention achieves the above object by providing a pressure relief passage branching from the condensate inlet passage means that communicates the condensate discharge means such as a steam trap and the condensate pump means, and setting the pressure difference before and after the condensate discharge means. This is achieved by disposing a differential pressure regulating valve in the pressure relief passage for discharging the fluid in the condensate inflow passage through the pressure relief passage so as to maintain the same value.

次に、本発明を第1・2図に示す実施例に基づ
いて説明する。第1図に於いて、上記第5図と共
通する相当箇所には同一符号を付し、説明を省略
する。放圧通路7には第2図に示す差圧調節弁2
1を配す。
Next, the present invention will be explained based on the embodiments shown in FIGS. 1 and 2. In FIG. 1, corresponding parts common to those in FIG. The pressure relief passage 7 is equipped with a differential pressure regulating valve 2 shown in FIG.
Place 1.

第2図の差圧調節弁22の具体的構造を説明す
る。放圧通路7の復水流入通路6側に連結される
入口23と、出口24を形成する本体25に弁座
部材26を取り付ける。弁座部材26は円筒状で
内端に弁口27を形成する。その内周面は直径が
弁口27より微少大きく、滑らかに仕上げてあ
る。弁口27と内周面は環状弁座で連続する。弁
座部材26の下部周壁には通口28を形成する。
入口23は弁口27および通口28を通つて出口
24に連通する。弁座部材26の先端と本体25
の対向壁の間、および弁座部材26の上部外周壁
と本体25の対向壁の間にOリングガスケツトを
介在する。
The specific structure of the differential pressure regulating valve 22 shown in FIG. 2 will be explained. A valve seat member 26 is attached to a main body 25 that forms an inlet 23 and an outlet 24 connected to the condensate inflow passage 6 side of the pressure relief passage 7. The valve seat member 26 has a cylindrical shape and has a valve port 27 formed at its inner end. Its inner peripheral surface has a slightly larger diameter than the valve port 27 and is finished smoothly. The valve port 27 and the inner peripheral surface are continuous at the annular valve seat. A passage 28 is formed in the lower peripheral wall of the valve seat member 26.
Inlet 23 communicates with outlet 24 through valve port 27 and vent 28 . The tip of the valve seat member 26 and the main body 25
An O-ring gasket is interposed between the opposing walls of the valve seat member 26 and between the upper peripheral wall of the valve seat member 26 and the opposing wall of the main body 25.

弁座部材26の内周面にOリングパツキングを
介して円筒型弁体29を摺動自在に嵌合して配す
る。その内端の弁面は弁口27を限定する弁座面
に当接して弁口27を閉塞できる。弁体29には
その両端に同軸的に伸びた同径の弁棒30が一体
的に形成されている。
A cylindrical valve body 29 is slidably fitted onto the inner peripheral surface of the valve seat member 26 via an O-ring packing. The valve surface at the inner end can close the valve port 27 by coming into contact with a valve seat surface that defines the valve port 27. Valve rods 30 having the same diameter and extending coaxially are integrally formed at both ends of the valve body 29.

本体25の弁座部材26の嵌入孔が開口した端
面にはガスケツトを介して中間部材33をボルト
ナツトで取り付ける。弁棒30は中間部材33の
隔壁に設けた中央孔41を通して外方に伸びる。
弁棒30の中間部材から突出した自由端にOリン
グガスケツトを介してピストン34をナツトで取
り付ける。
An intermediate member 33 is attached to the end surface of the main body 25 through which the insertion hole of the valve seat member 26 is opened, with a bolt and nut via a gasket. The valve stem 30 extends outwardly through a central hole 41 in the septum of the intermediate member 33.
A piston 34 is attached to the free end of the valve stem 30 protruding from the intermediate member with a nut via an O-ring gasket.

ピストン34はそのまわりに配したシリンダ部
材35にOリングパツキングを介して摺動自在に
嵌合する。中間部材33との間にシリンダ部材3
5を挾持した状態で蓋36を中間部材33にボル
ト、ナツトで取り付ける。シリンダ部材35と中
間部材33および蓋36の間にはガスケツトを介
在する。蓋36の外端部には調節棒37をOリン
グパツキングを介して螺合して配する。調節棒3
7の内端に球体を介して当接して配したばね受け
部材38とピストン34との間にコイルばね39
を介在させる。
The piston 34 is slidably fitted into a cylinder member 35 disposed around the piston via an O-ring packing. Cylinder member 3 between intermediate member 33
The lid 36 is attached to the intermediate member 33 with bolts and nuts while holding the lid 36. A gasket is interposed between the cylinder member 35, the intermediate member 33, and the lid 36. An adjustment rod 37 is screwed onto the outer end of the lid 36 through an O-ring packing. Adjustment rod 3
A coil spring 39 is disposed between the piston 34 and a spring receiving member 38 disposed in contact with the inner end of the piston 7 via a sphere.
intervene.

ピストン34の下面が面する空間40は第1圧
力室をなし、弁体29に設けた通孔31及び中間
部材33に設けた中央孔41を通して復水流入通
路6側圧力、即ちスチームトラツプ4の出口側圧
力が作用する。また、上記空間40内にはピスト
ン34を開弁方向に付勢するコイルばね51を配
す。ピストン34の上面が面する空間42は第2
圧力室をなし、蓋36に設けた圧力導入口43が
開口し、導圧細管22を通してスチームトラツプ
4の入口側圧力が作用する。
The space 40 facing the lower surface of the piston 34 constitutes a first pressure chamber, and the condensate inlet passage 6 side pressure, that is, the steam trap 4 The outlet side pressure of Further, a coil spring 51 is disposed within the space 40 to bias the piston 34 in the valve opening direction. The space 42 facing the upper surface of the piston 34 is the second
A pressure introduction port 43 provided in the lid 36 is opened to form a pressure chamber, and the pressure on the inlet side of the steam trap 4 acts through the pressure capillary tube 22.

ばね39はばね51の弾性力に対向し、ピスト
ン34を開弁方向に付勢する弾性力を調節するも
ので、一定の弾性力をピストン54に作用させる
場合には省略してもよい。上記弁21のピストン
34には、上面からスチームトラツプ4の入口側
圧力が作用し、下面からスチームトラツプ4の出
口側圧力及びばね51・39の弾性力の差の力が
作用し、ピストン34は上記力が釣り合う位置ま
で変位する。弁体29はピストン34に連動して
弁口27の開度を変更し、復水流入通路6側の流
体を放圧通路7を通して放圧し、復水流入通路6
側圧力を制御する。
The spring 39 opposes the elastic force of the spring 51 and adjusts the elastic force that urges the piston 34 in the valve opening direction, and may be omitted when a constant elastic force is applied to the piston 54. The pressure on the inlet side of the steam trap 4 acts on the piston 34 of the valve 21 from the upper surface, and the pressure on the outlet side of the steam trap 4 and the difference between the elastic forces of the springs 51 and 39 acts on the piston 34 from the lower surface. 34 is displaced to a position where the above forces are balanced. The valve body 29 changes the opening degree of the valve port 27 in conjunction with the piston 34, releases the pressure of the fluid on the condensate inflow passage 6 side through the pressure relief passage 7, and releases the fluid from the condensate inflow passage 6.
Control side pressure.

これより、スチームトラツプ4の入口側圧力の
変動に対して、スチームトラツプ4の出口側圧
力、即ち復水流入通路6側圧力が、ばね51・3
9の弾性力の差の力に相当する圧力だけ低くなる
様に制御される。また、この圧力差は調節棒37
を螺進退し、ばね51・39の弾性力の差の力を
調節することにより変更できる。
As a result, with respect to fluctuations in the pressure on the inlet side of the steam trap 4, the pressure on the outlet side of the steam trap 4, that is, the pressure on the condensate inflow passage 6 side, is
The pressure is controlled to be lowered by the pressure corresponding to the difference in elastic force of 9. Also, this pressure difference is determined by the adjustment rod 37.
It can be changed by screwing the springs 51 and 39 back and forth and adjusting the force of the difference in elastic force between the springs 51 and 39.

従つて、上記実施例ではスチームトラツプ4の
入口側圧力に対して出口側圧力、即ち復水流入通
路6側圧力が設定値だけ低くなる様に制御され、
スチームトラツプ4は入口側と出口側の圧力差が
一定になつて安定に作動する。よつて、スチーム
トラツプ4の復水排出量の減少、及びスチームト
ラツプ4の入口側に復水を滞留させる問題は起こ
らない。更に、上記弁21はスチームトラツプ4
の入口側圧力の変動に対して、出口側圧力を設定
値だけ低い状態で追従して変化させることがで
き、スチームトラツプ4の入口側圧力の最低変動
値を考慮する必要がなく、放圧通路7を通して排
出される流体を少くして、復水の回収ロスを減少
させることができる。
Therefore, in the above embodiment, the pressure on the outlet side of the steam trap 4, that is, the pressure on the side of the condensate inlet passage 6, is controlled to be lower by a set value than the pressure on the inlet side of the steam trap 4.
The steam trap 4 operates stably because the pressure difference between the inlet side and the outlet side is constant. Therefore, the problem of reducing the amount of condensate discharged from the steam trap 4 and causing condensate to stay on the inlet side of the steam trap 4 does not occur. Further, the valve 21 is connected to the steam trap 4.
In response to fluctuations in the inlet pressure of the steam trap 4, the outlet pressure can be changed by keeping it lower than the set value, and there is no need to consider the minimum fluctuation value of the inlet pressure of the steam trap 4. By reducing the amount of fluid discharged through the passage 7, it is possible to reduce condensate recovery loss.

次に、第3図の実施例に基づいて説明する。但
し、上記実施例と共通する相当箇所には同一符号
を付して説明を省略する。差圧調節弁手段61に
は電気的なものあるいは空気圧方式のもの等を用
いる。スチームトラツプ4の入口側及び出口側の
圧力を細管62・63で取り出し、差圧伝送器6
4に導く。調節器65は差圧伝送器64からの受
信値と設定値を比較し、必要に応じ弁操作信号を
バルブポジシヨン66に送る。バルブポジシヨン
66は調節弁67を開閉操作する。68は供給圧
力または電力を示す。また、制御方式によつては
空電変換器を介在させることもある。69は信号
伝送ラインを示す。
Next, explanation will be given based on the embodiment shown in FIG. However, the same reference numerals are given to the same parts as in the above embodiment, and the explanation thereof will be omitted. The differential pressure regulating valve means 61 may be electrical or pneumatic. The pressure on the inlet side and the outlet side of the steam trap 4 is taken out through thin tubes 62 and 63, and a differential pressure transmitter 6
Lead to 4. The regulator 65 compares the value received from the differential pressure transmitter 64 with the set value, and sends a valve operation signal to the valve position 66 as necessary. Valve position 66 opens and closes control valve 67. 68 indicates supply pressure or power. Furthermore, depending on the control method, a pneumatic converter may be used. 69 indicates a signal transmission line.

調節器65はスチームトラツプ4の入口側と出
口側の圧力差が設定値になる様に調節弁67を開
閉制御する。例えば、上記圧力差が設定値より小
さくなければ、調節弁67を大きく開き、復水流
入通路6側の流体を放圧通路7を通して排出し、
復水流入通路6側圧力を下げ、上記圧力差が大き
くなれば、逆に調節弁67を操作して、復水流入
通路6側圧力を高める。
The regulator 65 controls the opening and closing of the control valve 67 so that the pressure difference between the inlet side and the outlet side of the steam trap 4 becomes a set value. For example, if the pressure difference is not smaller than the set value, the control valve 67 is opened wide and the fluid on the condensate inflow passage 6 side is discharged through the pressure relief passage 7,
If the pressure on the condensate inflow passage 6 side is lowered and the pressure difference becomes large, the control valve 67 is operated to increase the pressure on the condensate inflow passage 6 side.

上記実施例では差圧節弁手段21に電気的また
は空気圧的な手段を用い、必要に応じてPI、PDI
制御を容易に行うことができる。また、復水流入
通路6の圧力変動に対して、安定かつ確実な制御
を行える。
In the above embodiment, electrical or pneumatic means is used for the differential pressure regulating valve means 21, and PI and PDI are used as necessary.
Control can be performed easily. Moreover, stable and reliable control can be performed against pressure fluctuations in the condensate inlet passage 6.

次に、第4図の実施例に基づいて説明する。但
し、上記実施例と共通する相当箇所には同一符号
を付して説明を省略する。蒸気使用機器3′・
3″は高低圧力の異なるもので用いる。スチーム
トラツプ4′・4″も使用圧力の異なるものを用い
る。復水流入通路6′はスチームトラツプ4′・
4″の両方の復水を導く様に設ける。放圧通路7
には、第2図の差圧調節弁21を配し、導圧通路
70は低圧のスチームトラツプ3″の入口側に連
結する。復水ポンプ手段71は、ポンプ72、ポ
ンプ72の吐出口と吸込口を結ぶ密閉の循環通路
73、循環通路73の途中に配したエゼクタ部材
74、エゼクタ部材74の噴射流量を調節する弁
75、及び復水流出通路9′に配した調節弁76
から成るものを用いる。復水流入通路6′はエゼ
クタ部材74の吸入室に開口し、復水流出通路
9′は循環通路73の途中に開口する。また、調
節弁76は、ポンプ72の吸込口側圧力と、復水
流入通路6′側圧力の圧力を細管77・78を通
して取り出す差圧伝送器79、差圧伝送器79か
らの受信値と設定値を比較し、必要に応じて制御
信号をバルブポジシヨナ80に送る調節器81、
及び調節弁76を開閉操作するバルブポジシヨナ
80から成る構成で開閉制御する。90は供給圧
力または電力を示す。ここで、調節器81の設定
値はポンプ72の吸込口側圧力が、ポンプ72の
必要押込圧力とエゼクタ部材74の昇圧限界圧力
の間の余裕をみた適当な圧力だけ、復水通路6′
側圧力よりも高くなつた時を基準として、それよ
りも大きくなれば調節弁76が開弁し、復水を復
水流出通路9′を通して圧送し、小さくなれば閉
弁して復水の圧送を停止する。そして、復水流入
通路6′側圧力が変動しても、復水流入通路6′と
ポンプ72の吸込口側の圧力差は一定に保たれ、
この圧力差がポンプ72の押し込み圧力として作
用し、ポンプ72の空転を防止する。
Next, a description will be given based on the embodiment shown in FIG. However, the same reference numerals are given to the same parts as in the above embodiment, and the explanation thereof will be omitted. Steam-using equipment 3'・
3'' are used with different high and low pressures. Steam traps 4' and 4'' are also used with different working pressures. The condensate inlet passage 6' is connected to the steam trap 4'.
4" to guide both condensate. Pressure relief passage 7
The differential pressure regulating valve 21 shown in FIG. A closed circulation passage 73 that connects the suction port with a closed circulation passage 73, an ejector member 74 arranged in the middle of the circulation passage 73, a valve 75 that adjusts the injection flow rate of the ejector member 74, and a control valve 76 arranged in the condensate outflow passage 9'.
Use something consisting of. The condensate inflow passage 6' opens into the suction chamber of the ejector member 74, and the condensate outflow passage 9' opens in the middle of the circulation passage 73. In addition, the control valve 76 is set to a differential pressure transmitter 79 that takes out the pressure on the suction port side of the pump 72 and the pressure on the condensate inlet passage 6' side through the thin tubes 77 and 78, and the received value from the differential pressure transmitter 79. a regulator 81 that compares the values and sends a control signal to the valve positioner 80 as necessary;
and a valve positioner 80 that opens and closes the control valve 76. 90 indicates supply pressure or power. Here, the setting value of the regulator 81 is such that the suction port side pressure of the pump 72 is adjusted to an appropriate pressure that takes into consideration the margin between the required pushing pressure of the pump 72 and the boosting limit pressure of the ejector member 74 in the condensate passage 6'.
Based on the time when the side pressure becomes higher than that, the control valve 76 opens and pumps condensate through the condensate outflow passage 9', and when it becomes smaller, the control valve 76 closes and pumps the condensate. stop. Even if the pressure on the condensate inlet passage 6' side fluctuates, the pressure difference between the condensate inlet passage 6' and the suction port side of the pump 72 is kept constant.
This pressure difference acts as a pushing pressure for the pump 72 and prevents the pump 72 from idling.

従つて、上記実施例では、差圧調節弁21によ
り、スチームトラツプ4の排水排出作用に必要な
圧力差を確保すると共に、この為に生ずる復水流
入通路6′側の圧力変動に対して、復水の圧送不
能を起こさない復水ポンプ手段71を用い、復水
を安定に圧送できる復水回収装置を得ることがで
きる。また、差圧調節弁21は低圧のスチームト
ラツプ4″の入口側圧力の変動に応じて復水流入
通路6′側圧力を制御する様にしたもので、これ
より高圧であるスチームトラツプ4′の圧力差も
同時に維持できる。
Therefore, in the above embodiment, the differential pressure regulating valve 21 ensures the pressure difference necessary for the draining action of the steam trap 4, and also prevents pressure fluctuations on the condensate inlet passage 6' side that occur for this purpose. By using the condensate pump means 71 that does not cause failure of condensate pumping, it is possible to obtain a condensate recovery device that can stably pump condensate. Further, the differential pressure control valve 21 is designed to control the pressure on the condensate inlet passage 6' side in accordance with fluctuations in the pressure on the inlet side of the low pressure steam trap 4''. ′ pressure difference can be maintained at the same time.

本発明はこの様に、蒸気系の圧力が変動しても
スチームトラツプ等の復水排出手段の入口側と出
口側の間には所定の圧力差が常に維持されるから
スチームトラツプは復水を確実に排出する。同時
に、蒸気系の圧力変動に応じて復水流入通路の圧
力を調節し、放圧通路を通して排出する復水量を
最少にするので、復水の回収ロスの少ない復水回
収装置が得られる。
In this way, the present invention maintains a predetermined pressure difference between the inlet side and the outlet side of the condensate discharge means such as a steam trap, even if the pressure of the steam system fluctuates. Make sure to drain the water. At the same time, the pressure in the condensate inlet passage is adjusted in accordance with pressure fluctuations in the steam system, and the amount of condensate discharged through the pressure relief passage is minimized, so a condensate recovery device with less loss in condensate recovery can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の復水回収装置の概
略図、第2図は差圧調節弁の断面図、第3・4図
は他の実施例の復水回収装置の概略図、第5図は
従来の復水回収装置の概略図、第6図は従来の圧
力調節弁の概略断面図である。 1:蒸気供給通路、3・3′・3″:蒸気使用機
器、4・4′・4″:スチームトラツプ、5:復水
ポンプ手段、6・6′:復水流入通路、7:放圧
通路、9・9′:復水流出通路、21:差圧調節
弁、23:入口、24:出口、27:弁口、2
9:弁体、34:ピストン、40:空間、51:
コイルばね、61:差圧調節弁手段。
FIG. 1 is a schematic diagram of a condensate recovery device according to an embodiment of the present invention, FIG. 2 is a sectional view of a differential pressure regulating valve, and FIGS. 3 and 4 are schematic diagrams of a condensate recovery device according to other embodiments. FIG. 5 is a schematic diagram of a conventional condensate recovery device, and FIG. 6 is a schematic sectional view of a conventional pressure regulating valve. 1: Steam supply passage, 3, 3', 3'': Steam using equipment, 4, 4', 4'': Steam trap, 5: Condensate pump means, 6, 6': Condensate inflow passage, 7: Discharge Pressure passage, 9/9': Condensate outflow passage, 21: Differential pressure control valve, 23: Inlet, 24: Outlet, 27: Valve port, 2
9: Valve body, 34: Piston, 40: Space, 51:
Coil spring, 61: Differential pressure regulating valve means.

Claims (1)

【特許請求の範囲】 1 復水ポンプ手段、スチームトラツプ等の復水
排出手段、復水排出手段から排出された復水を復
水ポンプ手段に導く復水流入通路手段、復水流入
通路から分岐した放圧通路手段、復水排出手段の
入口側圧力と出口側圧力を検出し両圧力の差が設
定値になる様に復水流入通路手段内の流体を放圧
通路手段を通して排出される差圧調節手段、及び
復水を復水ポンプ手段から所望の箇所へ流出させ
る復水流出通路手段から成る復水回収装置。 2 復出排出手段の入口側圧力と出口側圧力が対
向する方向から作用するほぼ同面積の受圧面が形
成された変位自在の受圧応動壁部材、受圧応動壁
部材に連動して開度調節される弁部材、上記出口
側圧力と同方向から受圧応動壁部材を付勢しその
付勢力に相当する圧力差が復水排出手段の入口側
と出口側の間にできる様に配された弾性体から成
る差圧調節弁手段を用いた特許請求の範囲第1項
記載の復水回収装置。 3 弁、復水排出手段の入口側と出口側圧力を検
出しその圧力差を伝送する差圧伝送器、差圧伝送
器からの受信値と設定値を比較してその設定値に
圧力差が維持される様に操作値を伝送する調節
器、及び調節器からの受信値に応じて弁を操作す
る電気式等の操作部から成る差圧調節弁手段を用
いた特許請求の範囲第1項記載の復水回収装置。 4 ポンプ、ポンプの吐出口とと吸収口を結ぶ密
閉の循環通路、循環通路に配されたエゼクタ部材
から成る復水ポンプ手段を用いた特許請求の範囲
第1項または第2項または第3項記載の復水回収
装置。 5 復水流出通路手段に配された弁、復水流入通
路手段とポンプ吸込側の圧力差を検出して伝送す
る差圧伝送器、差圧伝送器からの受信値と設定値
を比較してその設定値に圧力差が維持される様に
操作値を伝送する調節器、及び調節器からの受信
値に応じて弁を操作する操作部から成る、復水流
入通路手段の圧力変動に対するポンプの安定運転
手段を有する復水ポンプ手段を用いた特許請求の
範囲第4項記載の復水回収装置。
[Claims] 1. A condensate pump means, a condensate discharge means such as a steam trap, a condensate inlet passage means for guiding condensate discharged from the condensate discharge means to the condensate pump means, and a condensate inlet passage. The branched pressure relief passage means detects the inlet side pressure and the outlet side pressure of the condensate discharge means, and the fluid in the condensate inflow passage means is discharged through the pressure relief passage means so that the difference between both pressures becomes a set value. A condensate recovery device comprising differential pressure regulating means and condensate outflow passage means for causing condensate to flow out from the condensate pump means to a desired location. 2. A movable pressure-responsive wall member formed with a pressure-receiving surface of approximately the same area on which the inlet side pressure and the outlet side pressure of the return discharge means act from opposite directions; the opening degree is adjusted in conjunction with the pressure-responsive wall member. The valve member is an elastic body disposed so as to bias the pressure-responsive wall member from the same direction as the outlet side pressure and create a pressure difference corresponding to the biasing force between the inlet side and the outlet side of the condensate discharge means. A condensate recovery device according to claim 1, using a differential pressure regulating valve means. 3 A differential pressure transmitter that detects the inlet and outlet pressures of the valve and condensate discharge means and transmits the pressure difference, and compares the received value from the differential pressure transmitter with the set value and determines whether there is a pressure difference in the set value. Claim 1 uses a differential pressure regulating valve means comprising a regulator that transmits an operating value so that the pressure is maintained, and an operating section such as an electric type that operates the valve according to the received value from the regulator. Condensate recovery device as described. 4. Claims 1, 2, or 3 using a condensate pump means consisting of a pump, a closed circulation passage connecting the discharge port and the absorption port of the pump, and an ejector member disposed in the circulation passage. Condensate recovery device as described. 5 A valve arranged in the condensate outflow passage means, a differential pressure transmitter that detects and transmits the pressure difference between the condensate inflow passage means and the pump suction side, and a value received from the differential pressure transmitter and a set value are compared. The pump responds to pressure fluctuations in the condensate inlet passage means, consisting of a regulator that transmits an operating value so that the pressure difference is maintained at the set value, and an operating section that operates the valve according to the value received from the regulator. The condensate recovery device according to claim 4, which uses a condensate pump means having a stable operation means.
JP7509280A 1980-06-03 1980-06-03 Condensed water recovery device Granted JPS57402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7509280A JPS57402A (en) 1980-06-03 1980-06-03 Condensed water recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7509280A JPS57402A (en) 1980-06-03 1980-06-03 Condensed water recovery device

Publications (2)

Publication Number Publication Date
JPS57402A JPS57402A (en) 1982-01-05
JPS6118038B2 true JPS6118038B2 (en) 1986-05-10

Family

ID=13566175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7509280A Granted JPS57402A (en) 1980-06-03 1980-06-03 Condensed water recovery device

Country Status (1)

Country Link
JP (1) JPS57402A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145803A (en) * 1982-02-24 1983-08-31 株式会社東芝 Controller for drum level of waste-heat boiler
JPH0684807B2 (en) * 1987-03-04 1994-10-26 株式会社テイエルブイ Condensate recovery device for steam-using equipment with pressure change
JP2020143796A (en) * 2019-03-04 2020-09-10 株式会社テイエルブイ Drain recovery device

Also Published As

Publication number Publication date
JPS57402A (en) 1982-01-05

Similar Documents

Publication Publication Date Title
US3730215A (en) Diaphragm controlled air relief valve
US4548231A (en) Pilot-operated pressure-limiting valve with a feeding function
US5215114A (en) Safety valve
EP0180382A2 (en) Surge suppressing check valve
US5921274A (en) Internal relief and bypass valve for pumps and piping systems
US2351871A (en) Valve assembly
EP0059599B1 (en) Valve mechanism for low temperature applications
CN109826984B (en) Pilot-operated safety valve
US5372157A (en) Automatic bypass valve
JPS6118038B2 (en)
EP1078158A1 (en) Fuel system damper with vacuum bias
JPH0617752A (en) Pulsation reducing device
US1995480A (en) Belief valve
JP3331391B2 (en) Liquid pumping device
US5513958A (en) Accumulator charging valve
EP3405672B1 (en) Active surge chamber
CN210484785U (en) Self-adjusting ball valve
CN1032603C (en) Pressure-differential piston automatic pressure-reducing valve with auxiliary control
US6799599B2 (en) Valve
CN213117618U (en) Pressure regulating valve device with nitrogen seal
US246088A (en) Pressure-regulator
CN214305407U (en) Pilot-operated type electric control three-way pressure reducing valve
US700449A (en) Feed-water regulator.
CN216839683U (en) Two-way surge tower
RU2766379C1 (en) Indirect action safety device for hydraulic systems