JPS61179518A - Manufacture of stationary induction electric apparatus - Google Patents

Manufacture of stationary induction electric apparatus

Info

Publication number
JPS61179518A
JPS61179518A JP60019405A JP1940585A JPS61179518A JP S61179518 A JPS61179518 A JP S61179518A JP 60019405 A JP60019405 A JP 60019405A JP 1940585 A JP1940585 A JP 1940585A JP S61179518 A JPS61179518 A JP S61179518A
Authority
JP
Japan
Prior art keywords
core
wound core
wound
laminated
magnetic alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60019405A
Other languages
Japanese (ja)
Inventor
Tatsuo Ito
伊藤 辰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60019405A priority Critical patent/JPS61179518A/en
Publication of JPS61179518A publication Critical patent/JPS61179518A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • H01F41/024Manufacturing of magnetic circuits made from deformed sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • H01F27/2455Magnetic cores made from sheets, e.g. grain-oriented using bent laminations

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To reduce the generation loss at the corners of a core during the annealing process for uniformizing the temperature distribution in the whole wound core, by providing magnetic pieces at the corners of the wound core. CONSTITUTION:A magnetic piece 15 is provided between layered blocks 14A and 14B, and 14B and 14C in the portions thereof which will be the corners of a core where the lower yoke of the core intersects the legs on the sides. The layered blocks 14A-14C and reinforcing plates 16A and 16B are shaped into a U shape by bending them. The magnetic pieces 15 are held between the layered blocks and the reinforcing plates 16A and 16B are located on the lower yoke of the core and on the outer and inner peripheries of the legs. Windings 17 are fitted over the legs of the U-shaped layered blocks 14A-14C. The ends of the layered blocks 14A-14C projecting upwards from the windings 17 are bent so that the end faces of the layered blocks are butt bonded to each other. The wound core is annealed by means of high frequency excitation.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非晶質磁性合金薄帯からなる1ターンカツト形
巻鉄心を用いた静止銹4を器の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a stationary iron 4 using a one-turn cut-shaped wound core made of an amorphous magnetic alloy ribbon.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近時、静止誘導電器例えば変圧器に用いる巻鉄心におい
ては、非晶質磁性合金薄帯で製造することが検討されて
いる。この材料は磁性合金の融体を超急冷してa造した
もので、鉄損が小さく優れた磁気特性を有している。こ
の非晶質磁性合金薄帯からなる巻鉄心を用いて変圧器を
製造する場合、鉄心に設ける巻線の組立作業が容易にな
ることから、1ターンカツト形巻鉄心を用いた変圧器の
製造方法が提案されている。
Recently, it has been considered to manufacture wound cores used in stationary induction appliances, such as transformers, from amorphous magnetic alloy ribbons. This material is made by ultra-quenching a magnetic alloy melt and has excellent magnetic properties with low iron loss. When manufacturing a transformer using a wound core made of this amorphous magnetic alloy ribbon, the assembly of the windings to be installed on the core becomes easier, so a method for manufacturing a transformer using a one-turn cut-shaped wound core is used. is proposed.

これは1ターン分毎の非晶質磁性合金薄帯を変圧器巻線
に挿入して巻鉄心を成形する方法であるO しかして、非晶質磁性合金薄帯は応力感受性が大きく製
造時に生ずる磁気特性が低下するので、巻鉄心製造時に
は歪取シ焼鈍を施して磁気特性全回復させるようにして
いる。非晶質磁性合金材料の焼鈍温度は、例えばアライ
ド社製METG  LAS 260582では400℃
土10℃であり、歪取り焼鈍においては非晶質磁性合金
薄帯の磁気特性を良好に回復するために1巻鉄心全体を
均一な温度分布で適正焼鈍温度範囲に昇温させることか
必要である。
This is a method of forming a wound core by inserting one turn of amorphous magnetic alloy ribbon into the transformer winding. However, amorphous magnetic alloy ribbon is highly sensitive to stress, which occurs during manufacturing. Since the magnetic properties deteriorate, strain relief annealing is performed when manufacturing the wound core to fully recover the magnetic properties. The annealing temperature of the amorphous magnetic alloy material is, for example, 400°C in METG LAS 260582 manufactured by Allied.
During strain relief annealing, it is necessary to raise the temperature of the entire single-turn core to the appropriate annealing temperature range with uniform temperature distribution in order to restore the magnetic properties of the amorphous magnetic alloy ribbon well. be.

従来、非晶質磁性合金薄帯からなる1ターンカツト形巻
鉄心の焼鈍方法としては、巻鉄心を恒温槽に入れて加熱
昇温しで焼鈍を行なう外部加熱力式が行なわれている。
Conventionally, as a method for annealing a one-turn cut wound core made of an amorphous magnetic alloy ribbon, an external heating method has been used in which the wound core is placed in a constant temperature bath and annealed by heating and raising the temperature.

しかしながらこの焼鈍方法では、巻鉄心全体を均一に加
熱することができないことに加え゛C1巻線の熱的損傷
が大きいので、これを避けるために焼鈍後に巻線全巻鉄
心に組付ける作業を行なう必要がある。
However, with this annealing method, it is not possible to uniformly heat the entire wound core, and the C1 winding suffers significant thermal damage, so in order to avoid this, it is necessary to assemble all the windings onto the core after annealing. There is.

しかし非晶質磁性合金薄帯は焼鈍後に脆くなる性質があ
るので、焼鈍後に巻鉄心に巻線を組付ける組立作業を行
なうと、非晶質磁性合金薄帯に外力が加わることによシ
、薄帯が破損するととともに薄帯の磁気特性が劣化して
、巻鉄心の品質を損なうという問題が生じる。
However, since the amorphous magnetic alloy ribbon has the property of becoming brittle after annealing, when assembling the winding wire onto the wound core after annealing, external force is applied to the amorphous magnetic alloy ribbon, causing damage to the amorphous magnetic alloy ribbon. A problem arises in that the ribbon is damaged and the magnetic properties of the ribbon deteriorate, impairing the quality of the wound core.

そこで、最近非晶JR磁性合金薄帯からなる巻鉄心を高
周波励磁によシ自己発熱させて焼鈍を行なう方法が考え
られている。この焼鈍方法は、巻鉄心に巻回した励磁コ
イルに周波数2〜10KHz程度の高周波交流vjL流
を通して巻鉄心を励磁し、この励磁に伴い巻鉄心に発生
する損失によシ巻鉄心を自己発熱させて焼鈍を行なう方
法である。この方法によれば、巻線に与える熱的影響が
少ないので、非晶質磁性合金薄帯を巻線に挿入して巻鉄
心を形成し>’C状態で焼鈍が行なえる。このため、焼
鈍後に巻鉄心に巻線を組付ける必要がなくなるので、非
晶質磁性合金薄帯に外力を加える加工を回避して、非晶
質磁性合金薄帯の破損および磁気特性の低下を防止する
ことができる利点がある。
Therefore, a method has recently been considered in which a wound core made of amorphous JR magnetic alloy ribbon is self-heated by high-frequency excitation to perform annealing. This annealing method involves exciting the wound core by passing a high-frequency alternating current vjL flow with a frequency of about 2 to 10 KHz through an excitation coil wound around the wound core, and causing the wound core to self-heat due to the loss generated in the wound core due to this excitation. This method involves annealing. According to this method, since there is little thermal influence on the winding wire, an amorphous magnetic alloy ribbon can be inserted into the winding wire to form a wound core, and annealing can be performed in a >'C state. Therefore, there is no need to assemble the windings to the wound core after annealing, which avoids processing that applies external force to the amorphous magnetic alloy ribbon, thereby preventing damage to the amorphous magnetic alloy ribbon and deterioration of magnetic properties. There is an advantage in that it can be prevented.

しかしながら、この高周波励磁焼鈍法によっても巻鉄心
全体を均一に加熱することは未だ不充分である。第10
図は、第9図で示す矩形状の巻鉄心に高周波励磁によシ
焼鈍を施した場合における鉄心各部における温度上昇と
励時間との関係を示す線図である。第9図にて示す巻鉄
心は、多数の非晶質磁性合金薄帯1を移層してなる複数
組の積層ブロック2を組合せて矩形状に成形した1ター
ンカツト形の巻鉄心3であり、この巻鉄心3には巻線4
が組付けられている。
However, even with this high-frequency excitation annealing method, it is still insufficient to uniformly heat the entire wound core. 10th
The figure is a diagram showing the relationship between the temperature rise in each part of the core and the excitation time when the rectangular wound core shown in FIG. 9 is annealed by high-frequency excitation. The wound core shown in FIG. 9 is a one-turn cut-shaped wound core 3 formed into a rectangular shape by combining multiple sets of laminated blocks 2 formed by shifting the layers of a large number of amorphous magnetic alloy ribbons 1. This winding core 3 has a winding 4
is assembled.

しかして第10図の線図によれば、巻鉄心3の脚部(直
線部)E点とけい鉄部(直線部)F点と、コーナ部(脚
部とけい鉄部とが直角に交叉する部分)D点とでは高周
波励磁による発生損失の大きさが異な夛、温度上昇に差
が出てくることが判る。すなわち、巻鉄心3のコーナ部
り点が温度410°Cに達した時点で、脚部E点は温度
320℃、けい鉄部2点は温度360℃となっている。
According to the diagram in FIG. 10, the leg section (straight section) of the wound core 3 has a point E, the silicate section (straight section) point F, and the corner section (the section where the leg section and the silicate section intersect at right angles). ) It can be seen that the magnitude of the loss generated by high-frequency excitation is different from point D, so there is a difference in temperature rise. That is, when the corner point of the wound core 3 reaches a temperature of 410°C, the temperature of the leg point E is 320°C, and the temperature of the two silicate iron parts is 360°C.

なお、けい鉄部2点が脚部E点に対して温度上昇が高い
のは、鉄心窓幅寸法が窓高寸法に比して小さいため、温
度の高いコーナ部り点からけい鉄部2点までの距離が小
さく熱伝導の影響を受けているからである。
Note that the reason why the temperature rise at two points on the silicate iron part is higher than that at point E on the leg is because the iron core window width dimension is smaller than the window height dimension. This is because the distance is small and it is affected by heat conduction.

ここで、このような巻鉄心における温度上昇が不均一な
現象について説明を加える。高周波励磁゛によシ巻鉄心
に生ずる損失は、うず電流積とヒステリシス損とからな
っている。うず電流積Weは、 で表わされる。
Here, a description will be given of the phenomenon in which the temperature rise in the wound core is non-uniform. The loss that occurs in the wound core due to high frequency excitation consists of the eddy current product and hysteresis loss. The eddy current product We is expressed as follows.

但し、t:磁性材等価板厚、Bm:磁速密度、f:電流
周波数、ρ:比抵抗である。この式かられかるようにう
ず電流積の発生は磁性材すなわち非晶質磁性合金薄帯の
板厚の2乗に比例する。ところで、非晶質磁性合金薄帯
の表面には多数の小突起が存在し且つ薄帯表面は絶縁被
膜を有していないので、薄帯を積1した状態では各薄帯
表面の突起同士が接触し、非晶質磁性合金薄帯等価板厚
tFit−αt’(α)1.t’:非晶質磁性合金薄帯
板厚)で表わされるととくなる。
However, t: equivalent plate thickness of the magnetic material, Bm: magnetic velocity density, f: current frequency, and ρ: specific resistance. As can be seen from this equation, the generation of eddy current product is proportional to the square of the thickness of the magnetic material, ie, the amorphous magnetic alloy ribbon. By the way, since there are many small protrusions on the surface of the amorphous magnetic alloy ribbon and the ribbon surface does not have an insulating coating, when the ribbons are stacked one on top of the other, the protrusions on the surface of each ribbon are Contact, amorphous magnetic alloy ribbon equivalent plate thickness tFit-αt'(α)1. t': Thickness of the amorphous magnetic alloy ribbon).

しかるに巻鉄心のコーナ部は積層ブロックを直角に屈曲
して形成するために、直線部であるけい鉄部および脚部
に比して積層した各非晶質磁性合金薄帯が強く押されこ
の薄帯に加わる面圧が大きい。このためコーナ部では面
圧に応じて各薄帯の突起同士が接触する部分的接触部が
増大して、前述の式で表わされる非晶質磁性合金薄帯等
価板厚tが大きくなる。従ってコーナ部のうず電流積は
けい鉄部および脚部に比して大きくなる。しかもうず電
流積は電流の励磁周波数の2乗に比例するので、巻鉄心
金高周波励磁する場合にはうず電流の増大に大きな影響
を与えている。また、ヒステリシス損は非晶質磁性合金
薄帯に外力が加わることによって増大する。
However, since the corner portions of the wound core are formed by bending the laminated blocks at right angles, the laminated amorphous magnetic alloy thin strips are pressed harder than the straight portions of the silicate iron portion and leg portions. The surface pressure applied to the belt is large. Therefore, in the corner portion, the partial contact area where the protrusions of each ribbon come into contact with each other increases depending on the surface pressure, and the equivalent plate thickness t of the amorphous magnetic alloy ribbon expressed by the above-mentioned formula increases. Therefore, the eddy current product at the corner portion is larger than that at the silicate iron portion and the leg portion. Moreover, since the eddy current product is proportional to the square of the excitation frequency of the current, high-frequency excitation of the wound iron core has a large effect on the increase in eddy current. Furthermore, hysteresis loss increases when external force is applied to the amorphous magnetic alloy ribbon.

しかるに巻鉄心の脚部およびけい鉄部では非晶質磁性合
金薄帯に曲げ応力が加わらないが、コーナ部では非晶質
磁性合金薄帯が直角に屈曲されて大きな曲げ応力が加わ
る。このためにコーナ部では他の部分に比してヒステリ
シス損の発生が大きい。このように巻鉄心におけるコー
ナ部で発生するうず電流積およびヒステリシス損すなわ
ち発生損失は脚部およびけい鉄部に比してて大きく、コ
ーナ部の温度上昇が他の部分に比して高くなる。
However, no bending stress is applied to the amorphous magnetic alloy ribbon at the leg portions and silicate iron portions of the wound core, but at the corner portions, the amorphous magnetic alloy ribbon is bent at right angles and a large bending stress is applied. For this reason, hysteresis loss occurs more in the corners than in other parts. As described above, the eddy current product and hysteresis loss, that is, generated loss, occurring at the corner portions of the wound core are larger than those at the leg portions and silicate portions, and the temperature rise at the corner portions is higher than at other portions.

従って、巻鉄心の各部を適正焼鈍温度をもって均一に温
度上昇させて焼鈍することがむづかしく、非晶質磁性合
金薄帯本来の優れた磁気特性を発揮できる1ターンカツ
ト形の巻鉄心を得る上で問題があった。
Therefore, it is difficult to uniformly raise and anneal each part of the wound core at an appropriate annealing temperature, and it is difficult to obtain a one-turn cut type wound core that can exhibit the excellent magnetic properties inherent to the amorphous magnetic alloy ribbon. There was a problem.

〔発明の目的〕[Purpose of the invention]

本発明は前記事情に基づいてなされたもので、巻鉄心に
対する焼鈍を良好に行ない、非晶質磁性合金薄帯からな
る磁気特性に優れた1ターンカツト形巻鉄心を用いた静
止誘導電器の製造方法を提供することを目的とする。
The present invention has been made based on the above-mentioned circumstances, and is a method for producing a stationary induction electric appliance using a one-turn cut-shaped wound core that is well annealed and made of an amorphous magnetic alloy ribbon and has excellent magnetic properties. The purpose is to provide

〔発明の概要〕[Summary of the invention]

本発明の静止誘導電器の製造方法は、巻鉄心の1ターン
分毎の多数の非晶質磁性合金薄帯を積層してなる複数の
積層ブロックを重ねた積層ブロック群t−U形状に形成
し、この口形状の積層ブロック群に巻線を組付けた後に
積層ブロック群の両端部を内側に折曲し接合して巻鉄心
を成形するに際して、巻鉄心の少なくともコーナ部にお
ける積層ブロックの間に磁性片を挿入して巻鉄心を成形
し、その後に高周波励磁によシ巻鉄心を焼鈍することを
特徴とするものである。
The method for manufacturing a stationary induction electric appliance of the present invention includes forming a stacked block group t-U shape in which a plurality of stacked blocks each made by stacking a large number of amorphous magnetic alloy ribbons for each turn of a wound core are stacked. After assembling the winding wires to the laminated block group having this opening shape, when forming the wound core by bending both ends of the laminated block group inward and joining them, there is a gap between the laminated blocks at least at the corner of the wound core This method is characterized by inserting magnetic pieces to form a wound core, and then annealing the wound core by high-frequency excitation.

このように巻鉄心のコーナ部に磁性片を設けることによ
り、焼鈍時におけるコーナ部の発生損失を低減して巻鉄
心全体の温度分布を均一化するものである。
By providing the magnetic pieces at the corner portions of the wound core in this manner, the loss generated at the corner portions during annealing is reduced and the temperature distribution of the entire wound core is made uniform.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を図面で示す実施例について説明する。 Embodiments of the present invention illustrated in the drawings will be described below.

第1図ないし第6図は本発明の製造方法の一実施例を示
している。
1 to 6 show an embodiment of the manufacturing method of the present invention.

まず、第2図で示すように非晶質磁性合金薄帯11を巻
枠12によシ連続的に巻回して巻回体13を形成し、こ
の巻回体13の一部を切断し展開して多数の非晶質磁性
合金薄帯IIを積層してなる積層体とする。この積層体
を成形すべき巻鉄心を径方向に区分した複数の/ilK
対応して複数層に区分し、第3図で示すように巻鉄心の
各ターンに対応して1ターン分毎の局長を有する多数の
非晶質磁性合金薄帯11を積層してなる複数の例えば3
晶湘ブロツク141〜14Cを形成する。各積層ブロッ
ク14A〜14Cは非晶質磁性合金薄帯lIを長手方向
くずらして傾斜した端面を有するものとする。なお、巻
回体13d円形としであるが、巻鉄心と同形状のものと
しても良い。
First, as shown in FIG. 2, an amorphous magnetic alloy ribbon 11 is continuously wound around a winding frame 12 to form a wound body 13, and a part of this wound body 13 is cut and expanded. A laminate is obtained by laminating a large number of amorphous magnetic alloy ribbons II. A plurality of /ilK divided in the radial direction of the wound core to be formed into this laminate.
A plurality of laminated amorphous magnetic alloy ribbons 11 are divided correspondingly into a plurality of layers and have a section for each turn corresponding to each turn of the wound core as shown in FIG. For example 3
Crystal blocks 141 to 14C are formed. Each of the laminated blocks 14A to 14C has an end face that is inclined by displacing the amorphous magnetic alloy ribbon II in the longitudinal direction. Although the wound body 13d is circular, it may have the same shape as the wound core.

次いで、第3図で示すように各積層ブロック14に一1
4Cを積層する。この場合、巻鉄心の外周側に位置する
長さの大なる積層ブロックJ4Aを下側に、鉄心内周側
に位置する長さの小なる積層ブロック14Cf上側にし
て積層するとともに1各種層ブロック14に一14Cを
長さ方向に位置をずらして配置する。そして、この積層
ブロックJ(A〜14C群において、巻鉄心の下けい鉄
部と両側の脚部とが交叉する各コーナ部に相当する部分
における各積層ブロック141〜14Cの間に磁性片1
5を各々設ける。この磁性片15はコーナ部の形状に応
じて断面が三日月形状全なし、非晶質磁性合金薄帯11
の幅寸法と同じ長さを有している。そして磁性片15は
、例えば第6図(a)で示すように幅寸法が異なる複数
枚の非晶質磁性合金薄板を重ねて接着して形成したもの
、または第6図(b)で示すように非晶質磁性合金粉末
を加圧しあるいはバインダを介して成形したものを用い
る。
Next, as shown in FIG.
Layer 4C. In this case, the laminated block J4A with a large length located on the outer circumferential side of the wound core is stacked on the lower side, and the laminated block J4A with a small length located on the inner circumferential side of the core is stacked on the upper side. 14C are arranged with their positions shifted in the length direction. Then, a magnetic piece 1 is placed between each of the laminated blocks 141 to 14C in the laminated blocks J (in the groups A to 14C, each of the laminated blocks 141 to 14C corresponds to the corner portion where the lower sintered iron part of the wound core intersects with the leg parts on both sides).
5 each. This magnetic piece 15 has a crescent-shaped cross section depending on the shape of the corner part, and the amorphous magnetic alloy ribbon 11
It has the same length as the width dimension. The magnetic piece 15 may be formed by stacking and bonding a plurality of amorphous magnetic alloy thin plates having different widths, as shown in FIG. 6(a), or as shown in FIG. 6(b). Amorphous magnetic alloy powder is pressed or molded using a binder.

なお、積層ブロック14に一14C群の下側と上側には
、巻鉄心の上けい鉄部を除く外周長および内周長に相描
する長さの補強′&16A。
In addition, on the lower and upper sides of the 14C group in the laminated block 14, reinforcements 16A and 16A are provided on the lower side and the upper side of the laminated block 14, with a length corresponding to the outer and inner circumferential lengths of the wound core, excluding the upper silicate portion.

z6Bを配置する。Place z6B.

次いで、第4図で示すようにプレスの曲げ加工によシ積
層ブロック1411.〜z4c群および補強板16A、
16Bを口形状に形成する。口形状に形成された積層ブ
ロック群の中央部は巻鉄心の下けい鉄部となシ、両側の
起立部は各々脚部および上けい鉄部の半分を形成する。
Next, as shown in FIG. 4, the laminated block 1411. ~z4c group and reinforcing plate 16A,
16B is formed into a mouth shape. The central part of the laminated block group formed in the shape of a mouth forms the lower silicate part of the wound core, and the raised parts on both sides form the legs and half of the upper silicate part, respectively.

この場合、積層ブロックz4A 5z40群における巻
鉄心の下けい鉄部と両脚部とが交叉するコーナ部となる
各部分の各積層ブロック14A〜14Cの間には、磁性
片15が介在して挾持される。なお補強板16に、16
Bは巻鉄心の下けい鉄部および脚部の外周部および内周
部に位置する。
In this case, a magnetic piece 15 is interposed and held between each of the laminated blocks 14A to 14C in each corner portion where the lower sintered iron part and both legs of the wound core intersect in the laminated blocks z4A 5z40 group. Ru. In addition, on the reinforcing plate 16, 16
B is located at the outer periphery and inner periphery of the lower core and leg portions of the wound core.

次いで、第4図で示すように口形状をなす積層ブロック
14に一14Cの両側起立部における脚部の部分に巻線
17を各々嵌合する。
Next, as shown in FIG. 4, the windings 17 are respectively fitted into the leg portions of the upright portions on both sides of the mouth-shaped laminated block 14.

次いで、第1図で示すように積層ブロック14に〜14
C群の両側起立部の巻線17から上方に突出した両端部
を、プレス曲げ加工によ)P′3側に折シ曲げ、各積層
ブロック14A〜14Cの両端面を突き合せて接合し、
巻鉄心の上けい鉄部を形成する。この場合、プレス曲げ
加工の前段階で積層ブロック14八〜14C群の両端部
における巻鉄心の上けい鉄部と両側脚部とが交叉する各
コーナ部となる部分の各積層ブロック14に一14Cの
間に1前述と同様な    ′磁性片15を配置し、こ
の状態でat層ブロックJ4A〜14C群の両端部に曲
げ加工を行なう。
Next, as shown in FIG.
Both end portions of the windings 17 of the standing portions on both sides of group C are bent toward the P′3 side by press bending, and both end surfaces of each laminated block 14A to 14C are butted and joined.
Forms the upper silicate part of the wound core. In this case, in the pre-press bending process, one 14C is applied to each of the laminated blocks 14 at the corner portions where the upper silicate iron part and both side legs of the wound core intersect at both ends of the laminated blocks 148 to 14C. A magnetic piece 15 similar to that described above is placed between them, and in this state, both ends of the at layer blocks J4A to J14C are bent.

これによシ巻鉄心の上けい鉄部と脚部とが交叉する各コ
ーナ部の各積層ブロック141〜14Cの間に磁性片1
5を介在挾持する。なお、巻鉄心の上けい鉄部の内周側
には補強板I6cを配置する。
As a result, a magnetic piece 1 is placed between each laminated block 141 to 14C at each corner portion where the upper silicate iron portion and the leg portion of the wound core intersect.
5 is interposed. Note that a reinforcing plate I6c is arranged on the inner peripheral side of the upper silicate portion of the wound core.

このようにして巻鉄心18を成形する。In this way, the wound core 18 is formed.

次いで、巻鉄心に対して高周波励磁によシ焼鈍を施す。Next, the wound core is annealed by high frequency excitation.

第5図はこの焼鈍を行なうための電気回路を示し、図C
F)19/d巻鉄心18のけい鉄部に仮巻して励磁巻線
、20は高周波交流電源、2ノiSt直流電源、22i
lt切換スイツチ、23は電圧調整器である。まず励磁
巻線19を切換ヌイソチ22によシ又流電源20に接続
して高周波交流電流を流し巻鉄心18を励磁する。この
励磁に工9巻鉄心18にうず電流が生じ、このうず電流
の発生に伴う損失によシ自己発熱して温度上昇する。巻
鉄心18の温度が焼鈍温度(400″C)まで上昇した
時点で、電圧調整器23により高周波交流電流の電圧を
調整して焼鈍温度を一定時間保持する。その後に切換ヌ
イツチ22Vcよシ励磁巻H19を交流電源20から切
離して直流電源21に接続して直流電流を流す。これK
よシ磁場を形成しながら巻鉄心1st−冷却する。そし
てこの焼鈍によシ巻鉄心18を構成する非晶質磁性合金
薄帯18の歪が除去される。
Figure 5 shows the electrical circuit for performing this annealing, and Figure C
F) Excitation winding temporarily wound on the silicate iron part of the 19/d winding iron core 18, 20 is a high frequency AC power supply, 2 NoiSt DC power supply, 22i
lt changeover switch 23 is a voltage regulator. First, the excitation winding 19 is connected to the alternating current power supply 20 through the switching coil 22, and a high frequency alternating current is applied to the coil core 18 to excite the wound core 18. This excitation generates an eddy current in the 9-turn iron core 18, and the loss associated with the generation of this eddy current causes self-heating and increases the temperature. When the temperature of the wound core 18 rises to the annealing temperature (400"C), the voltage of the high-frequency alternating current is adjusted by the voltage regulator 23 to maintain the annealing temperature for a certain period of time. After that, the switching switch 22Vc switches the excitation winding. H19 is disconnected from the AC power supply 20 and connected to the DC power supply 21 to flow a DC current.
The wound core is first cooled while forming a strong magnetic field. Through this annealing, the strain in the amorphous magnetic alloy ribbon 18 constituting the hem-wound core 18 is removed.

なお、磁性片15は巻鉄心8に設けたま\とすることが
好ましい。
Note that it is preferable that the magnetic piece 15 be provided on the wound core 8.

しかしてこの製造方法によれば、巻鉄心18の谷コーナ
部の積層ブロック14A〜14Cの間に磁性片15f:
挿入しているので、高周波励磁によシ巻鉄心zs’51
焼鈍する場合に、巻鉄心18のコーナ部の発生損失を低
減させることができる。すなわち、積層ブロック141
〜14Cの間に磁性片15t−介在することKよシ巻鉄
心I8のコーナ部の断面積が増大し、この断面積の増大
に伴いコーチ部の磁束密度Bmが減少する。非晶質磁性
合金薄帯11に生ずるうず電流積は磁束密度Bmの2乗
に比例し、ヒステリシス損は磁束密度Bmに比例して各
々変化するので、磁束密度の減少によりコーナ部のうず
電流損およびヒステリシス損すなわち発生損失が小さく
なシ、コーナ部の温度上昇の度合が低下する。従って、
巻鉄心18の各部分の温度差が均一になり、巻鉄心18
全体を非晶質磁性合金薄帯の適正焼鈍温度範囲に入れて
均一な温度分布で焼鈍を行ない、巻鉄心18を形成する
非晶質磁性台金薄帯1ノの優れた磁気特性を回復できる
However, according to the manufacturing method of the lever, the magnetic pieces 15f:
Since it is inserted, the winding iron core ZS'51 due to high frequency excitation
When annealing, the loss generated at the corner portions of the wound core 18 can be reduced. That is, the laminated block 141
By interposing the magnetic piece 15t between K and 14C, the cross-sectional area of the corner portion of the K-wound iron core I8 increases, and as the cross-sectional area increases, the magnetic flux density Bm of the coach portion decreases. The eddy current product generated in the amorphous magnetic alloy ribbon 11 is proportional to the square of the magnetic flux density Bm, and the hysteresis loss changes in proportion to the magnetic flux density Bm. In addition, the hysteresis loss, that is, the generated loss is small, and the degree of temperature rise at the corner is reduced. Therefore,
The temperature difference in each part of the wound iron core 18 becomes uniform, and the wound iron core 18
The excellent magnetic properties of the amorphous magnetic base metal ribbon 1 forming the wound core 18 can be restored by annealing the entire amorphous magnetic alloy ribbon within the appropriate annealing temperature range with uniform temperature distribution. .

第7図は、本発明によシ製造した第1図で示す巻鉄心に
対して高周波励磁によシ焼鈍を行なった場合における鉄
心温度上昇と励磁時間との関係を示す線図である。この
線図によれば、巻鉄心のコーナ部り点けい鉄部E点およ
び脚部E点の温度上昇値の差が非常に小さく、巻鉄心全
体が適正焼鈍温度範囲で均一に温度上昇することが判る
FIG. 7 is a diagram showing the relationship between core temperature rise and excitation time when the wound core shown in FIG. 1 manufactured according to the present invention is annealed by high-frequency excitation. According to this diagram, the difference in the temperature rise values between point E at the corner of the core and point E at the leg is very small, indicating that the temperature of the entire core increases uniformly within the appropriate annealing temperature range. I understand.

また巻鉄心の最内周側に位置する積層ブロックのけい鉄
部は、その位置の関係から他の積層ブロックのけい鉄部
に比して曲率半径が小さいので、非晶質磁性合金薄帯1
1に加わる曲げ応力および面圧が大きく、焼鈍時に曲げ
応力によるヒステリシス損および面圧によるうず電流損
が増大して温度上昇が局部的に高くなる。そこで、第1
図で示す実施例のように巻鉄心内周側に位置する積層ブ
ロック14Cのけい鉄部を円弧状に曲げて曲率半径を大
きくすると、前記の問題を解決して、積層ブロックJ(
Cの局部的な温度上昇を防止することができる。
In addition, the silicate part of the laminated block located on the innermost side of the wound core has a smaller radius of curvature than the silicate part of other laminated blocks due to its position.
The bending stress and surface pressure applied to No. 1 are large, and during annealing, hysteresis loss due to bending stress and eddy current loss due to surface pressure increase, resulting in a locally high temperature rise. Therefore, the first
If the silicate part of the laminated block 14C located on the inner peripheral side of the wound core is bent into an arc shape to increase the radius of curvature as in the embodiment shown in the figure, the above problem can be solved and the laminated block J (
It is possible to prevent a local temperature rise of C.

第8図は他の実施例における巻鉄心を示している。この
実施例では巻鉄心x8の各コーナ部と、上けい鉄部およ
び下けい鉄部における各積層ブロック14A〜Z4Cの
積層間に各々磁性片15を配置してい名。この実施例に
用いる磁性片15Fi、巻鉄心18のけい鉄部とコーナ
部にわたって設けるので、画部分を一体にした断面形状
をなしている。
FIG. 8 shows a wound core in another embodiment. In this embodiment, magnetic pieces 15 are arranged at each corner of the wound core x8 and between the stacked layers of the laminated blocks 14A to Z4C in the upper silicate iron portion and the lower silicate iron portion. The magnetic piece 15Fi used in this embodiment is provided over the silicate iron part and the corner part of the wound core 18, so that it has a cross-sectional shape in which the image part is integrated.

なお、前述した実施例では積層ブロック14に、14B
の間と積層ブロック14B、14Cの間の両方に各々磁
性片15を配置しているが、これに限定されずにいずれ
か一方にのみ磁性片I5を配置するようにしても良い。
In addition, in the embodiment described above, the laminated block 14 has 14B.
Although the magnetic piece 15 is arranged both between the stacked blocks 14B and 14C, the magnetic piece I5 may be arranged only on either one of them.

さらに磁性片は非晶質磁性合金材料にょシ形成すること
に限定されずに、他の磁性材料で形成することもできる
Furthermore, the magnetic piece is not limited to being formed from an amorphous magnetic alloy material, but may also be formed from other magnetic materials.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の静止誘導電器の製造方法に
よれば、非晶質磁性合金薄帯からなる巻鉄心を均一な温
度分布で良好に焼鈍でき、磁気特性に優れた1ターンカ
ツト形巻鉄心を用いた静止誘導電器を得ることができる
As explained above, according to the method for manufacturing a stationary induction electric appliance of the present invention, a wound core made of an amorphous magnetic alloy ribbon can be well annealed with a uniform temperature distribution, and a one-turn cut type wound core with excellent magnetic properties can be obtained. It is possible to obtain a stationary induction electric device using .

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第6図は本発明の製造方法の一実施例を示
し、第1図は積層ブロックの両端部を折曲して巻鉄心を
成形する工程を示す説明図、第2図ないし第5図は他の
各工程を示す説明図、第6図(a) 、 (b)は磁性
片を示す説明図、第7図は巻鉄心に高周波励磁焼鈍f:
施した場合における鉄心温度上昇と励磁時間との関係を
示す線図、第8図は他の実施例において積層ブロック群
の両端部を折曲して巻鉄心を成形する工程を示す説明図
、第9図は従来の製造方法にょυ製造した静止誘導電器
を示す説明図、第10図は従来の製造方法によシ製造し
た巻鉄心に高周波励磁焼鈍を施した場合における鉄心焼
鈍温度と励磁時間の関係を示す線図である。 II・・・非晶質磁性合金M帯、13・・・巻回体、1
4AA−I4C・・・積層ブロック、15・・・磁性片
、17・・・巻線、18・・・巻鉄心。 出願人代理人 弁理士 鈴  江  武  彦第1図 第2図 113図 第6図 (a)         (b) 第7図 一励ガ#L時間 −htJ煤時間
1 to 6 show an embodiment of the manufacturing method of the present invention, FIG. 1 is an explanatory diagram showing the process of forming a wound core by bending both ends of a laminated block, and FIGS. Figure 5 is an explanatory diagram showing other steps, Figures 6 (a) and (b) are explanatory diagrams showing magnetic pieces, and Figure 7 is high-frequency excitation annealing f:
FIG. 8 is a diagram showing the relationship between the core temperature rise and the excitation time in the case where the core temperature is increased, and FIG. Figure 9 is an explanatory diagram showing a stationary induction electric appliance manufactured by the conventional manufacturing method, and Figure 10 shows the core annealing temperature and excitation time when high-frequency excitation annealing is applied to the wound core manufactured by the conventional manufacturing method. It is a line diagram showing a relationship. II...Amorphous magnetic alloy M band, 13...Wound body, 1
4AA-I4C... Laminated block, 15... Magnetic piece, 17... Winding wire, 18... Winding core. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 113 Figure 6 (a) (b) Figure 7 Ichigo #L time - htJ soot time

Claims (1)

【特許請求の範囲】[Claims] 巻鉄心の1ターン分の長さをもつ多数の非晶質磁性合金
薄帯を積層してなる複数の積層ブロックを形成する工程
と、これら複数の積層ブロックを積層するとともに、少
なくとも巻鉄心の一方のけい鉄部と脚部とが交叉するコ
ーナ部に相当する部分の前記積層ブロックの間に磁性片
を配置して積層ブロック群を■形状に形成する工程と、
■形状をなす前記積層ブロック群の前記巻鉄心の脚部に
相当する部分に巻線を組込む工程と、■形状をなす前記
積層ブロック群の両端部における少なくとも前記巻鉄心
の他方のけい鉄と脚部とが交叉するコーナ部に相当する
部分の前記積層ブロックの間に磁性片を配置して前記積
層ブロック群の両端部を内側に折曲して突合せ巻鉄心を
成形する工程と、高周波励磁により前記巻鉄心を焼鈍す
る工程とを具備することを特徴とする静止誘導電器の製
造方法。
A step of forming a plurality of laminated blocks formed by laminating a large number of amorphous magnetic alloy ribbons each having a length equivalent to one turn of the wound core, and laminating these plurality of laminated blocks, and at least one side of the wound core. arranging a magnetic piece between the laminated blocks in a portion corresponding to a corner where the silicate iron part and the leg intersect, forming a group of laminated blocks in a shape;
(1) incorporating a winding wire into a portion corresponding to the leg of the wound core of the laminated block group forming the shape; a step of forming a butt-wound core by arranging a magnetic piece between the laminated blocks at a portion corresponding to a corner portion where the laminated blocks intersect and bending both ends of the laminated block group inward; A method for manufacturing a stationary induction electric appliance, comprising the step of annealing the wound iron core.
JP60019405A 1985-02-04 1985-02-04 Manufacture of stationary induction electric apparatus Pending JPS61179518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60019405A JPS61179518A (en) 1985-02-04 1985-02-04 Manufacture of stationary induction electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60019405A JPS61179518A (en) 1985-02-04 1985-02-04 Manufacture of stationary induction electric apparatus

Publications (1)

Publication Number Publication Date
JPS61179518A true JPS61179518A (en) 1986-08-12

Family

ID=11998348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60019405A Pending JPS61179518A (en) 1985-02-04 1985-02-04 Manufacture of stationary induction electric apparatus

Country Status (1)

Country Link
JP (1) JPS61179518A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6675463B2 (en) 1997-09-12 2004-01-13 General Electric Company Methods for forming torodial windings for current sensors
JP2018160502A (en) * 2017-03-22 2018-10-11 東芝産業機器システム株式会社 Method of manufacturing wound core

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6675463B2 (en) 1997-09-12 2004-01-13 General Electric Company Methods for forming torodial windings for current sensors
JP2018160502A (en) * 2017-03-22 2018-10-11 東芝産業機器システム株式会社 Method of manufacturing wound core

Similar Documents

Publication Publication Date Title
KR101197234B1 (en) Amorphous Metal Core, Inductive Device Using the Same, and Manufacturing Method thereof
JP2010258477A (en) Bulk amorphous metal inductive device
WO2019168158A1 (en) Magnetic core and method for manufacturing same, and coil component
US2613430A (en) Method of making transformer cores
US2614158A (en) Magnetic core
US7471183B2 (en) Transformer
JP4895606B2 (en) Transformer
KR102109279B1 (en) A manufacturing method of stacked core for transformer with excellent no-load loss
US2400994A (en) Transformer core
US2558110A (en) Three-phase transformer core
JPS61179518A (en) Manufacture of stationary induction electric apparatus
JPS61179517A (en) Manufacture of stationary induction electric apparatus
CN215183435U (en) Three-phase three-column planar iron core and transformer
US2594002A (en) Three-phase core
CN115497717A (en) Three-phase three-column planar iron core, manufacturing method thereof and transformer
US2408212A (en) Electrical induction apparatus
JPS61179516A (en) Manufacture of stationary induction electric apparatus
CN115497735A (en) Method for manufacturing transformer iron core
JP2021141218A (en) Amorphous wound iron core for static induction electric device, and static induction electric device
JPS59218714A (en) Electromagnetic apparatus for high frequency power circuit
JPS6140017A (en) Manufacture of stationary induction electric apparatus
JP2021005645A (en) Laminated iron core and manufacturing method thereof, and electrical device using laminated iron core
KR102359769B1 (en) Wound core with a low no-load losses, wound core transformer and method for manufacturing the same
USRE23987E (en) Itmlh-mline
JPS5939012A (en) Core of stationary electric induction apparatus