JPS61177353A - Wear resistant fiber reinforced metallic composite material - Google Patents

Wear resistant fiber reinforced metallic composite material

Info

Publication number
JPS61177353A
JPS61177353A JP1835285A JP1835285A JPS61177353A JP S61177353 A JPS61177353 A JP S61177353A JP 1835285 A JP1835285 A JP 1835285A JP 1835285 A JP1835285 A JP 1835285A JP S61177353 A JPS61177353 A JP S61177353A
Authority
JP
Japan
Prior art keywords
wear
alumina
composite material
fibers
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1835285A
Other languages
Japanese (ja)
Other versions
JPH0570688B2 (en
Inventor
Masaharu Oshima
正晴 大島
Harumichi Hino
治道 樋野
Toshihiro Minaki
皆木 敏宏
Kenichi Shibata
研一 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Nichias Corp
Original Assignee
Nissan Motor Co Ltd
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Nichias Corp filed Critical Nissan Motor Co Ltd
Priority to JP1835285A priority Critical patent/JPS61177353A/en
Publication of JPS61177353A publication Critical patent/JPS61177353A/en
Publication of JPH0570688B2 publication Critical patent/JPH0570688B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To obtain a wear resistant fiber reinforced metallic composite material for a sliding member having superior strength, toughness and wear resistance and wearing hardly an opposite member during sliding by dispersing alumina fibers having a high alpha-alumina content as a reinforcing material in a light metal such as Al or Mg. CONSTITUTION:Alumina fibers contg. >=60wt% alpha-alumina, colloidal silica and an org. binder such as starch are dispersed in water. The resulting slurry is vacuum-molded to form a discoidal fibrous molded body 1, and this molded body 1 is baked at 1,200 deg.C for 20min and put in a metallic mold 3. A light metal such as Al or Mg or an alloy thereof is melted, and the molten metal 5 is charged into the mold 3 and solidified under pressure applied by a plunger 6. The alumina fibers as a reinforcing material and dispersed in the light metal or alloy as a matrix, and a wear resistant fiber reinforced metallic composite material for a sliding member having superior wear resistance, strength and toughness and capable of reducing the extent of wear of an opposite member during sliding is obtd.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、繊維強化金属型複合材料に関し、とくに摺
動特性に優れ、例えば自動車用摺動部材として好適に利
用することができる耐摩耗性繊維強化金属型複合材料に
関するものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a fiber-reinforced metal composite material, which has particularly excellent sliding properties and is suitable for use as a sliding member for automobiles, for example. The present invention relates to a wear-resistant fiber-reinforced metal composite material that can

(従来の技術) 従来の#I維強化金属型複合材料としては、例えば、炭
素、アルミナ、シリカ、炭化ケイ素、窒化ケイ素、ガラ
ス、アラミドなどの高分子am等の高強度、高弾性を有
する繊維あるいはウィスカを補強材とし、この補強材を
アルミニウムやマグネシウム等の軽金属マトリックス中
に複合分散させたものがある。そして、このような#l
線維強化金属複合材料に関しては、例えば、特開昭58
−93835〜6号、特開昭58−93838号、特開
昭58−93840〜1号、特開昭58−93948号
、特開昭59−70734〜6号等がある。
(Prior Art) Conventional #I fiber-reinforced metal composite materials include, for example, fibers having high strength and high elasticity such as polymer AM such as carbon, alumina, silica, silicon carbide, silicon nitride, glass, and aramid. Alternatively, there is one in which whiskers are used as a reinforcing material and this reinforcing material is compositely dispersed in a light metal matrix such as aluminum or magnesium. And #l like this
Regarding fiber-reinforced metal composite materials, for example, JP-A-58
JP-A-93835-6, JP-A-58-93838, JP-A-58-93840-1, JP-A-58-93948, JP-A-59-70734-6, etc.

(発明が解決しようとする問題点) 例えば、従来のアルミナ−シリカ系の繊維では、マトリ
ックスとしてのアルミニウム合金等に比べてはるかに硬
く、また製法上から由来する未繊維化部分としての球状
の粒子が繊維間に混入しているため、このようなアルミ
ナ−シリカ系の繊維を強化材とする複合材料は、この複
合材料と接触して相対的に摺動する他の相手部材への摩
耗量を増大させるという問題点があった。そして、特に
前記繊維で強化した複合材料において、その摺動面にお
ける前記繊維の面平行配向率が低ければ低いほど相手材
に対する摩耗の傾向が顕著である     ′という問
題点があった。さらに詳しく説明すれば、従来用いられ
ているアルミナ−シリカ系の繊維においては、A l 
203 / S i O2の組成比(重量%)がほぼ1
であり、常態ではガラス質であって、約1000℃で結
晶化が始まり、ムライト(3A又203−2SiO□)
が晶出し、さらに高温においてはクリストバライト(S
 i 02 )が析出する。また、市販されている従来
の多結晶質アルミナ繊維は、AfL203含有量が70
〜95重量%程度の範囲にあり、A文203含有量の低
い繊維の鉱物組成はムライトが主体であり、高アルミナ
質の繊維においてもα−A!L203の含有率が低く、
γ、δ、0−Alz03等の中間アルミナ結晶が主体で
ある。したがって、これらの多結晶質アルミナ繊維が使
用されている従来の繊維強化金属型複合材料にあっては
、それ自体のみならずとくに相手材に対する耐摩耗特性
がよくないという問題点があった。
(Problems to be Solved by the Invention) For example, conventional alumina-silica fibers are much harder than aluminum alloys as a matrix, and also have spherical particles as unfiberized parts due to the manufacturing method. is mixed between the fibers, so composite materials reinforced with alumina-silica fibers reduce the amount of wear on other mating members that come into contact with and slide relative to the composite material. There was a problem with increasing the amount. Particularly in composite materials reinforced with the fibers, there is a problem in that the lower the plane-parallel orientation ratio of the fibers on the sliding surface, the more pronounced the tendency for wear against the mating material. To explain in more detail, in the conventionally used alumina-silica fibers, Al
203/S i O2 composition ratio (weight%) is approximately 1
It is glassy under normal conditions, begins to crystallize at about 1000℃, and becomes mullite (3A or 203-2SiO□).
crystallizes, and at higher temperatures cristobalite (S
i 02 ) is precipitated. Furthermore, commercially available conventional polycrystalline alumina fibers have an AfL203 content of 70
~95% by weight, and the mineral composition of fibers with low A203 content is mainly mullite, and even high alumina fibers have α-A! The content of L203 is low,
Intermediate alumina crystals such as γ, δ, and 0-Alz03 are the main materials. Therefore, conventional fiber-reinforced metal-type composite materials in which these polycrystalline alumina fibers are used have a problem in that they have poor abrasion resistance not only to themselves but especially to the mating material.

この発明は、上記したような従来の問題点に着目してな
されたもので、一般的な繊維強化金属型複合材料として
の特性、例えば、強度、靭性等に優れているのはもちろ
んのこと、特に摺動部材として使用した場合において、
自分自身の耐摩耗性に優れているばかりでなく、とりわ
け相手部材に対する攻撃性が小さく、相手部材の摩耗量
を著しく少なくすることが可能である繊維強化金属型複
合材料を提供することを目的とするもの、である。
This invention was made by focusing on the above-mentioned conventional problems, and it not only has excellent properties as a general fiber-reinforced metal composite material, such as strength and toughness, but also Especially when used as a sliding member,
The purpose of the present invention is to provide a fiber-reinforced metal composite material that not only has excellent wear resistance on its own, but also has low aggressiveness toward other members, making it possible to significantly reduce the amount of wear on the other members. It is something to do.

[発明の構成] (問題点を解決するための手段) この発明は、上記したような従来の問題点を解決するも
のであって、α−アルミナの含有率が60重量%以上で
あるアルミナ繊維を強化材として使用し、前記強化材を
アルミニウムやマグネシウム等の軽金属(合金を含む)
マトリックス中に複合分散させたことを特徴とするもの
である。そして、より望ましくは、特に摺動部材として
使用する場合に、前記複合材料の摺動面における前記強
化用繊維の面平行配向率が50%以上、さらに望ましく
は70%以上となるように配向させたことを特徴とする
ものである。
[Structure of the Invention] (Means for Solving the Problems) The present invention solves the conventional problems as described above, and provides an alumina fiber having an α-alumina content of 60% by weight or more. is used as a reinforcing material, and the reinforcing material is a light metal (including alloy) such as aluminum or magnesium.
It is characterized by being compositely dispersed in a matrix. More preferably, especially when used as a sliding member, the reinforcing fibers are oriented so that the plane-parallel orientation ratio of the reinforcing fibers on the sliding surface of the composite material is 50% or more, more preferably 70% or more. It is characterized by:

この発明において使用される強化材としてのアルミナ繊
維は、α−アルミナの含有率が60重量%以上のもので
ある。ここで、α−アルミナの含有率を60重量%以上
としたのは、アルミナにおける種々の結晶構造のうちα
−アルミナが最も安定な構造を有しているとともに、硬
さや弾性率が高く、摺動部材として使用した場合に自分
自身の耐摩耗性が良好であると同時に、相手材への攻撃
性が小さく、相手部材の摩耗量を少なくするのに有効で
あって、このよ″うなα−アルミナの効果を得るために
、α−アルミナの含有率を60重量%以上としたもので
ある。
The alumina fiber used as a reinforcing material in this invention has an α-alumina content of 60% by weight or more. Here, the reason why the content of α-alumina is set to 60% by weight or more is because of the α-alumina among various crystal structures in alumina.
-Alumina has the most stable structure, has high hardness and elastic modulus, and when used as a sliding member, has good wear resistance and is less aggressive to the other material. It is effective in reducing the amount of wear on the mating member, and in order to obtain such an effect of α-alumina, the content of α-alumina is set to 60% by weight or more.

また、マトリックスとしての金属には、アルミニウムや
マグネシウムなどの軽金属(合金を含む)が使用される
が、特に細かくは限定されない。
Furthermore, light metals (including alloys) such as aluminum and magnesium are used as the metal for the matrix, but are not particularly limited.

(実施例1) この実施例では、第1表に示すA−Dの強化用アルミナ
繊維を用いて耐摩耗性繊維強化金属型複合材料を製造し
た。なお、第1表において、A。
(Example 1) In this example, a wear-resistant fiber-reinforced metal composite material was manufactured using reinforcing alumina fibers A to D shown in Table 1. In addition, in Table 1, A.

BはICI社製のアルミナ繊維(商品名「サフィル」)
であり、また、C,D、Eはニチアス■製のアルミナl
ilfm (商品名「ルビール」)である。
B is alumina fiber manufactured by ICI (product name "Safil")
, and C, D, and E are alumina l manufactured by Nichias ■.
ilfm (trade name "Rubeel").

そこで、最終成形体のコロイダルシリカ(日産化学■製
)および有機バインダ(でんぷん)の含有率がそれぞれ
6%および1%となるように、また、繊維かさ密度が0
.20g/c膳3となるように、上記のアルミナ繊維、
コロイダルシリカおよび有機バインダを水溶液中に分散
させて均一なスラリーを製造する0次いで、このスラリ
ーを使用し、真空成形法によって、直径98m脂X厚さ
32鵬脂の第1図に示すような円盤状の繊維成形体1を
作成し、さらにこの繊維成形体1を1200℃×20厘
inの条件で焼成することによって、無機バインダシリ
カにより結合成形した。この場合、第1図に示すように
、繊#I成形体1中における個々の強化繊維2は、X−
Y平面内においてはランダムに配向されており、これが
Z方向に積重ねられた状態になっているものである。
Therefore, we made sure that the contents of colloidal silica (manufactured by Nissan Chemical ■) and organic binder (starch) in the final molded body were 6% and 1%, respectively, and that the fiber bulk density was 0.
.. The above alumina fiber, so that it is 20g/c 3
A uniform slurry is produced by dispersing colloidal silica and an organic binder in an aqueous solution.Then, this slurry is used to form a disc as shown in Figure 1 with a diameter of 98 m and a thickness of 32 m by vacuum forming. A fibrous molded body 1 having the shape of the shape was prepared, and this fibrous molded body 1 was further baked under the conditions of 1200° C. x 20 cm to bond and mold with the inorganic binder silica. In this case, as shown in FIG. 1, the individual reinforcing fibers 2 in the fiber #I molded body 1
They are randomly oriented in the Y plane, and are stacked in the Z direction.

次いで、第2図に示すように、前記繊維成形体1を金型
装置3のモールドキャビティ4内に配置し、前記モール
ドキャビティ4内にアルミニウム合金(J I S規格
 AC8A合金)の溶湯(湯温800℃)5を注湯し、
次いで前記溶湯5をプランジャ6により800 kgf
 / am2の圧力で加圧し、この加圧状態を溶湯5が
完全に凝固するまで保持した。このようにして、外径1
00mm、高さ70■の円柱状の凝固体を加圧鋳造し、
さらに前記凝固体に対して熱処理(T6処理)を施して
、第3図に示すように、局部的にアルミナ繊維2よりな
る強化材8を金属マトリックス9中に複合分散させた繊
維強化金属型複合材料10を製造した。
Next, as shown in FIG. 2, the fiber molded body 1 is placed in a mold cavity 4 of a mold device 3, and a molten metal (hot water temperature) of an aluminum alloy (JIS standard AC8A alloy) is placed in the mold cavity 4. 800℃) 5.
Next, the molten metal 5 is heated to 800 kgf by the plunger 6.
/ am2, and this pressurized state was maintained until the molten metal 5 was completely solidified. In this way, the outer diameter 1
A cylindrical solidified body with a diameter of 00 mm and a height of 70 cm was pressure cast,
Furthermore, the solidified body is subjected to heat treatment (T6 treatment), and as shown in FIG. Material 10 was produced.

次いで、上記のようにして製造した複合材料10のうち
、強化材8によって強化された部分から5X5X10■
層(先端R;7mm)の第4図に示す形状の摩耗試験片
11を作成した。このとき、摩耗試験片11は第1表に
示す各試料毎に、摩耗面における強化用繊維の面平行配
向率が、それぞれ10%以下および90%以上となるよ
うに作成した。
Next, from the part reinforced with the reinforcing material 8 of the composite material 10 produced as described above, 5X5X10
A wear test piece 11 having a layer (tip radius: 7 mm) and having the shape shown in FIG. 4 was prepared. At this time, the wear test piece 11 was prepared for each sample shown in Table 1 so that the plane-parallel orientation ratio of reinforcing fibers on the worn surface was 10% or less and 90% or more, respectively.

なお°、この明細書において述べる強化用繊維の面平行
配向率とは、前記強化用繊維によって強化された部分に
おける任意の面を横切る前記無機質繊維の楕円断面の短
径に対する長径の比が3以上である繊維の数をその面を
横切る繊維の総数にて除し、その値を100倍した′も
のである。すなわち、 面平行配向率 である、そして、この面平行配向率は、金属顕微鏡を通
して得られる像(倍率800倍)をコンピュータにより
処理して求めた。
In this specification, the plane-parallel orientation ratio of the reinforcing fibers means that the ratio of the major axis to the minor axis of the elliptical cross section of the inorganic fibers that crosses any plane in the portion reinforced by the reinforcing fibers is 3 or more. The number of fibers in the plane is divided by the total number of fibers crossing the surface, and the value is multiplied by 100. That is, this is the plane-parallel orientation rate, and this plane-parallel orientation rate was determined by processing an image (magnification: 800 times) obtained through a metallurgical microscope using a computer.

次に、上記のようにして作成した各摩耗試験片11をデ
ィスク型摩擦摩耗試験機に3本1組で順次セットし、相
手部材である片状黒鉛鋳鉄(JIS規格 FC25相当
材)製ディスク試験材の表面に接触させ、各試験片の接
触部に、80℃に温度調整したモータオイル(8石モー
タオイルC)を供給しつつ、押付力150kg、すべり
速度1 、5m 1secで10分間摩耗試験片11を
回転させる摩耗試験を行った。
Next, each of the wear test pieces 11 prepared as described above was sequentially set in a set of three pieces in a disk-type friction and wear tester, and a disk test made of flake graphite cast iron (JIS standard FC25 equivalent material) as a mating member was performed. A wear test was performed for 10 minutes at a pressing force of 150 kg, sliding speed of 1, and 5 m for 1 sec while supplying motor oil (8-stone motor oil C) whose temperature was adjusted to 80°C to the contact area of each test piece. A wear test was conducted in which the piece 11 was rotated.

この摩耗試験の結果を第5図に示す。The results of this wear test are shown in FIG.

第5図において、右半分は3木の摩耗試験片11の先端
R7の摩耗面8!(l■2)を測定した結果の平均値を
示しており、左半分は相手部材であるディスク試験材の
6ケ所の摩耗断面積(X 10−30−3tsを測定し
た結果の平均値を表わしている。この面積測定は、試験
片毎に求めた。
In FIG. 5, the right half is the worn surface 8 of the tip R7 of the three-wood wear test piece 11! The left half shows the average value of the results of measuring the wear cross-sectional area (X 10-30-3ts) at six locations on the disk test material, which is the mating member. This area measurement was determined for each specimen.

なお、第5図において90%以上、10%以下はその面
平行配向率を持つ摩耗試験片を示す。
In addition, in FIG. 5, 90% or more and 10% or less indicate wear test pieces having the plane-parallel orientation ratio.

第5図に示す結果から、アルミナ繊維によって強化され
た摩耗試験片の摩耗量は、アルミニウム合金AC8Aの
みよりなる試験片の摩耗量よ・りもかなり少なく、特に
α−アルミナの含有率が60重M%以上(供試材り、H
の場合)でかつ面平行配向率が90%以上の場合は、相
手材の摩耗が全くないことがわかる。
From the results shown in Figure 5, the wear amount of the alumina fiber-reinforced wear test piece is considerably smaller than that of the test piece made only of aluminum alloy AC8A, especially when the α-alumina content is 60%. M% or more (sample material, H
) and the plane-parallel orientation ratio is 90% or more, it can be seen that there is no wear of the mating material at all.

以上の摩耗試験の結果より、複合材料およびその相手部
材双方の摩耗量を低い値に抑えるためには、その強化材
としてのアルミナ繊維中のα−アルミナの含有率が60
重量%以上で、かつ摺動面における面平行配向率が90
%以上であることがとくに好ましい。
From the above wear test results, in order to suppress the amount of wear of both the composite material and its mating material to a low value, the content of α-alumina in the alumina fiber as a reinforcing material must be 60%.
% by weight or more, and the plane-parallel orientation rate on the sliding surface is 90
% or more is particularly preferable.

(実施例2) 次に、強化繊維かさ密度を1 、6517cm3に高め
て実施例1の場合と全く同様にして試験片A′〜E′を
製作し、摩耗試験を行った。その結果を第6図に示す。
(Example 2) Next, test specimens A' to E' were produced in exactly the same manner as in Example 1, with the reinforcing fiber bulk density increased to 1.6517 cm<3>, and abrasion tests were conducted. The results are shown in FIG.

第6図に示す結果から、摩耗試験片中の強化繊維の量を
増やしたときにも、同様に、複合材料およびその相手部
材双方の摩耗量を低い値に押えるためには、上記の強化
繊維を用いた複合材料が有効であることが解る。ただし
、このように強化繊維かさ密度を高めた場合には、自分
自身の摩耗量はより一層少なくなるが、相手部材の摩耗
量が若干増える傾向にある。したがって、このような傾
向を踏まえた使い方をすると有利である。
From the results shown in Figure 6, even when increasing the amount of reinforcing fibers in the wear test piece, in order to keep the amount of wear of both the composite material and its mating member to a low value, it is necessary to increase the amount of reinforcing fibers in the wear test piece. It can be seen that composite materials using However, when the bulk density of the reinforcing fibers is increased in this way, the amount of wear on the reinforcing fiber itself is further reduced, but the amount of wear on the mating member tends to increase slightly. Therefore, it is advantageous to use it in consideration of this tendency.

(実施例3) 次に、実施例1と全く同様の製造方法によって第1表に
示した強化繊維りを使用した繊維強化金属型複合材料1
0を製作し、第2表に示すような各種面平行配向率をも
つ摩耗試験片11を製作した。そして、摩耗試験片11
の3本を1組として順次ディスク型摩耗試験機にセット
し、JISFC25相手材よりなるディスク試験材を相
手部材として実施例1と同様の摩耗試験を行った。この
摩耗試験の結果を第7図に示す、この第7図において、
縦軸は摩耗試験片11の平均摩耗面積およびディスク試
験片の平均摩耗面積を示し、横軸は面平行配向率を示す
(Example 3) Next, fiber-reinforced metal composite material 1 using the reinforcing fibers shown in Table 1 was manufactured using the same manufacturing method as in Example 1.
0 was manufactured, and wear test pieces 11 having various plane-parallel orientation ratios as shown in Table 2 were manufactured. And wear test piece 11
A set of three pieces was sequentially set in a disc-type abrasion tester, and the same wear test as in Example 1 was conducted using a disc test material made of JISFC25 mating material as the mating member. The results of this wear test are shown in Figure 7. In Figure 7,
The vertical axis shows the average wear area of the wear test piece 11 and the average wear area of the disk test piece, and the horizontal axis shows the plane-parallel orientation rate.

第7図に示す結果より、相手部材であるディスク試験片
(Fe12)の摩耗量は、繊維の面平行配向率が50%
を越えると急激に小さくなり、70%ではほとんど摩耗
せず、90%では全く摩耗しないことが解る。また、複
合材料の摩耗は。
From the results shown in Figure 7, the amount of wear of the disk test piece (Fe12), which is the mating member, is determined by the fact that the plane-parallel orientation rate of the fibers is 50%.
It can be seen that when the value exceeds the value, the size decreases rapidly, and at 70% there is almost no wear, and at 90% there is no wear at all. Also, the wear of composite materials.

繊維の面平行配向率には依存せず、いずれも小さいこと
が解る。
It can be seen that it does not depend on the plane-parallel orientation ratio of the fibers, and that both values are small.

以上の摩耗試験結果より、複合材料および相手部材の摩
耗を小さくするためには、強化繊維の面平行配向率が5
0%以上であることが望ましく、70%以上であればさ
らに望ましいことが解る。
From the above wear test results, in order to reduce the wear of the composite material and the mating member, the plane-parallel orientation ratio of the reinforcing fibers must be 5.
It can be seen that 0% or more is desirable, and 70% or more is even more desirable.

第  2  表 (実施例4) 実施例1と全く同様の製造方法で、今度は金属マトリフ
クスッとなるアルミニウム合金JISAC8Aの代わり
にJIS  ADC12を使用し、第1表に示した強化
繊維A−Eを用いて複合強化した複合材料10を製造し
、この複合材料10からディスク試験材(外径80s層
×厚さ10mm)を製作した6次に、前記のディスク試
験材を同様に摩耗試験機にセットし、相手部材として鉄
系焼結材料(C:0.2重量%、Ni:2重量%、Cu
:0.5重量%、残部Fe 、HRB ニア0、密度:
6.8g/c■3)製の第8図に示す形状の円盤12を
接触させ、同様にして接触面圧を8kgf/c■2.す
べり速度を第9図に示すパターンにして各々1時間ずつ
前記円盤12を回転させて摩耗試験を行った。この摩耗
試験の結果を第10図に示す。
Table 2 (Example 4) Using the same manufacturing method as in Example 1, this time JIS ADC12 was used instead of the aluminum alloy JISAC8A that became the metal matrix, and the reinforcing fibers A-E shown in Table 1 were used. A reinforced composite material 10 was manufactured using the composite material 10, and a disk test material (outer diameter 80s layer x thickness 10mm) was manufactured from this composite material 10.Next, the disk test material was similarly set in the wear tester. As a mating member, iron-based sintered materials (C: 0.2% by weight, Ni: 2% by weight, Cu
: 0.5% by weight, balance Fe, HRB near 0, density:
A disk 12 made of 6.8 g/c■3) having the shape shown in FIG. A wear test was conducted by rotating the disk 12 for one hour each with the sliding speed in the pattern shown in FIG. 9. The results of this wear test are shown in FIG.

第10図において、右半分は相手部材である円盤12の
摩耗量(ILm)を20ケ所側定した結果の平均値を示
しており、左半分は複合材料であるディスク試験材の摩
耗断面積(X 10−3me2)を6ケ所測定した結果
の平均値を示している。
In FIG. 10, the right half shows the average value of the wear amount (ILm) of the disk 12, which is the mating member, determined at 20 points, and the left half shows the wear cross-sectional area (ILm) of the disk test material, which is a composite material. The average value of the results of measuring X 10-3me2) at six locations is shown.

第10図の結果より、アルミナ繊維にて強化されたディ
スク試験材は、JIS  ADC12合金のみの場合よ
りも摩耗量は著しく小さく、特にα−アルミナ含有率が
66重量%以上(D、Eの場合)でかつ繊維の面平行配
向率が90%以上の場合は、相手部材である円盤の摩耗
も極めて少ないことが明らかであり、実施例1と同様の
結果となっている。
From the results shown in Figure 10, the wear amount of the disk test material reinforced with alumina fibers is significantly smaller than that of JIS ADC12 alloy alone, especially when the α-alumina content is 66% by weight or more (in the case of D and E). ) and the plane-parallel orientation ratio of the fibers is 90% or more, it is clear that the wear of the disk serving as the mating member is extremely small, and the results are similar to those of Example 1.

(実施例5) 次に、前述の実施例1において使用した第1表に示した
強化m維りおよびEをそれぞれ強化材8として用い、マ
グネシウム合金(JISAZ91)を金属マトリックス
9とする繊維強化金属型複合材料10を実施例1の場合
と全く同様の要領にて作成し、それらの複合材料より実
施例1と同様の摩耗試験片を作成した。
(Example 5) Next, a fiber-reinforced metal was prepared using the reinforcing m fibers and E shown in Table 1 used in the above-mentioned Example 1 as the reinforcing material 8, and using a magnesium alloy (JISAZ91) as the metal matrix 9. A mold composite material 10 was created in exactly the same manner as in Example 1, and wear test pieces similar to those in Example 1 were created from these composite materials.

次いで、これらの摩耗試験片について、片状黒鉛鋳鉄(
JIS  FC25相当材)により製作したディスク試
験材を相手部材とする摩耗試験゛を同様にしてディスク
型摩耗試験機により行ったところ、強化繊維り、Hによ
り複合強化された摩耗試験片は、マグネシウム合金のみ
よりなる摩耗試験片に比べて、摩耗試験片およびディス
ク試験材の双方の摩耗量が著しく小さいことが認められ
た。
Next, for these wear test pieces, flake graphite cast iron (
When a wear test using a disc test material manufactured using JIS FC25 (equivalent to JIS FC25 material) as a mating member was similarly carried out using a disc-type wear tester, the wear test piece composite-reinforced with reinforcing fibers and H It was observed that the wear amount of both the wear test piece and the disk test material was significantly smaller than that of the wear test piece made of only the disk.

また、面平行配向率の違いにより相手部材の摩耗量が異
なる原因を種々検討した結果、電子顕微鏡等の観測手段
によれば、おそらく繊維内部と表面とで結晶形態が異な
るためと推測された。
Further, as a result of various studies on the causes of the difference in the amount of wear of the mating member due to the difference in the plane-parallel orientation ratio, it was assumed that, according to observation means such as an electron microscope, it was probably due to the difference in crystal morphology between the inside of the fiber and the surface.

[発明の効果] 以上説明してきたように、この発明による耐摩耗性繊維
強化金属型複合材料は、α−アルミナの含有率が60重
量%以上であるアルミナ繊維を強化材とし、前記強化材
を金属マトリックス中に複合分散させたものであるから
、一般的な繊維強化金属型複合材料としての特性、例え
ば、強度、靭性等に優れているのはもちろんのこと、特
に摺動部材として使用した場合において、自分自身の耐
摩耗性に優れているばかりでなく、とりわけ相手部材に
対する攻撃性が小さく、相手部材の摩耗量を著しく少な
くすることが可能であり1機械構造用部品における摺動
用材料としてとくに優れた特性を示すものであるという
非常に優れた効果がもたらされる。
[Effects of the Invention] As explained above, the wear-resistant fiber-reinforced metal composite material according to the present invention uses alumina fibers containing α-alumina of 60% by weight or more as a reinforcing material, and the reinforcing material is Since it is compositely dispersed in a metal matrix, it not only has excellent properties as a general fiber-reinforced metal composite material, such as strength and toughness, but especially when used as a sliding member. Not only does it have excellent wear resistance, but it is also less aggressive to the other member, making it possible to significantly reduce the amount of wear on the other member. A very excellent effect is brought about by exhibiting excellent properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例において製作した繊維成形体
の斜面説明図、第2図は前記繊維成形体を用いて繊維強
化金属型複合材料を製造するのに使用した金型装置の断
面説明図、第3図は第1図に示す繊維成形体により部分
的に強化した繊維強化金属型複合材料の斜面説明図、第
4図は第3図の複合材料から製作した摩耗試験片の説明
図。 第5図および第6図は各々この発明の実施例1および実
施例2において相手部材を片状黒鉛鋳鉄とした場合にお
ける摩耗試験の結果を示すグラフ、第7図はこの発明の
実施例3において行った摩耗試験の結果を示すグラフ、
第8図はこの発明の実施例4において行った摩耗試験の
相手部材である円盤の斜面説明図、第9図は同じ〈実施
例4において行った摩耗試験のすべり速度パターンを示
す説明図、第1θ図は同じ〈実施例4において相手部材
を鉄系焼結材とした時の摩耗試験結果を示すグラフであ
る。 8・・・強化材、 9・・・金属マトリックス、 10・・・繊維強化金属型複合材料。 特許出願人   日産自動車株式会社 特許出願人   ニチアス株式会社 代理人弁理士  小  塩    豊 2       第7図 ε 0 20 40 60 80  100(Z)in74
ゴ配向申 第9図 θう閏(方)
Fig. 1 is an explanatory diagram of a slope of a fiber molded body produced in an example of the present invention, and Fig. 2 is a cross-sectional view of a mold device used to manufacture a fiber-reinforced metal composite material using the fiber molded body. Figure 3 is an explanatory diagram of the slope of the fiber-reinforced metal type composite material partially reinforced with the fiber molded body shown in Figure 1, and Figure 4 is an explanatory diagram of the wear test piece made from the composite material of Figure 3. . FIGS. 5 and 6 are graphs showing the results of wear tests when flake graphite cast iron was used as the mating member in Example 1 and Example 2 of the present invention, respectively, and FIG. 7 is a graph showing the results of wear tests in Example 3 of the present invention A graph showing the results of the wear test conducted,
FIG. 8 is an explanatory diagram of the slope of the disk, which is the counterpart member in the wear test conducted in Example 4 of the present invention, and FIG. 9 is an explanatory diagram showing the sliding speed pattern of the wear test conducted in Example 4. The 1θ diagram is a graph showing the results of the wear test in the same Example 4 when the mating member was made of iron-based sintered material. 8... Reinforcement material, 9... Metal matrix, 10... Fiber reinforced metal type composite material. Patent applicant Nissan Motor Co., Ltd. Patent applicant Nichias Co., Ltd. Patent attorney Yutaka Oshio 2 Figure 7 ε 0 20 40 60 80 100 (Z) in 74
Go orientation figure 9 θ leap (way)

Claims (1)

【特許請求の範囲】[Claims] (1)α−アルミナの含有率が60重量%以上であるア
ルミナ繊維を強化材とし、前記強化材を軽金属マトリッ
クス中に複合分散させたことを特徴とする耐摩耗性繊維
強化金属型複合材料。
(1) A wear-resistant fiber-reinforced metal composite material, characterized in that the reinforcing material is alumina fiber containing 60% by weight or more of α-alumina, and the reinforcing material is compositely dispersed in a light metal matrix.
JP1835285A 1985-01-31 1985-01-31 Wear resistant fiber reinforced metallic composite material Granted JPS61177353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1835285A JPS61177353A (en) 1985-01-31 1985-01-31 Wear resistant fiber reinforced metallic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1835285A JPS61177353A (en) 1985-01-31 1985-01-31 Wear resistant fiber reinforced metallic composite material

Publications (2)

Publication Number Publication Date
JPS61177353A true JPS61177353A (en) 1986-08-09
JPH0570688B2 JPH0570688B2 (en) 1993-10-05

Family

ID=11969282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1835285A Granted JPS61177353A (en) 1985-01-31 1985-01-31 Wear resistant fiber reinforced metallic composite material

Country Status (1)

Country Link
JP (1) JPS61177353A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7170220B2 (en) 2004-10-15 2007-01-30 Dai Nippon Printing Co., Ltd. Shadow mask with slots having a front side opening with an inclined from side edge
US7301267B2 (en) 2004-10-18 2007-11-27 Dai Nippon Printing Co., Ltd. Shadow mask having a slot structure that permits electron beams to enter at increased angles
CN111575542A (en) * 2020-05-03 2020-08-25 上海工程技术大学 Amorphous reinforced aluminum alloy composite material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893841A (en) * 1981-11-30 1983-06-03 Toyota Motor Corp Fiber reinforced metal type composite material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893841A (en) * 1981-11-30 1983-06-03 Toyota Motor Corp Fiber reinforced metal type composite material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7170220B2 (en) 2004-10-15 2007-01-30 Dai Nippon Printing Co., Ltd. Shadow mask with slots having a front side opening with an inclined from side edge
US7301267B2 (en) 2004-10-18 2007-11-27 Dai Nippon Printing Co., Ltd. Shadow mask having a slot structure that permits electron beams to enter at increased angles
CN111575542A (en) * 2020-05-03 2020-08-25 上海工程技术大学 Amorphous reinforced aluminum alloy composite material and preparation method thereof
CN111575542B (en) * 2020-05-03 2021-04-06 上海工程技术大学 Amorphous reinforced aluminum alloy composite material and preparation method thereof

Also Published As

Publication number Publication date
JPH0570688B2 (en) 1993-10-05

Similar Documents

Publication Publication Date Title
Matti et al. Dry sliding wear behavior of mica, fly ash and red mud particles reinforced Al7075 alloy hybrid metal matrix composites
JPS5893841A (en) Fiber reinforced metal type composite material
JP3017764B2 (en) Abrasion resistant composite roll and method for producing the same
US20070218320A1 (en) Metal matrix composites of aluminium, magnesium and titanium using silicon hexaboride, calcium hexaboride, silicon tetraboride, and calcium tetraboride
Gautam et al. Tensile and dry sliding wear behavior of in-situ Al 3 Zr+ Al 2 O 3-reinforced aluminum metal matrix composites
JPS61177353A (en) Wear resistant fiber reinforced metallic composite material
US7160503B2 (en) Metal matrix composites of aluminum, magnesium and titanium using silicon hexaboride, calcium hexaboride, silicon tetraboride, and calcium tetraboride
JPS61163249A (en) Wear resisting aluminium composite material and its production
JPS6263635A (en) Al-sn-pb bearing alloy
JPS62124244A (en) Brake rotor made of fiber-reinforced aluminum alloy and its production
Sample et al. High pressure squeeze casting of unidirectional graphite fiber reinforced aluminum matrix composites
Vijay Kumar et al. Synthesis and Characterization of Al356–ZrO2–SiC Hybrid Composites
Raju et al. Fabrication and analysis of aluminium based metal matrix composites reinforced with aluminium oxide
JPH08120367A (en) Wear resistance aluminum alloy composite material
JPH10330866A (en) Brake disk composed of aluminum matrix composite
Tiwari et al. Investigation of Mechanical and Tribological Properties of Aluminum Composite Reinforced by Boron Carbide, Silicon Carbide and Carbon Nanotubes
GKarthikeyan Evaluation of hardness of aluminium metal matrix composites at elevated temperature
JPH01230738A (en) Aluminum alloy composite material
JPH10140275A (en) Composite material for brake disk for railway car
JPH05106666A (en) Aluminum alloy-made brake drum
JPH04332A (en) Spiral parts material for scroll compressor
Li et al. The Synergy Reinforcement Effect of Sm0. 85Zn0. 15MnO3 and ZrMgMo3O12 on Sm0. 85Zn0. 15MnO3-ZrMgMo3O12/Al-20Si Composites
Uguz et al. Effect of Si-Content and Microstructure on the Wear Behaviour of Al-Si Alloys
JPS63190127A (en) Metal-base composite material excellent in strength as well as in frictional wear characteristic
JPH0635626B2 (en) Alumina fiber / alumina-silica fiber reinforced metal composite material