JPS61179999A - Method of excavating tunnel to rock - Google Patents

Method of excavating tunnel to rock

Info

Publication number
JPS61179999A
JPS61179999A JP60287643A JP28764385A JPS61179999A JP S61179999 A JPS61179999 A JP S61179999A JP 60287643 A JP60287643 A JP 60287643A JP 28764385 A JP28764385 A JP 28764385A JP S61179999 A JPS61179999 A JP S61179999A
Authority
JP
Japan
Prior art keywords
rock
tunnel
shield
support
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60287643A
Other languages
Japanese (ja)
Inventor
キエル・ホーレシユテール
ビヨルン・ブエン
アリルト・パルムシユトレーム
アンデルス・ボルク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PETOROMINE AS
Original Assignee
PETOROMINE AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PETOROMINE AS filed Critical PETOROMINE AS
Publication of JPS61179999A publication Critical patent/JPS61179999A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/08Lining with building materials with preformed concrete slabs
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は岩石の変形(土砂の圧縮および膨張)により弱
くなった岩石内でトンネル掘さくシールドが動かなくな
る恐れを減少しまた同時にトンネルのライニングにかか
る圧力を下げる方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention reduces the risk of a tunneling shield becoming stuck in rock weakened by rock deformation (compression and expansion of sediment) and at the same time reducing the risk of jamming in tunnel linings. This relates to a method of lowering pressure.

トンネルを掘削するとトンネルの周囲の岩石の応力を変
化させまた岩石を変形させる。トンネル内への岩石の変
形は通常堅い岩石では数ミリメートルであるが弱い岩石
では数十センチメートルにもなる。岩石の変形は時間に
関係があり、もし正しい方法で処理しないと弱い岩石は
容認できない程大きく変形するかトンネル支えに容認で
きない程高い負荷をかける。近代的トンネル掘°削はト
ンネルとほら穴との支えの設計にあたりこのことと新オ
ーストラリヤ国トンネル掘削方法(NATM)New 
Au5tral ian Tunnel 1 ing 
Method )に更に系統立てた原理とを考慮に入れ
る。
Excavation of a tunnel changes the stress in the rock surrounding the tunnel and causes the rock to deform. The deformation of rock into the tunnel is usually a few millimeters in hard rocks, but can be tens of centimeters in weak rocks. Rock deformation is time-related and if not handled in the correct manner, weak rocks will deform unacceptably large amounts or impose unacceptably high loads on tunnel supports. Modern tunneling requires consideration of this and the New Australian Tunneling Method (NATM) in the design of tunnel and cave supports.
Au5tralian Tunnel 1 ing
Method) takes into account more systematic principles.

地質学的および岩石物理学的原理によりもし支えた岩石
質量体がその剪断強さが働かされる程に変形せしめられ
ると、トンネル支えにかかる負荷が減少するということ
は一般に知られている。
It is generally known that geological and petrophysical principles will reduce the load on a tunnel support if the supported rock mass is deformed to such an extent that its shear strength is exerted.

問題を解決するだめの手段 本発明の独特な特徴はシールドと岩石との間の間隙を敏
速゛に膨張および硬化し、また圧縮可能な特に選択した
流動物質で埋めるようにして弱い岩石にトンネルを掘進
する方法にある。膨張し硬化した物質はトンネル壁に最
も近い岩石の応力を減少し、トンネルにこの減少した応
力のみを伝達する。同時に、膨張した物質はトンネルを
それに水や気体が浸入しないよう封止するのに寄与する
Means to Solve the Problem A unique feature of the present invention is that it tunnels through weak rock by filling the gap between the shield and the rock with a specially selected fluid material that rapidly expands, hardens, and compresses. It's in the way you dig. The expanded and hardened material reduces the stress in the rock closest to the tunnel wall and transmits only this reduced stress into the tunnel. At the same time, the expanded material helps seal the tunnel against water and gas ingress.

本発明はトンネル掘進に使用するシールド1】にかかる
弱い岩石からの圧力を可成シ減少すると共に、トンネル
のライニングにかかる圧力を減少する新規な方法に係る
ものである。
The present invention relates to a novel method for substantially reducing the pressure from weak rocks on shields used in tunneling, as well as reducing the pressure on the tunnel lining.

本発明はシールドとその周囲の岩石との間の空隙を膨張
、硬化および変形可能な物質で埋めることである。
The invention is to fill the void between the shield and its surrounding rock with a material that can expand, harden and deform.

シールド11と岩石3との間およびトンネル支えと岩石
との間に形成された空隙を、特に選択した膨張する物質
で埋める。この物質の変形および強度特性により岩石に
かけた圧力を減少するようシールドとトンネル支えとに
向は制御して変形できるようにする。
The gaps formed between the shield 11 and the rock 3 and between the tunnel support and the rock are filled with a particularly selected expanding material. The deformation and strength properties of this material allow for controlled deformation of the shield and tunnel supports to reduce the stress exerted on the rock.

本発明は変形する岩石によシ圧搾されることによりシー
ルドが動かなくなる恐れを減少し、またトンネル支持体
を岩石の圧力を可成り減少してかけられるよう設計でき
るようにする。
The present invention reduces the risk of shield jamming due to crushing by deforming rock, and also allows tunnel supports to be designed to be subjected to rock pressures that are significantly reduced.

本発明を以下に添付図面を参照して説明する。The invention will now be described with reference to the accompanying drawings.

実施例 本発明は添付図面に示しであるように、負荷の取除きに
対する岩石の応答と負荷に対する支えの応答との間の相
互作用に基いている。第1図には岩石がその後圧力の増
大により破壊しないうちに岩石からの圧力が如何にして
経時的に最小値にまで減少するかが示しである。第2図
には、トンネル支えに圧力が急速に増大しないうちに岩
石がおる程度変形を許容され、支えにおける負荷が支え
がつぶれる以前に如何にして最大値にまで増大するかの
一例が示しである。これら曲線が重なると第3図に示し
た如く正しい時間に十分な強度で施工する支えの好適な
設計のための基本を提供する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is based on the interaction between the response of a rock to removal of a load and the response of a support to a load, as shown in the accompanying drawings. FIG. 1 shows how the pressure from the rock decreases over time to a minimum value before the rock subsequently ruptures due to increased pressure. Figure 2 shows an example of how the rock can be allowed to deform to a certain extent before the pressure on the tunnel supports increases rapidly, and how the load on the supports can increase to a maximum value before the supports collapse. be. The overlap of these curves provides the basis for the proper design of supports that are installed at the correct time and with sufficient strength, as shown in FIG.

閤でしるした線は膨張する岩石と支えとの接触が早く生
じることと支えのくずれを防止するには支えを大きな負
荷に耐えられるよう設計する必要があることを示す。「
司でしるした線は露出した岩石面の分裂後であり、接触
の生じるのが遅すぎることを示す。閾でしるした線は最
適な線であり、この線は岩石と支えとの間の接触が適描
な時間に生じるとするとライニングを最小の負荷用に設
計できるかもつと大きい安全限界を有することができる
ということを示す。
The line marked with a bar indicates that contact between the expanding rock and the support occurs quickly, and that the support must be designed to withstand large loads in order to prevent the support from collapsing. "
The line marked by Tsukasa is after the exposed rock surface has split, indicating that contact has occurred too late. The line marked by the threshold is the line of best fit, which means that if contact between the rock and the support occurs at a reasonable time, the lining can be designed for the minimum load and has a large safety margin. Show that you can.

弱い岩石では、立ち時間(トンネル掘削から支えてない
岩石がくずれるまでの時間)は非常に短かく、すなわち
、変形が敏速に生じ岩石の圧力により生じた摩擦力によ
りシールドは動かなくなる(第4図参照)。
In weak rocks, the standing time (the time from when the tunnel is excavated until the unsupported rock collapses) is very short, meaning that the deformation occurs quickly and the shield becomes immobile due to the frictional force generated by the pressure of the rock (Figure 4). reference).

第4図を参照すると、トンネル穴掘機のシールド1の背
後の支えは一般に組み立てると完全な円筒形リングを形
成する予め作ったセグメント2で形成されている。現在
のトンネル掘削方法では、セメントモルタール、豆粒大
の砂利または同様な堅い物質を支え2と岩石3との間に
打込み必要な総合作用を生じて岩石から支えに負荷を均
一に転移する。
Referring to FIG. 4, the support behind the shield 1 of the tunnel boring machine is generally formed of prefabricated segments 2 which, when assembled, form a complete cylindrical ring. In current tunnel excavation methods, cement mortar, pea-sized gravel or similar hard material is driven between the support 2 and the rock 3 to create the necessary overall action and to evenly transfer the load from the rock to the support.

また、完全なライニングリングを現場打ちできる。これ
ら支えはすべて岩石から支えにかける圧力を非常に高く
できる(第3図の線間)程に堅い。本発明は岩石と支え
との間に打ち込んだ特種な物質を利用する。特に個々の
トンネル掘削条件に適す物質は敏速に硬化し、岩石がか
けた負荷の一部を支えに転移し変形可能である(第5図
参照)。
Additionally, complete lining rings can be cast in place. All of these supports are so rigid that the pressure exerted by the rock on the supports can be very high (between the lines in Figure 3). The present invention utilizes a special material that is implanted between the rock and the support. In particular, materials suitable for individual tunnel excavation conditions harden quickly and can be deformed by transferring part of the load applied by the rock (see Figure 5).

物質6は岩石3と掘削機を保護するシールド11との間
に生じる空隙を埋める。同じ物質″6がライニングすな
わち支え2の外側のシールド11と同じ厚味でかつシー
ルド11の背後に存在する空隙を埋める。
The substance 6 fills the void created between the rock 3 and the shield 11 protecting the excavator. The same material "6" is of the same thickness as the outer shield 11 of the lining or support 2 and fills the voids present behind the shield 11.

この物質とそれを噴射する系統とは以下の特性を有して
いる。すなわち、 (])11種のトンネル掘削条件に適応でき岩石が動く
と物質を変形させ比較的に堅いトンネル支えに漸次に増
大して負荷を転移することによりトンネル支えを最適に
設計できる変形特性と強度。
This material and the system that injects it have the following characteristics: In other words, (]) deformation characteristics that can be adapted to 11 types of tunnel excavation conditions and that can optimally design a tunnel support by deforming the material as the rock moves and gradually increasing the load and transferring it to a relatively rigid tunnel support. Strength.

(2)噴射した物質はシールドとライニングとのまわシ
の空隙内で膨張してそれを埋めることができる。
(2) The injected substance can expand and fill the gap between the shield and the lining.

(3)噴射された物質は摩擦の増大によりトンネル掘進
シールドの前進を遅らせない。このことはシールドとそ
れに付帯する機械および系統とを適当に設計することに
よシ達成する。
(3) The injected material does not retard the advancement of the tunneling shield due to increased friction. This is accomplished by appropriate design of the shield and its associated machinery and systems.

(4)噴射した物質は安定で耐久性があり、岩石の変形
が増大しそれに相等してトンネル支えにかかる負荷が増
大するのを防止して経時してもその強度を保持する。
(4) The injected material is stable and durable, and maintains its strength over time by preventing increased deformation of the rock and the corresponding increase in load on the tunnel support.

(5)噴射した物質は噴射が終っても水に溶解せず岩石
に存在している気体または塩によシ化学的におかされな
い。
(5) The injected material will not dissolve in water and will not be chemically disturbed by gases or salts present in the rock even after the injection is finished.

噴射される物質の特性は岩石の状態と量的測定の説明が
ない限シ前記した以上更に詳細には明記できない。現在
のところいくつかの適当な種類の物質は種々の圧縮度を
生じるよう処方された、たとえば、ポリウレタンである
The characteristics of the injected material cannot be specified in further detail than those described above without explanation of the rock condition and quantitative measurements. Several currently suitable classes of materials are formulated to produce varying degrees of compaction, such as polyurethane.

噴射した物質6とトンネル支え2と忙対する時間の1関
数としての総合した負荷応答が第6図に示しである。第
6図に使用した記号は以下のことを示す。すなわち、 Ps =安定化負荷、すなわち、支えを安定化するため
の噴射した質量の所要負荷。
The overall load response as a function of the time of engagement of the injected material 6 and the tunnel support 2 is shown in FIG. The symbols used in Figure 6 indicate the following. Ps = stabilization load, i.e. the required load of the injected mass to stabilize the support.

Popt =支えにかける最適の岩石の負荷。Popt = Optimal rock load to be applied to the support.

Pkap =支えの究極の負荷能力。Pkap = ultimate load capacity of support.

Po =最大の岩石負荷。Po = maximum rock load.

topt=<ずれる直前の岩石負荷が最小である時間。topt=<time when the rock load is at its minimum just before shifting.

tinj =噴射を開始する時間。tinj = time to start injection.

tforst =支えが負荷を引受は始める時間。tforst = time at which the support begins to take on the load.

本発明を実施するには以下の条件が必要である。The following conditions are necessary to carry out the present invention.

すなわち、 トンネルが掘進すると岩石が応力をかけられ、この応力
が岩石をトンネルの空隙に内に変形させる一トンネルの
表面をシールド11かシールドの後縁部に立設したか打
ち込んだライニングすなわち支え2によシこの変形に抵
抗するため強化する。
That is, as the tunnel is excavated, the rock is stressed, and this stress deforms the rock into the tunnel cavity.The surface of the tunnel is covered by either the shield 11 or a lining or support 2 erected or driven at the trailing edge of the shield. It is strengthened to resist this deformation.

シールド11とトンネル支えとの外側の空隙を埋める物
質は、それに接触する岩石の特性に合わせて調整した特
性を有している。この物質の関連した特性は経時的強度
の増大割合、強度特性、弾性特性、クリープ特性および
透水性である。
The material filling the outer void between the shield 11 and the tunnel support has properties tailored to the properties of the rock in contact with it. Relevant properties of this material are the rate of increase in strength over time, strength properties, elastic properties, creep properties and water permeability.

トンネル掘削機5(トンネルポーリング機の場合にはカ
ッターヘッド)、シールド11およびライニングセグメ
ント2は前記方法を実施できるよう設計する仁とが肝要
である。特に、シールドの直径は噴射した物質を所望の
厚味にするに十分なスペースをシールドと岩石との間に
残すよう設計する必要がある。
It is essential that the tunnel boring machine 5 (or cutter head in the case of a tunnel poling machine), the shield 11 and the lining segment 2 are designed to carry out the method described above. In particular, the diameter of the shield must be designed to leave sufficient space between the shield and the rock to achieve the desired thickness of the injected material.

【図面の簡単な説明】[Brief explanation of the drawing]

第】図は掘削後時間を変えて設電した堅固な支えに転移
された岩石の負荷を示すグラフ、第2図はトンネル支え
Kかかる反動負荷と時間との間の関係を示すグラフ、第
3図はトンネル支えにががる負荷と時間との間の関係を
グラフで表わしトンネル支えの設計の基準を示す図、第
4図はトンネルポーリング機(TBM)に使用する従来
の掘削ヘッドの断面略図、第5図は本発明に従いシール
ドの外側に物質の噴射を伴う作業を行っているトンネル
ポーリング機の断面略図、第6図は岩石の負荷曲線(第
1図)と本発明によ)噴射した物質の合負荷との間の関
係をトンネル支えの合負荷曲線と共に示すグラフである
。 (外5名)
Fig. 2 is a graph showing the load of rock transferred to the rigid support installed at different times after excavation; Fig. 2 is a graph showing the relationship between the reaction load applied to the tunnel support K and time; Fig. 3 The figure is a graph showing the relationship between the load applied to tunnel supports and time, and shows the criteria for designing tunnel supports. Figure 4 is a schematic cross-sectional view of a conventional excavation head used in a tunnel polling machine (TBM). , FIG. 5 is a schematic cross-sectional view of a tunnel polling machine performing work involving the injection of material outside the shield according to the invention, and FIG. 1 is a graph showing the relationship between the total load of material and the total load curve of the tunnel support; (5 other people)

Claims (1)

【特許請求の範囲】[Claims] 掘削中掘削された岩石面とシールド11との間及びトン
ネル支えとの間に形成された空隙を噴射すると膨張し硬
化後変形可能な物質6で埋めることにより、シールドと
トンネル支えとにかかる岩石の圧力を減少させ、その結
果、過度の摩擦によりシールドが動かなくなることを防
止しまたトンネル支えに必要な強度を低下させることを
特徴とする岩石にトンネルを掘削する方法。
During excavation, the gaps formed between the excavated rock surface and the shield 11 and between the tunnel support are filled with a material 6 that expands when injected and is deformable after hardening, thereby reducing the amount of rock that is placed between the shield and the tunnel support. A method of excavating tunnels in rock, characterized in that it reduces the pressure and, as a result, prevents the shield from becoming stuck due to excessive friction and reduces the strength required for tunnel support.
JP60287643A 1984-12-21 1985-12-20 Method of excavating tunnel to rock Pending JPS61179999A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO845160 1984-12-21
NO845160 1984-12-21

Publications (1)

Publication Number Publication Date
JPS61179999A true JPS61179999A (en) 1986-08-12

Family

ID=19888007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60287643A Pending JPS61179999A (en) 1984-12-21 1985-12-20 Method of excavating tunnel to rock

Country Status (4)

Country Link
JP (1) JPS61179999A (en)
DE (1) DE3545084A1 (en)
FR (1) FR2575219A1 (en)
GB (1) GB2169020A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3630240A1 (en) * 1986-09-05 1988-03-10 Strabag Bau Ag METHOD AND DEVICE FOR LINING AND SECURING AN UNDERGROUND CAVITY OPEN IN SHIELD DRIVING
DE3821754C3 (en) * 1988-06-28 1997-07-17 Dyckerhoff & Widmann Ag Method for opening a tubular underground cavity, in particular at great depth, and driving shield for carrying out the method
FR2691748B1 (en) * 1992-05-26 1997-04-04 Sogea METHOD AND APPARATUS FOR STABILIZING A TUNNEL COVERING UNDER CONSTRUCTION.
CN102434172A (en) * 2011-12-14 2012-05-02 中国矿业大学 Roadway surrounding rock stability control method for back grouting and filling
CN103410516B (en) * 2013-05-08 2017-07-11 浙江广川工程咨询有限公司 Minor diameter tunnel full face tunneling surrouding rock deformation early warning engineering method
CN106640125A (en) * 2015-10-30 2017-05-10 山东科技大学 Positive and negative protection combined construction technology of modularized prevention of base plate deformation
CN117171863B (en) * 2023-11-02 2024-02-13 长江勘测规划设计研究有限责任公司 Design method of variable-diameter type water delivery tunnel for reducing large deformation of soft rock

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2653954C3 (en) * 1976-11-27 1984-07-05 Gewerkschaft Eisenhütte Westfalia, 4670 Lünen Jacking knife
GB1554222A (en) * 1977-03-07 1979-10-17 Marcon Int Ltd Tunnelling systems
GB2042610B (en) * 1979-02-21 1982-09-29 Mowlem & Co Ltd J Tunnelling

Also Published As

Publication number Publication date
GB2169020A (en) 1986-07-02
GB8531256D0 (en) 1986-01-29
FR2575219A1 (en) 1986-06-27
DE3545084A1 (en) 1986-07-03

Similar Documents

Publication Publication Date Title
Austin et al. Sprayed concrete: Properties, design and application
CN105422153B (en) A kind of segmentation anchoring bolt reinforced for zonal fracturing roadway surrounding rock
WO2006057545A1 (en) Tunnelling method using pre-support concept and an adjustable apparatus thereof
CN110761819A (en) Prestressed grouting anchor rod
US6457909B1 (en) Multi-purpose anchor bolt assembly
US2442113A (en) Tunnelling and like subterranean operations
JPS61179999A (en) Method of excavating tunnel to rock
Strohhäusl TBM Tunnelling Under High Overburden With Yielding Segmental Linings Eureka Project Eu 1079—” Contun”
US4084384A (en) Advanced slot stress control method of underground excavation
Pelizza et al. Back-fill grout with two component mix in EPB tunneling to minimize surface settlements: Rome Metro—Line C case history
Shirlaw Setting operating pressures for TBM tunnelling
JP4037124B2 (en) Tunnel structure and tunnel construction method
RU2277147C1 (en) Method for tunnel lining forming
CN211116063U (en) Prestressed grouting anchor rod
CN109441478A (en) The advanced leverage of IV class of tunnel, V class surrounding rock encircles damping reinforcement method
Bineshian (I)-TM: I-System’s Tunnelling Method–An Introduction
Lunardi et al. The reinforcement of the core face: history and state of the art of the Italian technology that has revolutionized the world of tunneling. Some reflections
CN220522485U (en) Rock soil and underground works expand a mouthful shape drilling structure
CN114439545B (en) Extremely high stress large deformation difference unloading deformation blocking method
Panet et al. Methods of Support
Harding et al. Myth and reality: bolts in modern concrete segmental tunnel linings
Volkmann Advanced Pre-Support for Cross Passages
Ho et al. Characteristics of bored piles installed through jet grout layer
CN116227000A (en) Shield tail gap grouting pressure verification method for shield construction
JPH0711132B2 (en) Ground stabilization method