JPS61179514A - Single-phase on-load tap changing transformer - Google Patents

Single-phase on-load tap changing transformer

Info

Publication number
JPS61179514A
JPS61179514A JP17289984A JP17289984A JPS61179514A JP S61179514 A JPS61179514 A JP S61179514A JP 17289984 A JP17289984 A JP 17289984A JP 17289984 A JP17289984 A JP 17289984A JP S61179514 A JPS61179514 A JP S61179514A
Authority
JP
Japan
Prior art keywords
winding
primary
windings
tap
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17289984A
Other languages
Japanese (ja)
Other versions
JPH0260045B2 (en
Inventor
Yoshitake Kashima
鹿島 芳丈
Shigeo Shirato
白土 茂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17289984A priority Critical patent/JPS61179514A/en
Publication of JPS61179514A publication Critical patent/JPS61179514A/en
Publication of JPH0260045B2 publication Critical patent/JPH0260045B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings
    • H01F29/04Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings having provision for tap-changing without interrupting the load current

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To miniaturize a large capacity transformer having a large percent impedance between windings, by using a single-phase and five-leg core for constructing a single-phase on-load tap changing transformer. CONSTITUTION:A single-phase and five-leg core having three principal legs C1, C2 and C3 and two side legs is employed for constructing a transformer. Secondary windings L1, L2 and L3 are separately mounted on the principal legs C1, C2 and C3, respectively, and are connected in parallel. High-tension primary windings H1, H2 and H3 are also mounted, respectively, and two of the primary windings H1 and H2 present close to the primary terminal U on the line side are connected to each other in parallel while these are connected to the other primary winding H3 in series. Primary tap windings Tw1 and Tw2 associated with the primary windings H3 on the neutral point side are disposed in the same outermost side of the principal leg C3 such they are changed over by tap switches TC1 and TC2. Ternary windings T1 and T2 are disposed on the innermost side of the principal legs C1 and C2 on the line side, respectively, and these are connected to each other in parallel to be led to ternary terminals (a) and (b).

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は単相負荷時タップ切換変圧器、特に鉄心の主脚
に1次巻線、1次タップ巻線、二次巻線および3次巻線
を配置して構成する単相負荷時タップ切換変圧器に関す
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a single-phase load tap-changing transformer, in particular, a primary winding, a primary tap winding, a secondary winding, and a tertiary winding in the main leg of an iron core. The present invention relates to a single-phase on-load tap change transformer configured by arranging wires.

〔発明の背景〕[Background of the invention]

超々高圧の送電系統に使用する変圧器は、ますます大容
量大形化しており、一般には運輸送出の問題から単相変
圧器の複数台を組合せて3相構成するようになっている
。これら送電系統の単相変圧器は、電圧調整用のタップ
巻線を有しており、負荷時タップ切換器にてタップ切換
を行い、所定の電圧に調整している。
Transformers used in ultra-high voltage power transmission systems are becoming larger and larger in capacity, and in general, multiple single-phase transformers are combined to form a three-phase configuration due to transportation issues. These single-phase transformers in power transmission systems have tap windings for voltage adjustment, and are adjusted to a predetermined voltage by switching the taps using a load tap changer.

このような変圧器では、例えば変電所内の電源用の3次
巻線を備えるときには、3次回路の遮断器の遮断容量を
小さくしたり、短絡時の機械力を考えねばならず、系統
運用を良好にするため、変圧器の3次巻線と1次巻線間
或いは2次巻線間の(特に3次と2次巻線間)の係イン
ピーダンスを大きくする必要が生じるっこれは、変圧器
が大容量化するにしたがい、一定値以上に保たねばなら
ないそのオームインピーダンスが小さくなり、3次側の
短絡容量を制限するのが難しくなるためである。
For example, when such a transformer is equipped with a tertiary winding for the power supply in a substation, it is necessary to reduce the breaking capacity of the tertiary circuit breaker, and to consider the mechanical force in the event of a short circuit, making it difficult to operate the system. In order to improve the quality of the transformer, it is necessary to increase the relative impedance between the tertiary winding and the primary winding or between the secondary winding (especially between the tertiary and secondary winding). This is because as the capacitance of a device increases, its ohmic impedance, which must be kept above a certain value, decreases, making it difficult to limit the short-circuit capacity on the tertiary side.

通常、内鉄形の変圧器においては、3次巻線と他の各巻
線間のチインピーダンスを犬きくする手段としては、次
のような方式がある。すなわち、鉄心の主脚に近い内側
から順に、3次、2次、1次巻線を配置するときに、3
次巻線と2次巻線の間の絶縁距離を調節する方式、また
は鉄心の主脚に内側から2次、1次、3次巻線の順に配
置する方式、或いはりアクドルを別に設置する方式があ
る。ところが、第1の方式では各巻線特に1次および2
次巻線の直径が大きくなるので、変圧器を経済的に製作
できず、しかも輸送上問題を生ずるばか9か、寸法が制
約されるためチインピーダンスを極端に大きくで1!な
い。また@2の方式では巻線の全体寸法は小さくなるが
、1次巻線が超々高圧であるときには、1次と3次巻線
間の絶縁寸法を大きくせねばならず、しかも高圧端子へ
のリード線の引出しと絶縁が難しくなる。更に第3の方
式では、別個のりアクドルを必要とするので、製作しに
くく不経済である。
Generally, in a core type transformer, the following methods are available to increase the impedance between the tertiary winding and each other winding. In other words, when arranging the tertiary, secondary, and primary windings in order from the inside of the core near the main leg,
A method of adjusting the insulation distance between the secondary winding and the secondary winding, a method of arranging the secondary, primary, and tertiary windings from the inside in the order of the main leg of the iron core, or a method of installing an axle separately. There is. However, in the first method, each winding, especially the primary and secondary
Either the diameter of the next winding becomes large, making it impossible to manufacture the transformer economically and causing transportation problems, or the impedance becomes extremely large due to size constraints. do not have. In addition, in the @2 method, the overall dimensions of the winding are small, but when the primary winding is at ultra-high voltage, the insulation dimension between the primary and tertiary windings must be increased, and moreover, the insulation dimension between the primary and tertiary windings must be increased. It becomes difficult to draw out the lead wires and insulate them. Furthermore, the third method requires a separate glue handle, which is difficult and uneconomical to manufacture.

このため、チインピーダンスを大きくする必要のある巻
線の単相変圧器では、種々の問題のある上記の各方式に
代えて、第1図または第2図に示すように構成すること
が提案されている。
For this reason, for single-phase transformers with windings that require a large chain impedance, it has been proposed to configure them as shown in Figures 1 and 2 instead of the above-mentioned methods, which have various problems. ing.

すなわち、第1図の単相負荷時タップ切換変圧器では、
2つの主脚C+ 、C2と2つの側脚S1゜S2を有す
る単相4脚構成の鉄心10を用い、この各主脚at 、
 C2vCそれぞれ内側に2次巻線L+ 、Lxを配置
し、並列接続して線路側および中性点側の2次端子u、
oに至らせ、これらの外側に1次巻線H+ 、Hzを配
置して両者間は直列接続し、線路側および中性点側の1
天端子U、0に至るようになっている。この場合、3次
巻線Tは中性点側の1次巻線H2の位置する主脚Cm側
のみに配置して3送端子a、bを引出し、これによって
他巻線との間のチインピーダンスを大きくできるように
したもので、また中性点側の1次巻線H!に直列に接続
する1次タップ巻線Two。
That is, in the single-phase on-load tap-changing transformer shown in Fig. 1,
Using a single-phase four-leg configuration iron core 10 having two main legs C+ and C2 and two side legs S1 and S2, each of the main legs at,
Secondary windings L+ and Lx are placed inside each C2vC and connected in parallel to form secondary terminals u, on the line side and neutral point side.
o, the primary windings H+ and Hz are arranged outside these, and they are connected in series.
It is designed to reach the top terminal U, 0. In this case, the tertiary winding T is placed only on the main leg Cm side where the primary winding H2 on the neutral point side is located, and the 3 sending terminals a and b are drawn out, thereby creating a gap between the windings and other windings. The impedance can be increased, and the primary winding on the neutral point side H! The primary tap winding Two is connected in series with the primary tap winding Two.

Twoは、主脚Czに設けると巻線全体の直径が犬とな
り、輸送限界から2次巻線L2と3次巻線T間の寸法を
大きくできず、チインピーダンスを所定値にできぬのを
防ぐため、3次巻線Tと並列接続する励磁巻線Eと共に
一方の側脚S2に配置してタップ切換器TC+ 、TC
xによって切換えるように構成している。(特開昭53
−106422号公報参照) この第1図の方式のものでは、チインピーダンスを大き
くするために1次タップ巻線Twt+Tw2 と励磁巻
線Eとを、側脚S2部分の断面が矩形であるのを絶縁物
や非磁性体で円形に成形した上で配置せねばならず、製
作を容易に行えないばかシか全体寸法が大きくなる不都
合があり、更に重要なことには、1次タップ巻線TwI
、Twzに電流が流れると、その分だけ各主脚C1,C
m側の容量が増減することになり、タップ切換器TCz
 、TCsにて切換えるタップによって、1次、2次巻
線間のチインピーダンスが大幅に変化してしまい、変圧
器の利用率が悪くなる欠点がある。
When Two is installed on the main landing gear Cz, the diameter of the entire winding becomes a dog, and due to transportation limitations, the dimension between the secondary winding L2 and the tertiary winding T cannot be increased, and the chain impedance cannot be set to the specified value. In order to prevent this, tap changers TC+ and TC are placed on one side leg S2 together with the excitation winding E connected in parallel with the tertiary winding T.
It is configured to be switched by x. (Unexamined Japanese Patent Publication No. 53
In the method shown in Fig. 1, the primary tap winding Twt+Tw2 and the excitation winding E are insulated to increase the chain impedance. It is necessary to arrange the coils after forming them into a circular shape using a material or non-magnetic material, which is not easy to manufacture and increases the overall size.More importantly, the primary tap winding TwI
, Twz, each main landing gear C1, C
The capacity on the m side will increase or decrease, and the tap changer TCz
, TCs, the chain impedance between the primary and secondary windings changes significantly, resulting in a disadvantage that the utilization rate of the transformer deteriorates.

上記の欠点をさけるため、第2図に示すものでは第1図
と同様に鉄心10の各主脚C+ 、Czに、1次巻線H
t 、Hzおよび2次巻線り亀、Llを配置して所定の
結線を行わせ、中性点側の1次巻線H3の位置する主脚
C2に、1次巻線に連らなり、タップ切換器TCで切換
える1次タップ巻線Twを配置すると共に、この最外側
に3次巻線Tを配置せしめ、これによって2次および3
次巻線間の寸法を大きくしてチインピーダンスを増す方
式である。(特開昭51−4528号公報参照)この第
2図の方式では、中性点側の1次巻線H1の端部に高い
電圧が出ることになるし、1次タップ巻線Twが3次巻
線Tの内側となるのでタップリード線の引出しが困難と
なるなどの欠点を有する。また、この場合には変圧器が
大容量であると、使用する負荷時タップ切換器の容量を
考えて回路を2並列とし、電流を分割する必要があるが
、この分割は上下を並列に使用する線路側の1次巻線H
1の上下端をそのまま引廻し、2本の並列導体で作った
中性点側の1次巻線H2と別々に接続せねばならず、1
次タップ巻線Twも並列回路とするため、リード線の本
数も増大する欠点がある。
In order to avoid the above-mentioned drawbacks, in the one shown in FIG.
t, Hz and the secondary winding wire, Ll is arranged to make a predetermined connection, and connected to the primary winding on the main landing gear C2 where the primary winding H3 on the neutral point side is located, The primary tap winding Tw, which is switched by the tap changer TC, is disposed, and the tertiary winding T is disposed on the outermost side of the tap winding Tw.
This method increases the impedance by increasing the size between the next windings. (Refer to Japanese Unexamined Patent Publication No. 51-4528.) In the method shown in Fig. 2, a high voltage will be generated at the end of the primary winding H1 on the neutral point side, and the primary tap winding Tw will be 3 Since it is located inside the next winding T, it has drawbacks such as difficulty in drawing out the tap lead wire. In addition, in this case, if the transformer has a large capacity, it is necessary to divide the current by connecting two circuits in parallel to take into consideration the capacity of the load tap changer used, but this division uses the upper and lower ends in parallel. The primary winding H on the line side
The upper and lower ends of 1 must be routed as they are and connected separately to the primary winding H2 on the neutral point side made of two parallel conductors.
Since the next tap winding Tw is also a parallel circuit, there is a drawback that the number of lead wires also increases.

〔発明の目的〕[Purpose of the invention]

本発明の単相負荷時タップ切換変圧器の目的は、各巻線
間のチインピーダンスの大きな高電圧大容量変圧器を小
形化して容易に裏作できるようにすると共に、タップ切
換によってもチインピーダンスの変動を少くすることに
ある。
The purpose of the single-phase on-load tap-changing transformer of the present invention is to miniaturize a high-voltage, large-capacity transformer with a large chain impedance between each winding so that it can be easily manufactured, and also to make it possible to easily manufacture a transformer with large chain impedance between each winding. The goal is to reduce

〔発明の概要〕[Summary of the invention]

本発明では3つの主脚と2つの側脚を有する単相5脚構
成の鉄心を用い、この各主脚に1次、2次、3次巻線更
には1次タップ巻線を配置する際、3次巻線を線路側と
なる1次巻線が位置する主脚に配置し、1次タップ巻線
を中性点側の1次巻線が位置する主脚に配置して構成す
ることを特徴としている。
In the present invention, an iron core with a single-phase five-leg configuration having three main legs and two side legs is used, and when arranging primary, secondary, and tertiary windings as well as primary tap windings on each main leg, , the tertiary winding is placed on the main landing gear where the primary winding on the track side is located, and the primary tap winding is placed on the main landing gear where the primary winding on the neutral point side is located. It is characterized by

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を従来と同一部分を同符号とした第3図お
よび第4図に示す各実施例を用いて説明する、 本発明の単相負荷時タップ切換変圧器の基本構成を示す
第3図は、2つの主脚C1、C2、Csと2つの側脚(
図示せず)を有する単相5脚構成の鉄心を用い、主脚C
+ 、C2、Csにそれぞれ2次巻線L+ 、Lx 、
Lsを別々に配置してこれらを並列接続し、また高圧の
1次巻線H1、Hz 。
Hereinafter, the present invention will be explained using the embodiments shown in FIGS. 3 and 4, in which the same parts as the conventional ones are given the same reference numerals. The figure shows two main landing gears C1, C2, Cs and two side landing gears (
Main leg C
+, C2, and Cs respectively have secondary windings L+, Lx,
Ls are placed separately and connected in parallel, and a high voltage primary winding H1, Hz.

H3もそれぞれ配置して、このうちの線路側の1次端子
Uに近い2つの1次巻線Hs 、Hz間を並列接続する
と共にこれを残りの1次巻線Hsと直列に接続して構成
するものである。中性点側の1次巻線H1に連らなる1
次タップ巻線Tv++TW2は同じ主脚C3の最外側に
配置してタップ切換器TC1,TCzにて切換えるよう
にしている。線路側の各主脚C+ 、Cmには、それぞ
れ3次巻線T+ 、T2が最内側に配置し、これら間は
並列接続して3次端子a、bに至るようにしている。
H3 is also arranged, and the two primary windings Hs and Hz close to the primary terminal U on the line side are connected in parallel, and these are connected in series with the remaining primary winding Hs. It is something to do. 1 connected to the primary winding H1 on the neutral point side
The next tap winding Tv++TW2 is arranged on the outermost side of the same main landing gear C3 and is switched by tap changers TC1 and TCz. In each of the main legs C+ and Cm on the track side, tertiary windings T+ and T2 are arranged on the innermost side, respectively, and these are connected in parallel to reach tertiary terminals a and b.

このようにすれば、単相5脚構成の鉄心の各主脚C+ 
、C2、Csの巻線数をいずれも3巻線とすることがで
きるので、各主脚CI、C鵞、Csへの巻線配分を適正
化してほぼ等しくすることもでき、製作を容易にして小
形化することができる。
In this way, each main leg C+ of the iron core in a single-phase five-leg configuration
, C2, and Cs can each have three windings, so the winding distribution to each main landing gear CI, C2, and Cs can be optimized and made almost equal, making manufacturing easier. It can be made smaller.

また、主脚C1,C2においては2次巻線L+ と3次
巻線T間の寸法を十分に大きくすることができるので、
これら間のチインピーダンスも十分に犬となる。この場
合、1次・2次巻線間のチインピーダンスは、段絶縁の
中性点側である1次巻線Hsと2次巻線L3間の寸法を
大きくすることで任意に調整することができ、線路側で
ある1次巻線Hr + Hzと2次巻線L2、間は、絶
縁上きまる最小寸法でよいから、2次巻線り亀、Lsと
3次巻線T間の寸法が十分にとれることになる。更に、
本方式で線路側の1次巻線H1、Hz と2次巻線Ls
間の容量比を変え、例えば線路側の容量を中性点側の容
量より小さくすれば、線路側の巻線HI 、HzとL+
 、L2 が小となるから、これによって2次巻線LI
と3次巻線T間の寸法を犬としてチインピーダンスを調
節することも可能であるし、3次巻線Tを最外側に配置
して2次巻線L+  との間を大きくして調節すること
もできる。
In addition, in the main landing gear C1 and C2, the dimension between the secondary winding L+ and the tertiary winding T can be made sufficiently large.
The chi impedance between these is also sufficiently high. In this case, the impedance between the primary and secondary windings can be arbitrarily adjusted by increasing the dimension between the primary winding Hs, which is the neutral point side of the stage insulation, and the secondary winding L3. The distance between the primary winding Hr + Hz and the secondary winding L2 on the line side can be the minimum dimension determined for insulation reasons, so the dimensions between the secondary winding Ls and the tertiary winding T are You will have enough. Furthermore,
In this method, the primary winding H1, Hz on the line side and the secondary winding Ls
If you change the capacitance ratio between them, for example, make the capacity on the line side smaller than the capacity on the neutral side, then the line side windings HI, Hz and L+
, L2 becomes small, so that the secondary winding LI
It is also possible to adjust the impedance by adjusting the dimension between L+ and the tertiary winding T, or by placing the tertiary winding T on the outermost side and increasing the distance between it and the secondary winding L+. You can also do that.

一方、本方式の構造においては、1次タップ巻線Tw 
r 、 Tw 2が、中性点側の1次巻線Hs と2次
巻線Ls 、に隣接して配置されているので、タップ切
換器TC1,TC冨によるタップ切換でも、1次・2次
巻線間のチインピーダンスも殆んど変化しないし、また
2次・3次巻線間や1次・3次巻線間のチインピーダン
スも変化することがなくなる。しかも、このように構成
した変圧器は、1次側の容量を大きくするのに好適であ
り、また3次巻線Ts、Ttの調節も容易なので3次容
量を大きくするのに最適である。
On the other hand, in the structure of this system, the primary tap winding Tw
Since r and Tw2 are arranged adjacent to the primary winding Hs and the secondary winding Ls on the neutral point side, even when the taps are changed by the tap changers TC1 and TC, the primary and secondary windings are The chain impedance between the windings hardly changes, and the chain impedance between the secondary and tertiary windings and between the primary and tertiary windings also does not change. Furthermore, the transformer configured in this manner is suitable for increasing the primary side capacity, and since the tertiary windings Ts and Tt can be easily adjusted, it is most suitable for increasing the tertiary capacity.

本発明の他の実施例である第4図のものは、第q ra
 J−rs場r邑姻ζ湘憎虐小辻、1ゝ、小リリハ±−
C+ 、C2、Csに各巻線を配置する構造であるが、
逆に中性点側となる2つの1次巻線H2゜H5を並列接
続して線路側の1つの1次巻線H1と直列接続したもの
である。この場合、3次巻線Tは1つの主脚CIの最内
側又は最外側に配置して使用され、他巻線との間のチイ
ンビーダンスを充分に大きくなるようにして使用される
。中性点側の主脚C2、C,の最外側には、それぞれ1
次タップ巻線Tw1 、Ta2およびTwo 、Ta4
が配置され、これら各脚の1次タップ巻線間をタップ切
換器TC+  、Te3 、TCs 、Te3 を介し
て並列に接続して使用する。このように、2つの主脚に
タップ巻線をそれぞれ配置して並列に使用し、3次巻線
は別の主脚に配置すれば前述の例と同じ効果を達成でき
ると共に、変圧器の電圧調整容量を著しく大きくするこ
とができるし、タップ選択器も切換容量の小さなものを
使用できる効果がある。
Another embodiment of the present invention, shown in FIG.
J-rs place r village marriage ζxiang hatred Kotsuji, 1ゝ, small rehearsal ±-
The structure is such that each winding is placed at C+, C2, and Cs,
Conversely, two primary windings H2 and H5 on the neutral point side are connected in parallel and connected in series with one primary winding H1 on the line side. In this case, the tertiary winding T is disposed at the innermost or outermost side of one main leg CI, and is used so that the chimney dance between it and other windings is sufficiently large. 1 on the outermost side of the main landing gear C2, C, on the neutral point side, respectively.
Next tap windings Tw1, Ta2 and Two, Ta4
are arranged, and the primary tap windings of these legs are connected in parallel via tap changers TC+, Te3, TCs, and Te3. In this way, by placing the tap windings on the two main landing gears and using them in parallel, and placing the tertiary winding on the other main landing gear, you can achieve the same effect as in the previous example, and also reduce the voltage of the transformer. The adjustment capacity can be significantly increased, and a tap selector with a small switching capacity can be used.

本発明の変圧器に用いる1次タップ巻線Tw I+・・
・・・・TW4は、第3図および第4図の各側において
は同一主脚の最外側に、2つを上下に向上させるもので
示しているが、この構成に限らず使用できるし、1次巻
線も上下並列構成に限らず使用できることは勿論である
Primary tap winding Tw I+ used in the transformer of the present invention
... TW4 is shown as having two vertically improved legs on the outermost side of the same main landing gear on each side in Figures 3 and 4, but it can be used not only in this configuration, Of course, the primary winding can also be used without being limited to the upper and lower parallel configuration.

本発明の如く単相5脚構成の鉄心を用いて単相負荷時タ
ップ切換変圧器を構成すれば、3次巻線と1次タップ巻
線がそれぞれ線路側と中性点側の各主脚に分けて配置さ
れるので、各主脚における巻線配分が良好となるし、側
脚に巻線を配置しないので、各巻線間のチインピーダン
スの大きなしかも大容量の変圧器を小形化して容易に製
作することができる。また、2つの主脚の1次巻線を並
列接続し、他の1次巻線と直列接続して使用し、2脚に
並置した3次巻線を並列に接続して使用したシ、又は2
脚の1次タップ巻線を並列接続して使用すれば、より大
容量の変圧器を構成できるし、3次容量の調節又は電圧
調整容量の調節が容易に行える。
If a single-phase load tap switching transformer is constructed using a single-phase five-leg iron core as in the present invention, the tertiary winding and the primary tap winding are connected to each main leg on the line side and the neutral point side, respectively. Since windings are arranged separately in each main leg, the winding distribution on each main leg is good, and since no windings are arranged on the side legs, it is easy to downsize and easily transform a large-capacity transformer with large impedance between each winding. can be produced. In addition, the primary windings of the two main legs are connected in parallel, and the other primary windings are connected in series, and the tertiary windings of the two legs are connected in parallel. 2
If the primary tap windings of the legs are connected in parallel and used, a transformer with a larger capacity can be constructed, and the tertiary capacitance or voltage adjustment capacitance can be easily adjusted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ従来の単相負荷時タップ
切換変圧器を示す巻線配置図、第3図および第4図はそ
れぞれ本発明の単相負荷時タップ切換変圧器の異なる例
を示す巻線配置図である。 C+ 、02 、Cs =主脚、H+ 、 Hi 、 
Hs ・”1次巻線、L+ + L2 r Ls ・−
2次巻線、T、Tt 。 Ta−3次巻線、Twl  、Ta2 、Tws 、T
a4・・・1次タップ巻線。 第 10 茗 2 B
1 and 2 are winding layout diagrams showing a conventional single-phase on-load tap-changing transformer, respectively, and FIGS. 3 and 4 show different examples of the single-phase on-load tap-changing transformer of the present invention, respectively. FIG. C+, 02, Cs = main landing gear, H+, Hi,
Hs ・"Primary winding, L+ + L2 r Ls ・-
Secondary winding, T, Tt. Ta-tertiary winding, Twl, Ta2, Tws, T
a4...Primary tap winding. 10th mackerel 2B

Claims (1)

【特許請求の範囲】 1、3つの主脚と2つの側脚を有する単相5脚構成の鉄
心と、前記鉄心の各主脚にそれぞれ配置して並列接続す
る2次巻線と、前記2次巻線の外側にそれぞれ配置する
と共にその2つを並列接続して残りの1つと直列接続す
る1次巻線と、前記1次巻線に連らなる1次タップ巻線
と、3次巻線とを備え、前記3次巻線は線路側となる1
次巻線が位置する鉄心の主脚に配置し、前記1次タップ
巻線は中性点側となる1次巻線が位置する鉄心の主脚に
配置して構成したことを特徴とする単相負荷時タップ切
換変圧器。 2、前記3次巻線は、鉄心の線路側の2つの主脚にそれ
ぞれ配置して並列接続したことを特徴とする特許請求の
範囲第1項記載の単相負荷時タップ切換変圧器。 3、前記1次タップ巻線は、鉄心の中性点側の2つの主
脚にそれぞれ配置して並列接続したことを特徴とする特
許請求の範囲第1項記載の単相負荷時タップ切換変圧器
[Scope of Claims] 1. An iron core having a single-phase five-leg configuration having three main legs and two side legs, a secondary winding arranged in each main leg of the iron core and connected in parallel, and A primary winding arranged outside the next winding, two of which are connected in parallel and the other one connected in series, a primary tap winding connected to the primary winding, and a tertiary winding. 1, the tertiary winding being on the line side.
A unit characterized in that the primary tap winding is arranged on the main leg of the iron core where the secondary winding is located, and the primary tap winding is arranged on the main leg of the iron core where the primary winding on the neutral point side is located. Phase load tap change transformer. 2. The single-phase on-load tap-change transformer according to claim 1, wherein the tertiary windings are respectively arranged on two main legs on the line side of the iron core and connected in parallel. 3. The single-phase load tap switching transformer according to claim 1, characterized in that the primary tap windings are arranged on the two main legs on the neutral point side of the iron core and connected in parallel. vessel.
JP17289984A 1984-08-20 1984-08-20 Single-phase on-load tap changing transformer Granted JPS61179514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17289984A JPS61179514A (en) 1984-08-20 1984-08-20 Single-phase on-load tap changing transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17289984A JPS61179514A (en) 1984-08-20 1984-08-20 Single-phase on-load tap changing transformer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14919978A Division JPS5575210A (en) 1978-12-01 1978-12-01 Tap-change transformer at the time of single-phase loading

Publications (2)

Publication Number Publication Date
JPS61179514A true JPS61179514A (en) 1986-08-12
JPH0260045B2 JPH0260045B2 (en) 1990-12-14

Family

ID=15950398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17289984A Granted JPS61179514A (en) 1984-08-20 1984-08-20 Single-phase on-load tap changing transformer

Country Status (1)

Country Link
JP (1) JPS61179514A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06314094A (en) * 1993-04-23 1994-11-08 Noise Toies Inc Electronic apparatus and memory cartridge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06314094A (en) * 1993-04-23 1994-11-08 Noise Toies Inc Electronic apparatus and memory cartridge

Also Published As

Publication number Publication date
JPH0260045B2 (en) 1990-12-14

Similar Documents

Publication Publication Date Title
US4547721A (en) Transformer structure
US9583252B2 (en) Transformer
JPS61179514A (en) Single-phase on-load tap changing transformer
JPS5923455B2 (en) 3 winding transformer
CN1238872C (en) Secondary side central-tapped Scott wiring transformer
EP0114648B1 (en) Onload tap-changing transformer
JPS5846047B2 (en) On-load tap switching autotransformer
JPH0260044B2 (en)
JPS6112363B2 (en)
CN219286184U (en) Transformer voltage regulating winding and transformer
US3611228A (en) Electrical transformer
JPS5821309A (en) On-load tap-changing transformer
CN216212794U (en) Transformer device
US20240170203A1 (en) Reducing parasitic capacitance in medium-voltage inductors
EP0117515B1 (en) Reactor having a plurality of coaxially disposed windings
JPH0212007B2 (en)
JPS612311A (en) High frequency transformer for welding
JPH0719707B2 (en) Split type three-phase transformer
KR20230174062A (en) Tap winding and transformer including the same
JPS6223442B2 (en)
JPH04263406A (en) Molded transformer winding
JPH0793214B2 (en) Single phase auto transformer
JPH0777173B2 (en) Transformer
JPS5834740Y2 (en) Three-phase on-load tap-changing transformer
JPS5915468Y2 (en) transformer tap winding