JPS6117740A - Reciprocative engine - Google Patents

Reciprocative engine

Info

Publication number
JPS6117740A
JPS6117740A JP13663384A JP13663384A JPS6117740A JP S6117740 A JPS6117740 A JP S6117740A JP 13663384 A JP13663384 A JP 13663384A JP 13663384 A JP13663384 A JP 13663384A JP S6117740 A JPS6117740 A JP S6117740A
Authority
JP
Japan
Prior art keywords
engine
cylinder
cylinders
series
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13663384A
Other languages
Japanese (ja)
Inventor
Tatsu Kobayashi
達 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13663384A priority Critical patent/JPS6117740A/en
Publication of JPS6117740A publication Critical patent/JPS6117740A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/22Compensation of inertia forces
    • F16F15/24Compensation of inertia forces of crankshaft systems by particular disposition of cranks, pistons, or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To accomplish an engine with low vibration by arranging cylinders with different dias. in series, and by eliminating the inertia force and inertia moment to be generated by the weight of reciprocating part so far as calculated output is concerned. CONSTITUTION:If the engine has three cylinders in series, for example, No.1 and 3 cylinders 1, 3 are given the same dia. while No.2 cylinder 2 is made in a diameter 2-1/2 as large as the abovementioned. Thereby the weight of reciprocating part of No.2 cylinder 2 can be comparatively easily decided to the amount equal to the sum of No.1 and 3 cylinders 1, 3. Thus the engine is free from generation of inertia force and moment.

Description

【発明の詳細な説明】 本発明は往復動機関に関する。[Detailed description of the invention] The present invention relates to a reciprocating engine.

いわゆるレシン0口機関において往復運動部分重量によ
り生じる慣性力及び慣性偶力は直列エン・シンでは次の
(6) 、 (7)式で示される。
The inertial force and inertial couple generated by the reciprocating partial weight in a so-called resin zero-mouth engine are expressed by the following equations (6) and (7) for a series engine.

(1)単筒エンジンの往復運動部分質量により生じる慣
性力を第1図を参照して求める。図において。
(1) Determine the inertia force generated by the reciprocating partial mass of the single-cylinder engine with reference to FIG. In fig.

θ:クランク軸の回転角、z:慣性力の方向、上方を正
とする。r:クランク半径、t:コネクチングロッド長
さ、λ= r/L 、ω:クランク軸の回転角速度とし
、ピストンの変位、速度、加速度を次に示す。
θ: rotation angle of the crankshaft, z: direction of inertial force, upward is positive. r: crank radius, t: connecting rod length, λ=r/L, ω: rotational angular velocity of the crankshaft, and the displacement, velocity, and acceleration of the piston are shown below.

変位X=’r〔(1−可θ)+4−(1−謀)〕・・・
(1)各次数に級数展開して整理すると X= rω2 Σq i 釦θ           
 山・・・・・・由・川・・(4)i=1 はに9,1=□1,2:λ+y+肢旦 、 λ33λ5 q3=o・ q4°=4−了「 9λ5 q5=0・ q6”” 128 従って、往復運動部分の質量mによる第1次慣性力は次
のようになる。
Displacement X='r [(1-possible θ)+4-(1-plot)]...
(1) Expanding the series to each order and organizing it: X = rω2 Σq i button θ
Mountain...Yu・River...(4) i=1 Hani9,1=□1,2:λ+y+Shidan, λ33λ5 q3=o・ q4°=4− 」 9λ5 q5=0・q6"" 128 Therefore, the first inertial force due to the mass m of the reciprocating part is as follows.

F7.、=m’r’ω”ql(IllSjθ=・・−=
−(5)(2)直列エンジンの上下方向慣性力F2及び
y軸まわシの偶力Myを第2図(a) 、 (b)を参
照して求める。
F7. ,=m'r'ω"ql(IllSjθ=...-=
-(5) (2) Find the vertical inertia force F2 of the series engine and the y-axis rotational couple My with reference to FIGS. 2(a) and (b).

図において、θ:第1クランクの回転角、前方から見て
右回りを正とする。αj:第1クランクに対し3番目ク
ランクの位相、2j:クランク中心から第3番目クラン
クまでの距離(X座標)とし。
In the figure, θ is the rotation angle of the first crank, with clockwise rotation being positive when viewed from the front. αj: Phase of the third crank relative to the first crank, 2j: Distance (X coordinate) from the crank center to the third crank.

上下方向1次慣性力Fziは単筒エンジンの(5)式を
合成して。
The vertical primary inertia force Fzi is obtained by combining equation (5) for a single-cylinder engine.

FZ l ”” m’ r ・O) 2q iΣcas
 i (θ十αj)  −−・・−・−(6)コー1 y軸まわり、1次偶力は(6)式に距離tjを考慮して
FZ l ”” m' r ・O) 2q iΣcas
i (θ ten αj) −−・・−・−(6) Co 1 Around the y axis, the primary couple is calculated by considering the distance tj in equation (6).

Myi二m’r’ω2qlΣtjcost(θ+αj)
−1・=−(7)J=1 上記(6) 、 (7)式で示される慣性力、慣性偶力
は。
Myi2m'r'ω2qlΣtjcost(θ+αj)
−1・=−(7) J=1 The inertial force and inertial couple shown in the above equations (6) and (7) are as follows.

いかに多気筒にしても、あるいはシリンダ配列を■形配
列に変え九としても打消し得ないことが知られている。
It is known that no matter how many cylinders there are, or even if the cylinder arrangement is changed to a square arrangement (9), it cannot be overcome.

事実レジゾロ機関ではこのため振動が太きいという欠点
は周知の通りである。また外装的にいわゆるパランサを
配して振動対策をしている例もあるが、高価かつ低減効
果も完全ではない。
In fact, it is well known that Regisoro engines have the disadvantage of large vibrations. In addition, there are cases where a so-called parancer is installed on the exterior to prevent vibration, but it is expensive and the reduction effect is not perfect.

本発明の目的は、簡単な構造で上記欠点を排除できる往
復動機関を提供することであり、その特徴とするところ
は、径の異なるシリンダを直列に配置したことである。
An object of the present invention is to provide a reciprocating engine that can eliminate the above-mentioned drawbacks with a simple structure, and its feature is that cylinders with different diameters are arranged in series.

この場合は、往復運動部分重量により生じる慣性力及び
慣性偶力を計算上全くゼロにすることができる。
In this case, the inertial force and inertial couple caused by the weight of the reciprocating part can be calculated to be completely zero.

本発明はエンジン、コンゾレッサ、ポンプに適用できる
The present invention can be applied to engines, consoles, and pumps.

第3図(a)は本発明による1実施例の3気筒機関を示
す正面図、第3図(b)はその斜視図である。
FIG. 3(a) is a front view showing a three-cylinder engine according to an embodiment of the present invention, and FIG. 3(b) is a perspective view thereof.

図において、1は第1気筒、2は第2気筒、3は第3気
筒、4はクランク軸である。
In the figure, 1 is the first cylinder, 2 is the second cylinder, 3 is the third cylinder, and 4 is the crankshaft.

第1.第3気筒は同位相で、第2気筒の位相はそれらよ
り180°ずれている。座標系及び記号は前述のものと
同じである。
1st. The third cylinder is in the same phase, and the second cylinder is out of phase by 180 degrees. The coordinate system and symbols are the same as above.

先ず、上下方向1次慣性力Fziは(6)式にあてはめ
First, the vertical primary inertia force Fzi is applied to equation (6).

F、、=rω2qiΣmjcosi(θ十αj)j=1 =m1rω2qicos(io)+m2rω2qico
si(θ+π)十m3rω2q 1cos(i f)’
F,,=rω2qiΣmjcosi(θtenαj)j=1 =m1rω2qicos(io)+m2rω2qico
si(θ+π) 10m3rω2q 1cos(if)'
.

−(m 、十m 3  m 2 ) 1’ω2qico
s(io)   ・・・・・・・・・・・・・・・(6
′)次にy軸まわりi次偶力は部間距離をtとすると、
(7)式にあてはめて。
-(m, 10m3m2) 1'ω2qico
s(io) ・・・・・・・・・・・・・・・(6
') Next, for the i-th couple around the y-axis, let the distance between the parts be t,
Apply to equation (7).

My1= m、rω2qiAcos(io)−m3rω
2q 1deas (io)  ・−・・−(7’)こ
こで+ ml + m3 =m2 、かつml−m3と
なるように定めると、明らかに(6’) 、 (7’)
式よりF、 = My、 = 0 となり、総ての次数で慣性力及び慣性偶力を全く0とす
ることが出来る。
My1= m, rω2qiAcos(io)−m3rω
2q 1deas (io) ・-・・-(7') Here, if we set + ml + m3 = m2 and ml-m3, obviously (6'), (7')
From the formula, F, = My, = 0, and the inertial force and inertial couple can be completely zero in all orders.

いま2例えば直列3気筒機関において、第1゜第3筒を
同径とし、第2筒をそれらの6倍の径とすれば、比較的
容易に第2筒の往復運動部分重量を第1.第3筒の和と
なるように定めることは可能であって、慣性力及び慣性
偶力が全く生じないエンノ/とすることができる。また
第2筒を第1゜第3筒の0倍としたことにより、各筒ガ
ス圧カが同じとすれば、トルク変動も2気筒機関と同程
度の極めて低振動の機関を得ることができる。なお。
For example, in an in-line three-cylinder engine, if the first and third cylinders are made the same diameter, and the second cylinder is made six times the diameter, it is relatively easy to reduce the weight of the reciprocating portion of the second cylinder to the first. It is possible to set it so that it is the sum of the third cylinders, and it is possible to set the cylinder so that it is the sum of the third cylinders, and it can be set as an engine in which no inertial force or inertial couple occurs. In addition, by setting the second cylinder to 0 times that of the first and third cylinders, if the gas pressure in each cylinder is the same, it is possible to obtain an extremely low-vibration engine with torque fluctuations on the same level as a two-cylinder engine. . In addition.

ここには直列3気筒の例を示したが7さらに多気筒の例
も考えられる。
Although an example of an in-line three-cylinder system is shown here, an example of a multiple-cylinder system is also conceivable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は単筒エンジンを示す説明図、第2図(、)は直
列エンジンを示す正面図、第2図(b)はその斜視図、
第3図(、)は本発明にょる1実施例の3気筒機関を示
す正面図、第3図(b)はその斜視図である。 1.2.3・・・気筒、4・・・クランク軸。 1 ′ ′A=1図 第2図(0)          第2記(ぷ)(Q)
                (1))#3図
Fig. 1 is an explanatory diagram showing a single cylinder engine, Fig. 2 (,) is a front view showing an in-line engine, and Fig. 2 (b) is a perspective view thereof.
FIG. 3(,) is a front view showing a three-cylinder engine according to an embodiment of the present invention, and FIG. 3(b) is a perspective view thereof. 1.2.3...Cylinder, 4...Crankshaft. 1 ′ ′A=1 Figure 2 (0) 2nd paragraph (P) (Q)
(1)) #3 Figure

Claims (1)

【特許請求の範囲】[Claims] 1、シリンダ径の異なるシリンダを直列に配置したこと
を特徴とする往復動機関。
1. A reciprocating engine characterized by cylinders having different diameters arranged in series.
JP13663384A 1984-07-03 1984-07-03 Reciprocative engine Pending JPS6117740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13663384A JPS6117740A (en) 1984-07-03 1984-07-03 Reciprocative engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13663384A JPS6117740A (en) 1984-07-03 1984-07-03 Reciprocative engine

Publications (1)

Publication Number Publication Date
JPS6117740A true JPS6117740A (en) 1986-01-25

Family

ID=15179868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13663384A Pending JPS6117740A (en) 1984-07-03 1984-07-03 Reciprocative engine

Country Status (1)

Country Link
JP (1) JPS6117740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2672519C2 (en) * 2016-09-26 2018-11-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Горский государственный аграрный университет" Three-cylinder device for transforming rotation movement into reciprocating one and vice versa

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2672519C2 (en) * 2016-09-26 2018-11-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Горский государственный аграрный университет" Three-cylinder device for transforming rotation movement into reciprocating one and vice versa

Similar Documents

Publication Publication Date Title
JPS58128546A (en) Flywheel for use in four-cylinder engine arranged in series
JPS6117740A (en) Reciprocative engine
GB2104971A (en) Balancer structure in three-cylinder engines
US4519344A (en) V-type internal combustion engine
GB2104970A (en) Balancer structure in three-cylinder engines
JP2772769B2 (en) V-type 8-cylinder engine
JPS596274Y2 (en) Internal combustion engine balancer device
JPS639796Y2 (en)
JPH0118914Y2 (en)
JPH0125796Y2 (en)
JPH034851Y2 (en)
JPS604384B2 (en) In-line 4-cylinder engine with secondary balancer device
JPH0223741B2 (en)
JPH08193643A (en) Balancer for v-type eight-cylinder four-cycle engine
WO2021171405A1 (en) V8 engine
US20170082171A1 (en) V-shaped engine
JPS6145091B2 (en)
JPS60146934A (en) Horizontal opposed 3-cylindered engine
JPS5839836A (en) Balancer for three-cylinder engine
JPS643005Y2 (en)
JPS601312Y2 (en) balancer
JPH04312241A (en) In-line two cylinder engine with single shaft balancer
SU794540A1 (en) Integrating accelerometer
JPS597643Y2 (en) Secondary balancer for reciprocating engines
JPS6410701B2 (en)