JPS61179208A - Polymerization of propylene - Google Patents

Polymerization of propylene

Info

Publication number
JPS61179208A
JPS61179208A JP20568284A JP20568284A JPS61179208A JP S61179208 A JPS61179208 A JP S61179208A JP 20568284 A JP20568284 A JP 20568284A JP 20568284 A JP20568284 A JP 20568284A JP S61179208 A JPS61179208 A JP S61179208A
Authority
JP
Japan
Prior art keywords
amount
catalyst
polypropylene
production
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20568284A
Other languages
Japanese (ja)
Other versions
JPH0550528B2 (en
Inventor
Tadashi Asanuma
正 浅沼
Ichiro Fujikage
一郎 藤隠
Shinryu Uchikawa
進隆 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP20568284A priority Critical patent/JPS61179208A/en
Publication of JPS61179208A publication Critical patent/JPS61179208A/en
Publication of JPH0550528B2 publication Critical patent/JPH0550528B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To make it possible to produce PP having a consistent quality at a constant production rate, by regulating the amount of addition of an organoaluminum compound according to a detected production rate of PP in polymerizing propylene by using a transition metal/organoaluminum compound catalyst. CONSTITUTION:In a process for polymerizing propylene by using a catalyst system comprising a transition metal catalyst and an organoaluminum compound (e.g., a catalyst system comprising a catalyst formed by allowing a magnesium halide to support a titanium halide and a dialkylaluminum halide/ trialkylaluminum halide) and detecting the production rate of PP based on the quantity of the heat of reaction, the production rate of PP is fixed by varying the amount of addition of the organoaluminum compound in the catalyst according to the detected production rate of PP. Thus, it is possible to produce PP of a consistent quality at a constant production rate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプロピレンの重合方法に関する。詳しくは一定
の生産量で一定の品質のポリプロピレンを生産する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for polymerizing propylene. More specifically, the present invention relates to a method for producing polypropylene of a constant quality with a constant production amount.

〔従来の技術〕[Conventional technology]

チーグラー暑ナツタ触媒を用いてプロピレンを重合して
ポリプロピレンを製造する方法は公知であり既に日量数
百トンスケールで工業的にポリプロピレンが生産されて
いる。工業的規模でのポリプロピレンの生産においては
品質が一定のポリプロピレンを一定の生産速度で製造す
ることが望まれる上に大型の反応機では重合熱の除去が
困難であることなどから、通常は2槽以上の重合槽を連
結した反応機を用いて連続的に生産される。
A method for producing polypropylene by polymerizing propylene using a Ziegler-Natsuta catalyst is well known, and polypropylene is already produced industrially on a scale of several hundred tons per day. In the production of polypropylene on an industrial scale, it is desirable to produce polypropylene of constant quality at a constant production rate, and it is difficult to remove the polymerization heat with a large reactor, so two tanks are usually used. It is produced continuously using a reactor in which the above polymerization tanks are connected.

ポリプロピレンの生産に用いるチーグラー・ナツタ触媒
としては多くの種類のものが公知であり実際の工業的な
ポリプロピレンの製造に際しても多くの種類のものが用
いられている。しかしながら触媒の性能はロットによっ
てかなり変動があるため単に一定量の触媒を反応機に装
入するだけでは、生産量が変動するため生産量が一定と
なるように触媒の装入量を変動することが行われる。
Many types of Ziegler-Natsuta catalysts are known for use in the production of polypropylene, and many types are also used in the actual industrial production of polypropylene. However, the performance of the catalyst varies considerably depending on the lot, so simply charging a fixed amount of catalyst into the reactor will cause the production volume to fluctuate. Therefore, it is necessary to vary the amount of catalyst charged to keep the production volume constant. will be held.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら」二記の方法では触媒当りの生産量が触媒
性能によって変動するため得られるポリプロピレン中に
残存する触媒残渣が変動し一定品質のものを得ることが
できず、さらには高価でしかも製造工程及び装入のため
に装置が比較的複雑な遷移金属触媒の使用量が変動する
という問題があった。
However, in the second method, the production amount per catalyst varies depending on the catalyst performance, so the catalyst residue remaining in the polypropylene obtained varies, making it impossible to obtain a constant quality product.Furthermore, it is expensive and requires a long manufacturing process. There was a problem in that the amount of transition metal catalyst used varied due to the relatively complicated charging equipment.

又、前述のように大型の反応機では、除熱に困難があり
重合槽を連結した多槽の反応系で重合を行う上に各種の
除熱能力は限度があるため各種の重合量をそれぞれにつ
いて制御しないと最低の除熱能力の重合槽によって全体
の反応系が定まってしまうという問題があった。
In addition, as mentioned above, it is difficult to remove heat in a large reactor, and the polymerization is performed in a multi-vessel reaction system in which polymerization tanks are connected, and the heat removal capacity of each type is limited, so the amount of polymerization of each type must be adjusted individually. If this is not controlled, there is a problem that the entire reaction system will be determined by the polymerization tank with the lowest heat removal capacity.

本発明の目的は一定の品質のポリプロピレンを一定の生
産量で製造する方法を提供することにある。
An object of the present invention is to provide a method for producing polypropylene of constant quality and with a constant production amount.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は上記問題を解決する方法について鋭意検討し
た結果、特定の方法でポリプロピレンの生産を制御する
ことで上記問題が解決できることを見い出し本発明を完
成した。
As a result of intensive studies on methods for solving the above problems, the inventors of the present invention discovered that the above problems could be solved by controlling the production of polypropylene using a specific method, and completed the present invention.

即ち本発明は遷移金属触媒と有機アルミニウムからなる
触媒を用いて発熱量によってポリプロピレンの生産量を
検知しながらプロピレンを重合する方法において、検知
されたポリプロピレンの生産量によって有機アルミニウ
ムの添加量を変化させて一定の生産量となるよう制御す
ることを特徴とするプロピレンの重合方法に関する。
That is, the present invention is a method of polymerizing propylene using a catalyst consisting of a transition metal catalyst and an organoaluminum while detecting the production amount of polypropylene based on the calorific value, in which the amount of the organoaluminum added is changed according to the detected production amount of polypropylene. The present invention relates to a method for polymerizing propylene, which is characterized by controlling the production amount to a constant value.

本発明を構成する上で重要なのは、実際の工業的規模で
の遷移金属触媒の製造においては、一定の定められた方
法で製造しても得られる遷移金属触媒の性能が一定では
なく、その上工業的規模のポリプロピレンの製造におい
ては、種々の定かでない要因により、同一の触媒を用い
ても生産量が変動するという現実に対し、有機アルミニ
ウム/遷移金属触媒の量比によって、遷移金属触媒当り
の活性を大幅に変動させうろこと、及び連続重合におい
てはそれらの量は各種の滞留量によって、表わすことが
できるという発見に基づくものである。又、有機アルミ
ニウム/遷移金属触媒の量比をかなり広い範囲にわたっ
て変えても、得られるポリプロピレンの物性に大きな影
響を与える立体規則性及び分子量分布の変化が無視し得
るものであることによる。
What is important in constituting the present invention is that in the production of transition metal catalysts on an actual industrial scale, the performance of the transition metal catalysts obtained is not constant even if produced by a certain prescribed method. In the production of polypropylene on an industrial scale, the production volume varies even when using the same catalyst due to various uncertain factors. It is based on the discovery that scales that vary greatly in activity and that in continuous polymerization their amounts can be expressed in terms of various retention volumes. Another reason is that even if the ratio of organoaluminium/transition metal catalyst is varied over a fairly wide range, changes in stereoregularity and molecular weight distribution, which greatly affect the physical properties of the resulting polypropylene, are negligible.

上記の特性を広い範囲の有機アルミニウム/遷移金属触
媒の量比で実現する触媒系としては、エーテルで変化し
た三塩化チタン触媒とジアルキルアルミニウムハライド
からなる触媒、ハロゲン化マグネシウムにハロゲン化チ
タンを相持した遷移金属触媒と有機アルミニウムからな
る触媒が挙げられ中でもハロゲン化マグネシウムにハロ
ゲン化チタンを担持した遷移金属触媒と有機アルミニウ
ムからなる触媒である。特に通常のロット間の活性の変
動をほぼ吸収できるほど広い範囲にわたって有機アルミ
ニウム/遷移金属触媒の量比を変えられる触媒系として
は、ハロゲン化マグネシウムにハロゲン化チタンを担持
した遷移金属触媒−有t’A 含酸素化合物−ジアルキ
ルアルミニウムハライド−トリアルキルアルミニウムか
らなる触媒系を用いトリアルキルアルミニウムと遷移金
属触媒の量比を変動する触媒系が挙げられる。
Catalyst systems that achieve the above characteristics with a wide range of organoaluminum/transition metal catalyst ratios include catalysts consisting of titanium trichloride catalysts modified with ether and dialkyl aluminum halides, and titanium halide supported on magnesium halide. Catalysts consisting of a transition metal catalyst and organoaluminum are mentioned, among which are catalysts consisting of a transition metal catalyst in which titanium halide is supported on magnesium halide and an organoaluminium. In particular, as a catalyst system in which the quantitative ratio of organoaluminium/transition metal catalyst can be changed over a wide range that can almost absorb the usual fluctuations in activity between lots, a transition metal catalyst with titanium halide supported on magnesium halide is used. 'A A catalyst system that uses a catalyst system consisting of an oxygen-containing compound-dialkyl aluminum halide-trialkylaluminum and varies the quantitative ratio of the trialkylaluminum and the transition metal catalyst is exemplified.

本発明においてプロピレンの重合は不活性液状媒体を使
用する溶媒重合法、液状のプロピレン自身を媒体とする
塊状重合法、実質的に液状媒体の存在しない気相重合法
のいずれの方法でも行われる。又、プロピレンの重合と
はプロピレン単独のみならずエチレン、ブテン−1、ヘ
キセンなどとの共重合も含有する。
In the present invention, propylene polymerization is carried out by any of the following methods: a solvent polymerization method using an inert liquid medium, a bulk polymerization method using liquid propylene itself as a medium, and a gas phase polymerization method substantially free of a liquid medium. Moreover, the polymerization of propylene includes not only propylene alone but also copolymerization with ethylene, butene-1, hexene, etc.

本発明において有機アルミニウムの装入量と遷移金属触
媒当りの活性の関係は、予め定めておく必要があり、好
ましくは、実際の重合装置と同様の連続重合法で定める
のが好ましい。
In the present invention, the relationship between the amount of organoaluminium charged and the activity per transition metal catalyst needs to be determined in advance, and is preferably determined by a continuous polymerization method similar to that used in an actual polymerization apparatus.

本発明において重要なのはポリプロピレンの生産量を発
熱量を検知することにより継続的に知ることである。遷
移金属触媒は、製造に際し、得られる触媒の性能が良好
であること及び製造のための設備及び製造に用いた種々
の化合物の回収が簡単な設備で行えることから回分的に
行われる。従って各回分で作られた触媒の性能が一定量
の触媒装入量で重合反応を行うとポリプロピレンの生産
量が変化し、ポリプロピレンの取得量としてその変化が
検知されてから、有機アルミニウムの装入量を変化させ
たのでは結果的に、ポリプロピレンの生産量が大きく変
動することとなる。従って1回分当りの遷移金属触媒の
量が多く10.トを長時間使用し、しかも重合系の滞留
時間が長い場合には本発明の効果が大きい。
What is important in the present invention is to continuously know the production amount of polypropylene by detecting the calorific value. Transition metal catalysts are produced in batches because the performance of the resulting catalyst is good and the production equipment and various compounds used in the production can be recovered using simple equipment. Therefore, if the polymerization reaction is carried out with a fixed amount of catalyst charged in the performance of the catalyst produced in each batch, the production amount of polypropylene will change, and after this change is detected in the amount of polypropylene obtained, the organoaluminium charging amount will change. Changing the amount will result in large fluctuations in the production amount of polypropylene. Therefore, the amount of transition metal catalyst per serving is large. The effect of the present invention is significant when the polymerization system is used for a long time and the residence time of the polymerization system is long.

三槽連続重合法で有機アルミニウムの装入量を変化させ
た時ポリプロピレンの生産量と得られるポリプロピレン
の立体規則性、及び分子量分布の関係を第1図に示す。
FIG. 1 shows the relationship between the amount of polypropylene produced and the stereoregularity and molecular weight distribution of the polypropylene obtained when the amount of organoaluminum charged was varied in the three-bath continuous polymerization method.

(触媒は実施例で示した触媒を用いトリエチルアルミニ
ウム/遷移金属触媒の関係のみ変化させている。これよ
り第1図上方に示した範囲で有機アルミニウムと遷移金
属触媒の量比を変化させることで活性を〜3倍程度(分
子量分布及び立体規則性を変えることなく)変化させる
ことが可能となることがわかる。従って特定の上限及び
下限値内で変動することで生産量を制御することができ
ることが理解される。又、多槽連続重合であっても上記
比率を変化させることで同一活性とすることが可能であ
ることがわかる(各種の触媒活性が触媒自身の失活現象
により、より後段の重合槽で低下することがない条件で
運転可能であることを示す)。
(The catalyst shown in the example was used, and only the relationship between triethylaluminum and transition metal catalyst was changed.From this, by changing the quantitative ratio of organoaluminum and transition metal catalyst within the range shown in the upper part of Figure 1, It can be seen that it is possible to change the activity by ~3 times (without changing the molecular weight distribution and stereoregularity). Therefore, it is possible to control the production amount by varying within specific upper and lower limits. In addition, it is understood that even in multi-vessel continuous polymerization, it is possible to maintain the same activity by changing the above ratio (the various catalyst activities are reduced by the deactivation phenomenon of the catalyst itself, (indicates that it is possible to operate under conditions that do not deteriorate in the polymerization tank).

各重合槽のポリプロピレンの生産量は各種の発熱量を検
知することによって算出される。これは言い換えれば各
種を一定の温度に保つために重合槽に加える熱量及び除
熱量を装置及び環境によって、定まる放熱量によって補
正することで真の発熱量が検知される。発熱量をプロピ
レンが重合する際の放熱量或は、プロピレンと他のオレ
フィンが共重合する際の放熱量で除した値がポリプロピ
レンの生産量となる。
The production amount of polypropylene in each polymerization tank is calculated by detecting various calorific values. In other words, the true amount of heat generated is detected by correcting the amount of heat added to the polymerization tank and the amount of heat removed in order to maintain each type at a constant temperature by the amount of heat released, which is determined by the equipment and environment. The production amount of polypropylene is obtained by dividing the amount of heat generated by the amount of heat released when propylene is polymerized or the amount of heat released when propylene and another olefin are copolymerized.

上記の操作である瞬間のポリプロピレンの生産量が検知
されるが連続重合法で各種がある滞留時間で運転されて
いる場合には、単に所望の生産量とある瞬間の生産量を
比較して、例えば第1図の関係をもとに有機アルミニウ
ムの装入量を変動するのは好ましくない。特に各種の滞
留時間が長い場合には、装入量を上記のように変化させ
ると時間経過するとさらに所望の生産量とは異なること
になる。従って有機アルミニウムの装入量は次のように
して設定させる。各種への有機アルミニウムの装入量に
よって生産量が検知された時の各種の有機アルミニウム
の滞留量が積分することにより算出される。この積分の
方法としては各種が完全混合槽であることから、各種へ
の有機アルミニウムの経時装入量及び他の重合溶剤、プ
ロピレン、ポリプロピレンの装入量、及び排出量によっ
て簡単な計算により算出できる。
The above operation detects the production amount of polypropylene at a certain moment, but if it is a continuous polymerization method and each type is operated at a certain residence time, simply compare the desired production amount with the production amount at a certain moment. For example, it is not preferable to vary the amount of organic aluminum charged based on the relationship shown in FIG. Particularly when the residence time of each type is long, if the charging amount is changed as described above, the desired production amount will further deviate over time. Therefore, the amount of organic aluminum to be charged is determined as follows. The retention amount of each type of organic aluminum when the production amount is detected based on the amount of organic aluminum charged to each type is calculated by integrating. Since each type is a complete mixing tank, this integral can be calculated by simple calculation based on the amount of organic aluminum charged to each type over time, the amount of other polymerization solvents, propylene, and polypropylene charged, and the amount discharged. .

連続的な制御のためにはこの計算はオンラインでコンピ
ューターに各成分の装入、排出量をインブ、トシ常時行
っておくのが良い。又、必要により有機アルミニウムの
消費速度も上記計算で考慮することもできる。
For continuous control, it is best to perform this calculation online at all times on a computer, including the loading and unloading amounts of each component. Furthermore, if necessary, the consumption rate of organic aluminum can also be taken into consideration in the above calculation.

このようにして定められた生産量と、有機アルミニウム
の滞留量より所望の生産量とするための必要有機アルミ
ニウムの滞留量(目標有機アルミニウム量)が定まる。
From the thus determined production amount and the organic aluminum retention amount, the required organic aluminum retention amount (target organic aluminum amount) to achieve the desired production amount is determined.

次いで目標有機アルミニウム量になるように有機アルミ
ニウムの装入量が設定される。例えば目標値となるため
の単位時間当りの有t−アルミニウムの装入量に特定の
係数或は式を乗じた有機アルミニウムを単位時間当り装
入しム定の時間の後目標有機アルミニウム量となる定め
られた一定の単位時間当りの有機アルミニウムの装入量
とすることができる。例えば第2図に時間経過(to−
t、)及び有機アルミニウム装入速度、有機アルミニウ
ム滞留量の関係を示す。
Next, the amount of organic aluminum to be charged is set so as to reach the target amount of organic aluminum. For example, the amount of t-aluminum charged per unit time to reach the target value is multiplied by a specific coefficient or formula, and the organic aluminum is charged per unit time, and after a certain period of time, the target amount of organic aluminum is reached. It can be a fixed amount of organoaluminium charged per unit time. For example, Fig. 2 shows the passage of time (to-
t, ), the organoaluminium charging rate, and the organic aluminum retention amount.

〔作 用〕[For production]

本発明は遷移金属触媒当りのポリプロピレンの収率は有
機アルミニウムと遷移金属触媒の量比を特定の範囲で変
化させることで得られる、ポリプロピレンの物性を変え
ることなく制御することが可能であることの発見に基づ
くものであり、触媒残渣として有機アルミニウムは比較
的除去しゃすく、物性への悪影響も遷移金属触媒に比較
して小さいことにから、本発明の方法によってプロピレ
ンを重合することにより一定の生産量で一定品質のポリ
プロピレンを製造することができるものと推定される。
The present invention is based on the fact that the yield of polypropylene per transition metal catalyst can be controlled without changing the physical properties of polypropylene by changing the quantitative ratio of organoaluminum and transition metal catalyst within a specific range. The method of the present invention is based on the discovery that organoaluminum is relatively easily removed as a catalyst residue, and the adverse effect on physical properties is smaller than that of transition metal catalysts. It is estimated that polypropylene of constant quality can be produced in quantity.

〔実施例〕〔Example〕

以下に実施例を挙げ本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例 塩化マグネシウムに四塩化チタンを担持した遷移金属触
媒(特開昭55−102606号実施例1に従って製造
)10ット当り100gで40゜トを用い内容積500
1のオートクレーブを3槽連結した反応機(第3図に示
す構造のもの2槽と還流冷却器をもたない触媒失活用1
槽からなる膝角°を用いプロピレン自身を媒体とする塊
状重合法でプロピレンを重合した。得られたポリマーは
触媒を失活した後向流洗浄塔でプロピレンで洗浄した後
未反応のプロピレンを蒸発除去してポリプロピレンパウ
ダーとした。触媒としては第1槽にのみ遷移金属触媒1
0(l)ルイル酸メチル200m/。
Example: A transition metal catalyst consisting of titanium tetrachloride supported on magnesium chloride (produced according to Example 1 of JP-A No. 55-102606). 100 g per 10 tons, using a 40° plate and an internal volume of 500.
A reactor in which three autoclaves of 1 are connected together (a reactor with the structure shown in Fig. 3, 2 tanks and a catalyst depletion reactor 1 without a reflux condenser)
Propylene was polymerized using a bulk polymerization method using propylene itself as a medium using a knee-angle device consisting of a tank. After deactivating the catalyst, the obtained polymer was washed with propylene in a countercurrent washing tower, and unreacted propylene was removed by evaporation to obtain polypropylene powder. As a catalyst, transition metal catalyst 1 is used only in the first tank.
0(l) Methyl Ruyate 200m/.

ジエチルアルミニウムクロライド425dを混合したも
のを遷移金属触媒として49/hで装入し第1槽のポリ
マースラリーは第2槽に連続的に移液5つ’+、−第2
槽より第3槽に移液し失活するようになっている。第1
第2槽には、還流冷却器による除熱量(具体的には、凝
縮液量及び温度と凝縮器への人、出のガスの量及び温度
より算出)及びシャケ、トによる除熱量(シャケ、トへ
の冷却水量及び人、出の温度より算出)を放熱量により
補正した値により重合量を算出しその値が一定となるよ
うにトリエチルアルミニウムが装入された。その結果第
4図に示すように一定のポリプロピレンの生産量(40
kg/h±0.5kg/h)で一定品質のポリプロピレ
ン(沸騰n−ヘプタン抽出残率(6h抽出)96.8±
0.2%、  / 6゜4±0.2)N が得られた。
A mixture of diethylaluminum chloride 425d was charged as a transition metal catalyst at a rate of 49/h, and the polymer slurry in the first tank was continuously transferred to the second tank at 5'+, -2nd tank.
The liquid is transferred from the tank to the third tank and deactivated. 1st
The second tank contains the amount of heat removed by the reflux condenser (specifically, calculated from the amount and temperature of the condensed liquid, the number of people entering the condenser, and the amount and temperature of the gas exiting the condenser) and the amount of heat removed by the salmon, The amount of polymerization was calculated by correcting the amount of cooling water supplied to the reactor and the temperature of the reactor by the amount of heat released, and triethylaluminum was charged so that the value remained constant. As a result, as shown in Figure 4, a certain amount of polypropylene production (40
kg/h ± 0.5 kg/h) and constant quality polypropylene (boiling n-heptane extraction residual rate (6h extraction) 96.8 ±
0.2%, /6°4±0.2)N was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の方法を実施することにより安定した品質のポリ
プロピレンを一定の生産速度で製造することが可能であ
り工業的に価値がある。
By carrying out the method of the present invention, it is possible to produce polypropylene of stable quality at a constant production rate, which is of industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は有機アルミニウム/M移金属触媒の量比と遷移
金属触媒当り単位時間当りのポリプロピレンの生産量、
得られるポリプロピレンの分子量分布及び立体規則性の
関係を示すものである。 第2図は有機アルミニウムの装入速度を変化させた時の
有機アルミニウムの滞留量の変化を示すグラフである。 第3図は本発明の重合を行う装置の1例であり1は反応
槽、2は還流冷却器、3はブロワ−14は遷移金属触媒
混合スラリーの装入用ポンプであり、F−1は凝縮液の
流量計及び温度計、F−2は装入冷却水の流量計及び温
度計、F−3は排出冷却水の温度計、F−4は装入プロ
ピレンの流量計、F−5は装入有機アルミニウムの流量
計、?−6は排出スラリーの流量計である。 第4図は、実施例の時間経過とトリエチルアルミニウム
の装入量、発熱量より算出したポリプロピレンの生産量
(瞬間値)、及びポリプロピレンの生産量の関係を示す
グラフである。
Figure 1 shows the amount ratio of organoaluminium/M transfer metal catalyst and the production amount of polypropylene per unit time per transition metal catalyst,
This figure shows the relationship between the molecular weight distribution and stereoregularity of the polypropylene obtained. FIG. 2 is a graph showing changes in the amount of organic aluminum retained when the charging rate of organic aluminum was changed. Figure 3 shows an example of an apparatus for carrying out the polymerization of the present invention, in which 1 is a reaction tank, 2 is a reflux condenser, 3 is a blower, 14 is a pump for charging the transition metal catalyst mixed slurry, and F-1 is a pump for charging the transition metal catalyst mixed slurry. Condensate flow meter and thermometer, F-2 is charging cooling water flow meter and thermometer, F-3 is discharge cooling water thermometer, F-4 is charging propylene flow meter, F-5 is Charge organoaluminum flow meter,? -6 is a flow meter for discharged slurry. FIG. 4 is a graph showing the relationship between the elapsed time in Examples, the amount of triethylaluminum charged, the amount of polypropylene produced (instantaneous value) calculated from the calorific value, and the amount of polypropylene produced.

Claims (1)

【特許請求の範囲】 1)遷移金属触媒と有機アルミニウムからなる触媒を用
いて発熱量によってポリプロピレンの生産量を検知しな
がらプロピレンを重合する方法において検知されたポリ
プロピレンの生産量によって有機アルミニウムの添加量
を変化させて一定の生産量となるよう制御することを特
徴とするプロピレンの重合方法。 2)検知されたプロピレンの生産量、有機アルミニウム
の反応槽への装入量より算出された有機アルミニウムの
滞留量及び予め定められた有機アルミニウムと、ポリプ
ロピレンの生産量との関係式に従ってポリプロピレンの
生産量が一定となるように有機アルミニウムの装入量を
定める特許請求の範囲第一項記載の方法。
[Claims] 1) In a method of polymerizing propylene while detecting the production amount of polypropylene based on the calorific value using a catalyst consisting of a transition metal catalyst and an organoaluminium, the amount of addition of organoaluminum is determined based on the production amount of polypropylene detected. A propylene polymerization method characterized by controlling the production amount to a constant value by changing the amount of the propylene. 2) Production of polypropylene according to the detected production amount of propylene, the retention amount of organic aluminum calculated from the amount of organic aluminum charged to the reaction tank, and a predetermined relational expression between organic aluminum and the production amount of polypropylene. The method according to claim 1, wherein the amount of organoaluminum charged is determined so that the amount is constant.
JP20568284A 1984-10-02 1984-10-02 Polymerization of propylene Granted JPS61179208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20568284A JPS61179208A (en) 1984-10-02 1984-10-02 Polymerization of propylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20568284A JPS61179208A (en) 1984-10-02 1984-10-02 Polymerization of propylene

Publications (2)

Publication Number Publication Date
JPS61179208A true JPS61179208A (en) 1986-08-11
JPH0550528B2 JPH0550528B2 (en) 1993-07-29

Family

ID=16510946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20568284A Granted JPS61179208A (en) 1984-10-02 1984-10-02 Polymerization of propylene

Country Status (1)

Country Link
JP (1) JPS61179208A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335612A (en) * 1986-07-24 1988-02-16 ユニオン・カ−バイド・コ−ポレ−シヨン Control polymerization of stereospecific alpha-olefin having preliminarily selected isotacticity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169366A (en) * 1983-03-14 1984-09-25 Meidensha Electric Mfg Co Ltd Power source control system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169366A (en) * 1983-03-14 1984-09-25 Meidensha Electric Mfg Co Ltd Power source control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335612A (en) * 1986-07-24 1988-02-16 ユニオン・カ−バイド・コ−ポレ−シヨン Control polymerization of stereospecific alpha-olefin having preliminarily selected isotacticity

Also Published As

Publication number Publication date
JPH0550528B2 (en) 1993-07-29

Similar Documents

Publication Publication Date Title
US5077358A (en) Process for the start up of polymerization or copolymerization in the gas phase of alpha-olefins in the presence of a ziegler-natta catalyst system
US4956426A (en) Process for controlled polymerization of stereospecific alpha-olefins having preselected isotacticity
JPS6023764B2 (en) Method for producing α-olefin polymer
US4460757A (en) Process for producing α-olefin polymers
CN101346174A (en) Gas-phase process and apparatus for the polymerization of olefins
EP0886655A1 (en) A process and an apparatus for polymerization of olefin monomers
US4314046A (en) Process for the stereoregular polymerization of α-olefins in the presence of a supported titanium catalyst
US5204303A (en) Preparation and use of a new ziegler-natta catayst component
CN102164969B (en) The catalyst component of olefinic polymerization
JPS61179208A (en) Polymerization of propylene
KR890004064B1 (en) The making method of prophilen individual and uselessly union
JPS62138504A (en) Polymerization of propylene
CN109517098A (en) A kind of offline pre-polymerized catalyst and propylene homo close and the method for combined polymerization
CN109678995A (en) A kind of alkene batch polymerization processes
US5098967A (en) Method of controlling the molecular weight of polypropylene
US4921905A (en) Process for the production of block copolymer of propylene and ethylene
JPS6147709A (en) Polymerization of propylene
JPS6166705A (en) Method of continuous gaseous-phase polymerization for propylene
RU2108344C1 (en) Method of synthesis of ethylene copolymer, polyethylene
JPS6185424A (en) Production of block copolymer of propylene
CA1305281C (en) Control method of molecular weight of polypropylene
CA1069109A (en) Catalyst and a polymerization process employing the catalyst
KR850000243B1 (en) Polymerization of olefins with dual independently supported catalyst
JP5029157B2 (en) Full liquid polymerization of propylene (co) polymer
JPS6181409A (en) Method of controlling molecular weight