JPS61178571A - Liquid feeding pump - Google Patents

Liquid feeding pump

Info

Publication number
JPS61178571A
JPS61178571A JP1843985A JP1843985A JPS61178571A JP S61178571 A JPS61178571 A JP S61178571A JP 1843985 A JP1843985 A JP 1843985A JP 1843985 A JP1843985 A JP 1843985A JP S61178571 A JPS61178571 A JP S61178571A
Authority
JP
Japan
Prior art keywords
liquid
pump
pump chamber
cam
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1843985A
Other languages
Japanese (ja)
Inventor
Makoto Takeuchi
誠 竹内
Toshinori Saito
斉藤 利徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP1843985A priority Critical patent/JPS61178571A/en
Publication of JPS61178571A publication Critical patent/JPS61178571A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the mixing ripple min. by making the pressure in a pump chamber equal to the outside pressure when switching to the process in which the third pump chamber which inhales the liquid discharged from the first and the second pump chambers according to a prescribed variation of the mixing ratio discharges said liquid outside is performed. CONSTITUTION:Plungers 9A and 9B are moved in reciprocation in the first and the second pump chambers 10A and 10B by the movement of the first and the second cams 1A and 1B. The liquid discharged from the both pump chambers join in the third pump chamber 10c. The both cams 1a and 1b are operated according to the variation of the mixing ratio of two liquids, and the preparatory compression state is generated, and when switching to the process in which the liquid in the third pump chamber is discharged outside is performed, the pressure of the liquid in the pump chamber is made equal to the outside pressure. Therefore, the mixing ripple becomes min., and two liquids are mixed according to the variation of a prescribed mixing ratio.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は定量性と再現性に優れた送液ポンプ装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a liquid pump device with excellent quantitative performance and reproducibility.

[従来の技術] 液体クロマトグラフィにおいては、性質の異なる多成分
を高い分離能に保ち乍ら高速に溶出する為に、二種又は
それ以上の性質の異なる溶媒の混合比を漸次変えて展開
する溶媒グラジェント法が行なわれている。
[Prior art] In liquid chromatography, in order to elute multiple components with different properties at high speed while maintaining a high resolution, a solvent is developed by gradually changing the mixing ratio of two or more solvents with different properties. Gradient method is used.

この方法には、例えば、一台のポンプを使用し、その吸
引側において、所定の混合比に応じて時間的に切換る切
換バルブを通じて吸引された来たA。
In this method, for example, one pump is used, and on the suction side of the pump, incoming A is sucked in through a switching valve that is switched over time depending on a predetermined mixing ratio.

B溶媒を、混合チャンバにて混合する方法があるが、ミ
キシング効果を良くする為には混合チャンバを大きくせ
ざるを得なく、その為に、デッドボリュームが大きくな
り、定量性と再現性が低下してしまう。
There is a method of mixing B solvent in a mixing chamber, but in order to improve the mixing effect, the mixing chamber must be made larger, which increases the dead volume and reduces quantitative performance and reproducibility. Resulting in.

又、A溶媒吸引用とB溶媒吸引用の二台のポンプを使用
し、所定の混合比に応じて夫々のポンプにより吸引した
最のA、B溶媒を出力側で混合する方法とがある。しか
し、従来の定流量送液ポンプとして使用されているダブ
ルプランジャー型ポンプには次の様な問題がある。
Another method is to use two pumps, one for suctioning solvent A and one for suctioning solvent B, and mixing the most A and B solvents sucked by each pump on the output side according to a predetermined mixing ratio. However, the double plunger type pump used as a conventional constant flow liquid transfer pump has the following problems.

即ち、第1ポンプ室(又は第2ポンプ空)の流路から外
部への単位時間当りの流出量が、吸入工程から吐出工程
に変わった直後少時間、落ちてしまう。この現象は、ポ
ンプ室内は吸入時に圧力が零に近く、吐出工程に変わる
時にプランジャの運動により高圧に達しようとするが、
吐出側に圧力が掛かつているのでポンプ室外の流出路の
圧力を直ぐ越すことは出来ず、越すまでの間、カムやプ
ランジャは変位しても、ポンプ室から流出路への液の吐
出が無い事に起因している。特に、ポンプ室外の流出路
に高い圧力が掛っている場合には、この現象が顕著であ
る。
That is, the amount of outflow per unit time from the flow path of the first pump chamber (or second pump chamber) to the outside drops for a short time immediately after the suction process changes to the discharge process. This phenomenon occurs because the pressure in the pump chamber is close to zero during suction, and when the pump transitions to the discharge process, the pressure attempts to reach high pressure due to the movement of the plunger.
Since pressure is applied to the discharge side, the pressure in the outflow path outside the pump chamber cannot be overcome immediately, and until the pressure is exceeded, no liquid is discharged from the pump chamber to the outflow path, even if the cam or plunger is displaced. It is caused by something. This phenomenon is particularly noticeable when high pressure is applied to the outflow path outside the pump chamber.

[発明が解決しようとする問題点] さて、耐圧力に対しての定流量性の精度を、ポンプスト
ロークの周期(プランジャの変位の周期)を可変して上
げようとする考えがある。即ち、該ポンプストロークの
周期を小さくすれば、前記単位時間当りの流量の低下の
程度は大きくなり、ポンプストロークの周期を大きくす
れば、流量の低下の程度は小さくなるので、ポンプスト
ロークの周期を大きくして単位時間当りの耐圧流量の低
下の程度を小さくしている。しかし、ポンプストローク
を大きくした場合には、単位時間当りの耐圧定流量性が
向上するが、フローレイトが小さくなる程、圧力リップ
ルが大きくなる。例えば、1分当り11IIQ程度又は
それ以上の70−レイトで液を送る場合には、送液口が
所定の量に対しさほど低下せず、耐圧定流量性も低下せ
ず、リップルも小さい。しかし、1分当りQ、1txQ
以下のフローレイトで液を送る場合には、ポンプのリッ
プルの周期が1分程度と大きくなり、ダンパーを使用し
ても該リップルを平滑出来ない。
[Problems to be Solved by the Invention] Now, there is an idea to improve the accuracy of constant flow performance with respect to withstand pressure by varying the period of the pump stroke (period of displacement of the plunger). That is, if the period of the pump stroke is made smaller, the degree of decrease in the flow rate per unit time will be increased, and if the period of the pump stroke is increased, the degree of decrease in the flow rate will be decreased. By increasing the flow rate, the degree of decrease in pressure-resistant flow rate per unit time is reduced. However, when the pump stroke is increased, the pressure constant flow performance per unit time is improved, but the smaller the flow rate is, the larger the pressure ripple becomes. For example, when sending liquid at a rate of 70-rate of about 11 IIQ per minute or higher, the liquid sending port does not decrease much with respect to a predetermined amount, the pressure constant flow resistance does not decrease, and the ripple is small. However, Q per minute, 1txQ
When sending liquid at the following flow rate, the ripple cycle of the pump becomes as long as about 1 minute, and even if a damper is used, the ripples cannot be smoothed out.

従って、この様な定流量送液ポンプを使用して、グラジ
ェント溶出の様に、2種類以上の液体を混合するような
系においては、前記の如くストロークを大きくした場合
には、該2つの液を連続して変化する混合比に基づいて
混合する場合に、混合リップルの為に、該2つの液が所
定の混合比で混合されず、定量性と再現性が悪下する。
Therefore, in systems where two or more types of liquids are mixed using such a constant flow pump, such as in gradient elution, when the stroke is increased as described above, the two When liquids are mixed based on a continuously changing mixing ratio, the two liquids are not mixed at a predetermined mixing ratio due to mixing ripples, resulting in poor quantitative performance and reproducibility.

本発明はこの様な問題を解決する事を目的としたもので
、新規な送液ポンプ装置を提供するものである。
The present invention aims to solve such problems and provides a novel liquid feeding pump device.

[問題点を解決するための手段] 本発明の溶媒グラジェント装置は共通カム駆動機構によ
り同期して作動する第1カムと第2カムの動きにより夫
々第1.第2ポンプ室内で第1プランジ17.第2プラ
ンジャを直線往復運動させて、外部から所定混合比変化
に従って該第1.第2ポンプ室内への液の吸入と該第1
.第2ポンプ室から第3ポンプ室への液の吐出を行ない
、単独カム駆動機構により作動するカムの動きにより第
3ポンプ室内で第3プランジャを直線往復移動させて、
該第3ポンプ室内に前記第1ポンプ室と第2ポンプ室が
吐出した液の吸入と外部への液の吐出を行なうように成
し、且つ、前記第3プランジャの運動により第3ポンプ
室内から液を外部に吐出する工程に切換る時に該ポンプ
室内の圧力が該外部の圧力と同一になるように成したも
のである。
[Means for Solving the Problems] The solvent gradient device of the present invention has a first cam and a second cam that operate synchronously by a common cam drive mechanism. First plunge in the second pump chamber 17. The second plunger is linearly reciprocated, and the first plunger is moved in accordance with a predetermined mixing ratio change from the outside. Suction of liquid into the second pump chamber and the first
.. discharging the liquid from the second pump chamber to the third pump chamber, and moving the third plunger linearly back and forth within the third pump chamber by the movement of a cam operated by an independent cam drive mechanism;
The liquid discharged by the first pump chamber and the second pump chamber is sucked into the third pump chamber, and the liquid is discharged to the outside by movement of the third plunger. The pressure inside the pump chamber is made to be the same as the pressure outside when switching to the step of discharging the liquid to the outside.

[作用] 前の工程で所定の混合比変化に従って第1.第2ポンプ
室から吐出されて来た液を吸入した第3ポンプ室が液を
外部に吐出する工程に切換る時に該ポンプ室内の圧力が
外部の圧力と同一になっていれば、第3プランジャが吐
出の為の運動に入る時、該第3ポンプ室内の液の圧力を
該室外の圧力と同一にする為の工程に費される事が無い
ので、液の吐出に遅れが発生する事無く、液が室内から
室外へ流れ、流路から外部への単位時間当りの流出量が
落ちる事は無い。その為、混合リップルが最小となり、
該2つの液が所定の混合比変化に従って混合される。
[Operation] According to the predetermined mixing ratio change in the previous step, the first. If the pressure inside the pump chamber is the same as the external pressure when the third pump chamber sucks the liquid discharged from the second pump chamber and switches to the step of discharging the liquid to the outside, the third plunger When the pump begins its movement for discharge, there is no time required to make the pressure of the liquid in the third pump chamber the same as the pressure outside the chamber, so there is no delay in the discharge of the liquid. , the liquid flows from indoors to outdoors, and the amount of flow per unit time from the flow path to the outside does not drop. Therefore, the mixing ripple is minimized,
The two liquids are mixed according to a predetermined mixing ratio change.

[実施例] 第1図は本発明の一実施例を示した送液ポンプ装置の概
略図である。
[Embodiment] FIG. 1 is a schematic diagram of a liquid pump device showing an embodiment of the present invention.

図中1A、IBは同形の第1.第2カムで、各々のカム
のシャフトには同形の第1.第2歯車2A、2Bが取付
けられている。前記第1カム、第2カムは回転方向は互
いに逆で、同時に回転する事により、曲率の絶対値が等
しく正負の符号が逆の変位特性を有する形状に成しであ
る。3は該二つの歯車に噛合った第3歯車で、該歯車の
シャフト4Aは第1モータ5Aのシャフトに固定されて
いる。6は第1パルス発生器で、制御装置7からの指令
に従ってパルス信号を発生し、それを前記第1モータ5
Aに供給する。又、前記第1カム。
In the figure, 1A and IB are identical 1st. a second cam, and the shaft of each cam has a first cam of the same shape. Second gears 2A and 2B are attached. The rotation directions of the first cam and the second cam are opposite to each other, and by rotating at the same time, the first cam and the second cam are formed into a shape having displacement characteristics with equal absolute values of curvature and opposite signs. 3 is a third gear that meshes with the two gears, and the shaft 4A of this gear is fixed to the shaft of the first motor 5A. 6 is a first pulse generator that generates a pulse signal according to a command from the control device 7 and transmits it to the first motor 5.
Supply to A. Also, the first cam.

第2カムには第1.第20−ラ8A、8Bが接触してい
る。該第1.第20−ラには夫々第1.第2プランジャ
9A、9Bが接続されている。該第1、第2プランジャ
は前記モータの回転に同期して回転する前記第1.第2
カム1A、1Bの運動により、夫々第1.第2ポンプ室
10A、10B内で直線往復運動する。10Gは、該第
1ポンプ’[10Aの吐出路OAと第2ポンプ室10B
の吐出路OBとの合流した所と繋がった吸入路ICを有
する第3ポンプ室である。9G、8C,ICは夫々第3
プランジャ、第30−ラ、第3カムである。該第3カム
のシャフト4Bは第2モータ5Bのシャフトと連結して
おり、該第2モータは第2パルス発生器6Bを通じて、
前記制御装@7からの指令に従って作動する。図中b 
l * b2 + b3 +bi、bs、bgは各プラ
ンジャの動きにより液路中で浮いたり沈んだりして、液
を流したり、止めたりするボールである。又、11A、
11B。
The second cam has the first. The 20th-ra 8A and 8B are in contact. Part 1. The 20th-ra each has the 1st. Second plungers 9A and 9B are connected. The first and second plungers rotate in synchronization with the rotation of the motor. Second
The movement of the cams 1A and 1B causes the first. It performs linear reciprocating motion within the second pump chambers 10A and 10B. 10G is the discharge passage OA of the first pump' [10A and the second pump chamber 10B.
This is a third pump chamber having a suction passage IC connected to a place where it joins the discharge passage OB. 9G, 8C, and IC are third respectively.
These are the plunger, the 30th-ra, and the 3rd cam. The shaft 4B of the third cam is connected to the shaft of a second motor 5B, and the second motor is driven through a second pulse generator 6B.
It operates according to instructions from the control device @7. b in the diagram
l*b2+b3+bi, bs, and bg are balls that float or sink in the liquid path according to the movement of each plunger to flow or stop the liquid. Also, 11A,
11B.

11Cは夫々前記第1.第2.第3プランジャ9A、9
B、9Gを第1.第2.第3カムに接触させるようにし
た圧縮バネである。12A、12Bは夫々前記第1ポン
プ、第2ポンプの吸入路IA。
11C are each of the above-mentioned No. 1. Second. Third plunger 9A, 9
B, 9G as the first. Second. This is a compression spring that is brought into contact with the third cam. 12A and 12B are suction passages IA of the first pump and the second pump, respectively.

I8に繋がったA液槽、B液槽である。該ポンプ装置に
おいて、第3プランジャ9Cが液体を外部に吐出する機
能を持ち、第1.第2プランジャ9A、9Bが第3ポン
プ室10Gに適宜加圧した液体を送る機能を持っている
These are A liquid tank and B liquid tank connected to I8. In the pump device, the third plunger 9C has a function of discharging liquid to the outside, and the third plunger 9C has a function of discharging liquid to the outside. The second plungers 9A and 9B have the function of sending suitably pressurized liquid to the third pump chamber 10G.

この様に構成された定流量送液ポンプの動作を次に説明
する。
The operation of the constant flow liquid transfer pump configured in this manner will be described next.

予め、)O−レイトに対応したカムの回転角に関する指
令信号を制御装置7はパルス発生器6A。
The control device 7 sends a command signal regarding the rotation angle of the cam corresponding to the )O-rate in advance to the pulse generator 6A.

6Bに送っておく。即ち、70−レイトが小さげれば、
それに応じてカムの回転角を小さくし、フローレイトが
大きければ、それに応じてカムの回転角を大きくする信
号を供給する。そして、該選択された回転角でカムを左
と右に交互に繰返して回転させる。この場合、例えば、
右回転の時、吸引工程を行ない、左回転の時、吐出工程
を行なう。
I'll send it to 6B. That is, if the 70-rate is smaller,
The rotation angle of the cam is decreased accordingly, and if the flow rate is large, a signal is supplied that increases the rotation angle of the cam accordingly. Then, the cam is repeatedly rotated alternately to the left and right at the selected rotation angle. In this case, for example,
When rotating clockwise, a suction process is performed, and when rotating counterclockwise, a discharge process is performed.

又、第1カム1Aと第2カム1Bは回転方向は逆ではあ
るが、同期して吸引動作と吐出動作を行なう。この2つ
のカムの動作は、例えば、第2図に示す如き二液の混合
による混合比の変化に従って行なわれる。即ち、第1カ
ムの動作により、第1ポンプ室10Aは第2図の液量線
L1に従ってA液の吸入又は吐出を行ない、第2カムの
動作により同期して第2ポンプ110Bは液量線L2に
従ってB液の吸入又は吐出を行なう。従って、第3ポン
プ室10Gの吸入路ICには、Llに従った量のA液と
L2に従った量のB液が混合された値の混合液が吐出さ
れて来る。この混合液は、A液量とB1ff1の混合比
は漸次変化しているが、その量は常に一定である。この
動作を実施する為の第1カム1Aと第2カム1Bは、第
3図に示す様に、第1カム1AはYa=kX2の変位を
し、第2カムはYb =k  (c −x )2の変位
をする特性を有する。第3図において、Yは変位、Xは
カムポジションである。この場合、第1カムはフローレ
イトに応じた回転角を左回転、右回転し、第2カムは同
−角を右回転、左回転する。図では、該回転角に対応し
たカムポジションの変化範囲をΔXで表している。この
カムポジションの変化範囲ΔXは70−レイトが変化し
ない限り一定であるが、前記A液とB液の混合比を第2
図に示す如く変化させる為に、カムの動作位置は漸次変
化する様に制御装置7は第1パルス発生器6Aに指令を
与えている。即ち、第1パルス発生器は該制御装置の指
令に従って、第1モータ5Aへの駆動パルスをフォワー
ドとバックワードでパルス数を若干変えておく。
Furthermore, although the first cam 1A and the second cam 1B rotate in opposite directions, they perform suction and discharge operations in synchronization. The operation of these two cams is performed, for example, in accordance with a change in the mixing ratio due to mixing of the two liquids as shown in FIG. That is, the operation of the first cam causes the first pump chamber 10A to suck in or discharge liquid A according to the liquid level line L1 in FIG. 2, and the second pump 110B synchronizes with the liquid level line L1 in FIG. Inhale or discharge B liquid according to L2. Therefore, a mixed liquid having a value obtained by mixing liquid A in an amount according to Ll and liquid B in an amount according to L2 is discharged into the suction path IC of the third pump chamber 10G. In this liquid mixture, the mixing ratio of liquid A and B1ff1 gradually changes, but the amount is always constant. As shown in FIG. 3, the first cam 1A and the second cam 1B are used to perform this operation. The first cam 1A has a displacement of Ya=kX2, and the second cam has a displacement of Yb=k (c - ) has the characteristic of having a displacement of 2. In FIG. 3, Y is displacement and X is cam position. In this case, the first cam rotates to the left and to the right through a rotation angle corresponding to the flow rate, and the second cam rotates to the right and to the left through the same angle. In the figure, the range of change in the cam position corresponding to the rotation angle is represented by ΔX. This cam position change range ΔX is constant unless the 70-rate changes, but the mixing ratio of liquid A and liquid B is
In order to change the position as shown in the figure, the control device 7 gives a command to the first pulse generator 6A to gradually change the operating position of the cam. That is, the first pulse generator changes the number of driving pulses to the first motor 5A slightly between forward and backward according to the command from the control device.

さて、第3図に従って、第1カムと第2カムの動作を説
明すると、該第1.第2カムの微小変化ΔXに対する第
1.第2プランジャの移動距離(即ち、吐出量)は夫々
、 d Y a / dx= 2 kx・・・・・・ 
(1) d  Yb /dx=2k  (c  −X  )  
・−・・・−(2>第1ポンプと第2ポンプを第3ポン
プに吐出する1個の液の圧縮ポンプと考えた場合の移動
距離は前記(1)と(2)の和から、2kCと一定とな
る。
Now, referring to FIG. 3, the operations of the first cam and the second cam will be explained. The first cam for the minute change ΔX of the second cam. The moving distance (i.e., the discharge amount) of the second plunger is d Y a / dx = 2 kx...
(1) dYb/dx=2k (c-X)
・−・−(2>If the first pump and the second pump are considered as one liquid compression pump discharging to the third pump, the moving distance is the sum of (1) and (2) above, It becomes constant at 2kC.

第1ポンプと第2ポンプの吐出量比は Ya ′/Yb ′=x / (c −x ) = (
3)となり、第1ポンプと第2ポンプの吐出量比は、X
 =OrO:C,−・・・−・・−、X =O/2で1
=1゜・・・・・・・・・、X−CでCOOであり、カ
ムポジションXをQ−cまで、時間的に変えて行く事に
よって、第3ポンプ室の吸入路ICに吐出する溶媒A、
Bの混合比を所定通り変える事が出来る。
The discharge rate ratio of the first pump and the second pump is Ya'/Yb'=x/(c-x)=(
3), and the discharge amount ratio of the first pump and the second pump is
= OrO: C, -...-...-, X = O/2 and 1
=1゜・・・・・・・・・COO at X-C, and by changing the cam position X to Q-c over time, it is discharged to the suction path IC of the third pump chamber. Solvent A,
The mixing ratio of B can be changed as specified.

第4図は前記第1ポンプ及び第2ポンプを合成したもの
を1つのポンプと考えた場合の合成プランジャと第3プ
ランジャの動作図を示したもので、横軸は時間、縦軸は
上方向が吐出量、下方向が吸入量を示す。該図において
、破線は合成プランジャ、実線は第3プランジャ9Cの
動作を示す。該図から明らかなように、合成プランジャ
は吸入から予備加圧の為の吐出を行なう工程→吐出工程
→吸入から予備加圧の為の吐出を行なう工程→吐出工程
を繰り返し、第3プランジャ9Cはこれに同期して、吐
出工程→吸引工程→吐出工程→吸引工程を繰り返す。こ
の様な工程において、前記2つのポンプの動作特性は、
図に示す様に、合成ポンプは、ゆっくり吸引して素早く
吐出し、第3ポンプは素早く吸引してゆっくり吐出する
。この理由は、合成ポンプが吸引過程を行なう時、液槽
からの液の供給圧力は一般に低いので、キャビテーショ
ンがボン1室内や弁で生じ易い。それは、特に、急速に
吸引された時に生じ易く、このキャビテーションによっ
て気泡が生じ、動作を不規則にする。
Figure 4 shows the operation diagram of the composite plunger and the third plunger when the combination of the first pump and the second pump is considered as one pump, where the horizontal axis is time and the vertical axis is the upward direction. indicates the discharge amount, and the downward direction indicates the suction amount. In the figure, the broken line indicates the operation of the composite plunger, and the solid line indicates the operation of the third plunger 9C. As is clear from the figure, the composite plunger repeats the process of suction to discharge for pre-pressurization → discharge process → suction to discharge for pre-pressurization → discharge process, and the third plunger 9C In synchronization with this, the discharge process → suction process → discharge process → suction process is repeated. In such a process, the operating characteristics of the two pumps are as follows:
As shown in the figure, the composite pump sucks slowly and discharges quickly, and the third pump sucks quickly and discharges slowly. The reason for this is that when the synthesis pump performs the suction process, the supply pressure of liquid from the liquid tank is generally low, so cavitation is likely to occur in the cylinder chamber 1 and the valves. It is particularly likely to occur when suction is applied rapidly; this cavitation creates bubbles and causes irregular operation.

従って、合成ポンプの吸引工程は極力ゆっくり行なうの
が溝ましい。一方、第3ポンプは、吐出工程が実質的な
送液工程であるから、吸引−吐出の1サイクル時間中、
吐出工程に多くの時間を割き、吸引工程を出来る支受な
くする事が送液の連続性を保つ。又、吸引過程では前記
合成ポンプの吸引工程と異なり、該合成ポンプからの液
液が強制的に送られて来ており、該−第3ポンプの吸引
側の圧力は大力その圧力に近付いているので、キャビテ
ーションが生じなく、その為、非常に素早く吸引出来る
Therefore, it is advisable to perform the suction process of the synthetic pump as slowly as possible. On the other hand, in the third pump, since the discharge process is a substantial liquid feeding process, during one suction-discharge cycle time,
Continuity of liquid feeding can be maintained by allocating a large amount of time to the discharge process and minimizing the suction process. Also, in the suction process, unlike the suction process of the synthetic pump, the liquid from the synthetic pump is forcibly sent, and the pressure on the suction side of the third pump is very close to that pressure. Therefore, cavitation does not occur and suction can be performed very quickly.

又、合成プランジャによる液の吐出量S1は前記第3プ
ランジャ9Cによる液の吸入I S zと、該合成プラ
ンジャの吐出工程に要する時間と同一時間における第3
プランジャ9Cの吐出量S3の和に等しく、これにより
、該第3ポンプ室10Cから連続して一定量の液が外部
に送液される。更に、フローレイトに応じてカムの回転
角が変化するが、該カムの回転角を小さくすれば、第4
図において、吐出量と吸入量がそれに応じて低くなり、
カムの回転角が大きくなれば、吐出量と吸入量は高くな
る。しかし、この吐出、吸引に要する時間は変化しない
Further, the amount S1 of the liquid discharged by the synthetic plunger is equal to the amount S1 of the liquid sucked by the third plunger 9C and the third liquid discharge amount S1 at the same time as the time required for the discharge process of the synthetic plunger 9C.
It is equal to the sum of the discharge amounts S3 of the plungers 9C, and as a result, a certain amount of liquid is continuously sent to the outside from the third pump chamber 10C. Furthermore, the rotation angle of the cam changes depending on the flow rate, but if the rotation angle of the cam is made smaller, the fourth
In the figure, the output and suction volumes are correspondingly lower,
The larger the rotation angle of the cam, the higher the discharge amount and suction amount. However, the time required for this ejection and suction does not change.

又、この合成プランジャの予備圧縮加圧は、前の工程で
合成ポンプ室から吐出されて来た液を吸入した第3ポン
プ室が液を外部に吐出する工程に切換る時に該ポンプ室
内の液体の圧力が外部の圧力と同一にする為に行なうも
のであり、該予備圧縮加圧時には、合成ポンプ室内の液
が圧縮加圧される丈で、第3ポンプ室に送られない。
In addition, this preliminary compression pressurization of the synthesis plunger is performed when the third pump chamber, which sucked the liquid discharged from the synthesis pump chamber in the previous process, switches to the process of discharging the liquid to the outside. This is done to make the pressure the same as the external pressure, and during the preliminary compression pressurization, the liquid in the synthesis pump chamber is compressed and pressurized and is not sent to the third pump chamber.

この予備圧縮加圧は第3ポンプ室10Cの吐出路OCに
設けられた圧力計13により、該第3ポンプ室から吐出
される液の圧力を検出し、制御装置7が該圧力計からの
圧力情報に基づいて圧力波形の傾き(即ち、第3ポンプ
吐出サイドにおける圧力の変化速度)を求め、該傾きに
基づいて、前記各モータに指令を送る事により制御され
る。即ち、実験によると、該第3ポンプ室から吐出され
る液体の圧力波形は、第3プランジャ9Cが吸引した液
体が外部の圧力(所定の吐出圧力)迄加圧されていない
と(即ち、第3ポンプ室の実質的送液IUrが第3ポン
プの設計送液量UOより小さいと)、第5図(a )に
示す様に、右傾きとなり、該液体が外部の圧力よりも高
く加圧されていると(即ちUr>Uo)、第5図(lに
示す様に、左傾きとなる。この場合、これら傾きの程度
が外部の圧力の差に等しい。又、義肢の圧力が外部圧力
と等しい場合(即ちtJr =tJO)には、第5図(
b)に示す様に、傾き零、即ち時間軸に平行となる。
This pre-compression pressurization is performed by detecting the pressure of the liquid discharged from the third pump chamber 10C with a pressure gauge 13 provided in the discharge passage OC of the third pump chamber 10C, and by controlling the control device 7 to detect the pressure from the pressure gauge. The slope of the pressure waveform (that is, the rate of change in pressure on the discharge side of the third pump) is determined based on the information, and the motors are controlled by sending commands based on the slope. That is, according to experiments, the pressure waveform of the liquid discharged from the third pump chamber changes when the liquid sucked by the third plunger 9C is not pressurized to the external pressure (predetermined discharge pressure). If the actual liquid flow IUr of the third pump chamber is smaller than the designed liquid flow rate UO of the third pump), the liquid will be tilted to the right as shown in Figure 5 (a), and the liquid will be pressurized higher than the external pressure. (i.e., Ur > Uo), it will tilt to the left as shown in Figure 5 (l). In this case, the degree of these tilts is equal to the difference in external pressure. Also, the pressure of the prosthesis is equal to the difference in external pressure. (i.e., tJr = tJO), then Fig. 5 (
As shown in b), the slope is zero, that is, parallel to the time axis.

しかして、制御装置7は、前記圧力波形の傾きが前記第
5図(a )に示す様に、右傾きなら、第合成プランジ
ャを作動させるモータ5Aに、該傾きが零になる程度に
、該合成プランジャの移動距離を適宜大きくし、予備圧
縮加圧を大きくする信号を供給するように制御を行なう
。又、前記第5図に示す様に、左傾きなら、該傾きが零
になる程度に、該合成プランジャの移動距離を適宜小さ
くし、予備圧縮加圧を小さくする信号を供給するように
制御を行なう。尚、予め前記合成ポンプから第3ポンプ
に該第3ポンプの必要液量より若干多めに送液し、過剰
分をリリースする定圧リリース弁を第1又は第2ポンプ
室の吐出路OA又はOBと第3ポンプ室10Gの吸入路
ICとの間に設け、このリリース弁の動作圧力を前記制
御装置7で制御して、前記第3ポンプ室内と室外の圧力
を等しくするようにしてもよい。
Therefore, if the slope of the pressure waveform is rightward as shown in FIG. Control is performed to appropriately increase the moving distance of the composite plunger and to supply a signal to increase the preliminary compression pressurization. Further, as shown in FIG. 5, if the plunger is tilted to the left, the moving distance of the composite plunger is appropriately reduced to the extent that the tilt becomes zero, and control is performed to supply a signal to reduce the precompression pressurization. Let's do it. In addition, a constant pressure release valve that sends a little more liquid than the required amount of liquid from the synthetic pump to the third pump in advance and releases the excess amount is connected to the discharge path OA or OB of the first or second pump chamber. The release valve may be provided between the third pump chamber 10G and the suction passage IC, and the operating pressure of this release valve may be controlled by the control device 7 to equalize the pressures in the third pump chamber and outside.

[発明の効果] 本発明は、共通カム駆動機構により同期して作動する第
1カムと第2カムの動きにより夫々第1゜第2ポンプ室
内で第1プランジャ、第2プランジャを直線往復運動さ
せて、外部から所定混合比変化に従って外部から該第1
.第2ポンプ室内への液を吸入と該第1.第2ポンプ室
から第3ポンプ室への液の吐出を行ない、単独カム駆動
機構により作動するカムの動きにより第3ポンプ室内で
第3プランジャを直線往復移動させて、該第3ポンプ室
内に前記第1ポンプ室と第2ポンプ室が吐出した液の吸
入と外部への液の吐出を行なうように成し、且つ、前記
第3プランジャの運動により第3ポンプ至内かゲ液を外
部に吐出する工程に切換る時に該ポンプ室内の圧力が該
外部の圧力と同一になるように成しているので、第3ポ
ンプ室が液を外部に吐出する工程に切換る時に、吐出の
為に動作する第3プランジャの運動に遅れる事無く、該
運動と同時に液が室内から室外へ流れ、流路から外部へ
の単位時間当りの流出量が落ちる事は無い。従って、混
合リップルが最小となる為に、該2つの液が所定の混合
比変化に従って混合される。
[Effects of the Invention] The present invention causes the first plunger and the second plunger to linearly reciprocate within the first and second pump chambers, respectively, by the movement of the first cam and the second cam that operate synchronously by a common cam drive mechanism. Then, according to a predetermined mixture ratio change from the outside, the first
.. Suction of liquid into the second pump chamber and the first pump. The liquid is discharged from the second pump chamber to the third pump chamber, and the third plunger is linearly reciprocated within the third pump chamber by the movement of the cam operated by the independent cam drive mechanism, and the third plunger is moved into the third pump chamber. The first pump chamber and the second pump chamber are configured to suck in the discharged liquid and discharge the liquid to the outside, and the third pump discharges the liquid from inside the third pump to the outside by movement of the third plunger. Since the pressure inside the pump chamber is made to be the same as the external pressure when switching to the process of discharging liquid to the outside, the third pump chamber operates for discharging when switching to the process of discharging liquid to the outside. The liquid flows from the room to the outside simultaneously with the movement of the third plunger without delay, and the amount of outflow per unit time from the flow path to the outside does not drop. Therefore, the two liquids are mixed according to a predetermined mixing ratio change so that the mixing ripple is minimized.

又、第1ポンプと第2ポンプを同期させて溶媒の吸引と
吐出を行なわせているの、で、動作の再現性が高い。従
って、グラジェント溶出の様に、該2つの液を連続して
変化する混合比に基づいて混合する場合に、所定の混合
比変化を維持出来、定量性と再現性が向上する。
Further, since the first pump and the second pump are synchronized to suction and discharge the solvent, the reproducibility of the operation is high. Therefore, when the two liquids are mixed based on a continuously changing mixing ratio as in gradient elution, a predetermined change in the mixing ratio can be maintained, improving quantitative performance and reproducibility.

更に、本発明は、第1ポンプ及び第2ポンプが第3ポン
プに適宜加圧した液体を送る様にし、該第3ポンプが液
体を外部へ送る様にする事によって、定流量性を向上さ
せた装置において、該第1ポンプと第2ボン、ブの所定
混合比変化に従う動作を共通のカム駆動機構で制御して
いるので、圧力動作制御が簡単になる。
Furthermore, the present invention improves constant flow performance by causing the first pump and the second pump to send suitably pressurized liquid to the third pump, and by making the third pump send the liquid to the outside. In this apparatus, since the operation of the first pump, the second cylinder, and the cylinder according to a change in the predetermined mixing ratio is controlled by a common cam drive mechanism, pressure operation control is simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の送液ポンプ装置の一実施例を示したも
の、第2図、第3図、第4図は該ポンプ装置の動作の説
明を補助する為に使用した図である。 1A、1B、1C:第1.第2.第3カム2A、28.
3:第1.第2.第3歯車  4A。
FIG. 1 shows an embodiment of the liquid pump device of the present invention, and FIGS. 2, 3, and 4 are diagrams used to assist in explaining the operation of the pump device. 1A, 1B, 1C: 1st. Second. Third cam 2A, 28.
3: 1st. Second. 3rd gear 4A.

Claims (1)

【特許請求の範囲】[Claims] 共通カム駆動機構により同期して作動する第1カムと第
2カムの動きにより夫々第1、第2ポンプ室内で第1プ
ランジャ、第2プランジャを直線往復運動させて、外部
から所定混合比変化に従つて外部から該第1、第2ポン
プ室内への液を吸入と該第1、第2ポンプ室から第3ポ
ンプ室への液の吐出を行ない、単独カム駆動機構により
作動するカムの動きにより第3ポンプ室内で第3プラン
ジャを直線往復移動させて、該第3ポンプ室内に前記第
1ポンプ室と第2ポンプ室が吐出した液の吸入と外部へ
の液の吐出を行なうように成し、且つ、前記第3プラン
ジャの運動により第3ポンプ室内から液を外部に吐出す
る工程に切換る時に該ポンプ室内の圧力が該外部の圧力
と同一になるように成した送液ポンプ装置。
The movement of the first cam and the second cam, which operate synchronously by a common cam drive mechanism, causes the first plunger and the second plunger to linearly reciprocate within the first and second pump chambers, respectively, thereby causing a predetermined mixture ratio change from the outside. Therefore, the liquid is sucked into the first and second pump chambers from the outside and the liquid is discharged from the first and second pump chambers to the third pump chamber by the movement of the cam operated by the independent cam drive mechanism. The third plunger is linearly reciprocated within the third pump chamber to draw into the third pump chamber the liquid discharged by the first pump chamber and the second pump chamber, and to discharge the liquid to the outside. and a liquid feeding pump device configured such that the pressure inside the third pump chamber becomes the same as the pressure outside when switching to the step of discharging the liquid from the third pump chamber to the outside by the movement of the third plunger.
JP1843985A 1985-02-01 1985-02-01 Liquid feeding pump Pending JPS61178571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1843985A JPS61178571A (en) 1985-02-01 1985-02-01 Liquid feeding pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1843985A JPS61178571A (en) 1985-02-01 1985-02-01 Liquid feeding pump

Publications (1)

Publication Number Publication Date
JPS61178571A true JPS61178571A (en) 1986-08-11

Family

ID=11971669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1843985A Pending JPS61178571A (en) 1985-02-01 1985-02-01 Liquid feeding pump

Country Status (1)

Country Link
JP (1) JPS61178571A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510959A (en) * 1991-07-04 1993-01-19 Sanuki Kogyo Kk Compound liquid mixture feeding device for physical/ chemical machine
CN102062072A (en) * 2010-10-25 2011-05-18 江苏同济分析仪器有限公司 Liquid chromatography high-pressure parallel cam pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442446A (en) * 1977-09-12 1979-04-04 Yamauchi Rubber Ind Co Ltd Corrosion resistant wire for high tension cable and producing apparatus thereof
JPS5770976A (en) * 1980-10-18 1982-05-01 Nikkiso Co Ltd Non-pulsation metering pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442446A (en) * 1977-09-12 1979-04-04 Yamauchi Rubber Ind Co Ltd Corrosion resistant wire for high tension cable and producing apparatus thereof
JPS5770976A (en) * 1980-10-18 1982-05-01 Nikkiso Co Ltd Non-pulsation metering pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510959A (en) * 1991-07-04 1993-01-19 Sanuki Kogyo Kk Compound liquid mixture feeding device for physical/ chemical machine
CN102062072A (en) * 2010-10-25 2011-05-18 江苏同济分析仪器有限公司 Liquid chromatography high-pressure parallel cam pump

Similar Documents

Publication Publication Date Title
JP3221672B2 (en) Pump device
JP5624825B2 (en) Liquid chromatograph pump and liquid chromatograph
EP0437261B1 (en) Pump with multi-port discharge
US20040164013A1 (en) Pump for liquid chromatograph
JPS63101747A (en) Liquid chromatograph
WO1994027794A1 (en) Ultrahigh pressure control device
US20050019187A1 (en) Internal screw positive rod displacement metering pump
JP4732960B2 (en) Gradient liquid feeding method and apparatus
JPS62147066A (en) Pump device for mixing and supplying at least two component
JPS61178582A (en) Liquid feeding pump apparatus
JPH0141220B2 (en)
JPS61178571A (en) Liquid feeding pump
GB2332378A (en) Liquid chromatography valved pumping system with flow dampers
US4556367A (en) Solvent delivery system
JPS61178569A (en) Control method of liquid feeding pump
EP0085171B1 (en) Solvent delivery system
JP2504001B2 (en) Liquid transfer device
JP3342935B2 (en) Pulsation adjustment mechanism of non-pulsation pump
JP2884727B2 (en) Concentration gradient and / or flow gradient preparation device
JPH07197880A (en) Plunger type liquid supply pump
JP2001082318A (en) Reciprocating pump device
JP2013119800A (en) Plunger pump
US20230258614A1 (en) Liquid chromatograph
JP2006118374A (en) Liquid feeding system
JPH01203666A (en) Variable delivery hydraulic pump