JPS61177111A - Gas insulated switchgear - Google Patents

Gas insulated switchgear

Info

Publication number
JPS61177111A
JPS61177111A JP60015358A JP1535885A JPS61177111A JP S61177111 A JPS61177111 A JP S61177111A JP 60015358 A JP60015358 A JP 60015358A JP 1535885 A JP1535885 A JP 1535885A JP S61177111 A JPS61177111 A JP S61177111A
Authority
JP
Japan
Prior art keywords
current
phase
metal case
closed loop
carrying conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60015358A
Other languages
Japanese (ja)
Inventor
榊原 高明
吉田 民憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60015358A priority Critical patent/JPS61177111A/en
Publication of JPS61177111A publication Critical patent/JPS61177111A/en
Pending legal-status Critical Current

Links

Landscapes

  • Installation Of Bus-Bars (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はガス絶縁開閉装置に係り、特に金属ケースの接
地構成を改良したガス絶縁開閉装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas insulated switchgear, and more particularly to a gas insulated switchgear with an improved grounding configuration of a metal case.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、電力需要の急速な増大および変電所建設用地取得
の困難さから、ガス絶縁開閉装置(以下GISと略記す
る)が盛んに用いられるようになり、その電圧階級も5
00 kVにまで、また定格電流も8.0OOA〜12
,0OOAにまで及んでいる。このような大容量GIS
では主に主回路電流による磁界の影響を低減するために
、多点接地方式が採用されている。
In recent years, due to the rapid increase in electricity demand and the difficulty in acquiring land for substation construction, gas insulated switchgear (hereinafter abbreviated as GIS) has come into widespread use, and its voltage class has also increased to 5.
00 kV, and the rated current is 8.0OOA~12
,0OOA. Such a large capacity GIS
A multi-point grounding system is adopted mainly to reduce the influence of the magnetic field caused by the main circuit current.

多点接地方式においては、金属ケースは多点にて接地さ
れ、かつ各相の金属ケース間を接続するいわゆる相間シ
ャントといわれる通電導体を配設し、これら金属ケース
および相間シャントなどよりなる閉ループを構成し、こ
の閉ループに主回路電流とはほぼ逆位相の誘導電流を流
すことにより、主回路電流による外部磁界を低減しよう
とするものである。
In the multi-point grounding method, the metal case is grounded at multiple points, and a current-carrying conductor called a phase-to-phase shunt is installed to connect the metal cases of each phase, and a closed loop consisting of these metal cases and the phase-to-phase shunt is formed. The purpose is to reduce the external magnetic field caused by the main circuit current by flowing an induced current having a phase substantially opposite to that of the main circuit current through this closed loop.

従来の多点接地方式は第5図に示すように、各相の金属
ケース1は相間シャントすなわち通電導体2により電気
的に接続されている。また、金属ケース1相互を絶縁部
材を介して接続するケースフランジ絶縁部6において、
金属ケース1に流れる誘導電流、すなわちシース電流が
流れないようになっている。そして主回路に電流が流れ
ると、各相の金属ケース1及び相間シャント2により構
成される閉ループに、主回路電流とはほぼ逆位相のシー
ス電流が流れるので、主回路電流による外部磁界を著し
く低減させることができ、外部磁界による鉄鋼類の局部
加熱や電磁振動および制御ケーブルへの誘導などを防止
することができる。
In the conventional multi-point grounding system, as shown in FIG. 5, the metal cases 1 of each phase are electrically connected by an interphase shunt, that is, a current-carrying conductor 2. Furthermore, in the case flange insulating section 6 that connects the metal cases 1 to each other via an insulating member,
The induced current flowing through the metal case 1, ie, the sheath current, is prevented from flowing. When current flows in the main circuit, a sheath current with almost the opposite phase to the main circuit current flows through the closed loop formed by the metal case 1 of each phase and the interphase shunt 2, so the external magnetic field due to the main circuit current is significantly reduced. This can prevent local heating of steel, electromagnetic vibration, and induction into control cables caused by external magnetic fields.

金属容器すなわち金属ケースが導通して接続されている
箇所では、金属ケースが変電所接地メツシュに多点で接
地されていても、金属ケース自体のインピーダンスが立
上げ接地線および埋設接地メツシュよりなる回路のイン
ピーダンスよりも著しく小さいため、シース電流は、立
上げ接地線にはほとんど流入しない。
In places where the metal container or metal case is electrically connected, even if the metal case is grounded to the substation grounding mesh at multiple points, the impedance of the metal case itself will exceed the circuit consisting of the standing grounding wire and the buried grounding mesh. Since the impedance is significantly smaller than the impedance of

しかしながら、第5図に示すケースフランジ絶縁部6の
ように、シース電流が著しく不連続になる箇所では、シ
ース電流は相間シャント2及び接地線5に分流する。ま
た、点線で示したメツシュ電流路7は地中に埋設された
埋設接地メツシュに形成される。
However, at locations where the sheath current becomes significantly discontinuous, such as the case flange insulating portion 6 shown in FIG. 5, the sheath current is divided into the interphase shunt 2 and the ground wire 5. Further, the mesh current path 7 shown by the dotted line is formed in a buried ground mesh buried underground.

このような箇所は、外装形変流器の設置箇所や分割基礎
間の変位を吸収し、かつベローズの通電容量が強度上の
問題より小さく、シース電流をバイパスさせるような同
相シャントの設置が困難な大変位伸縮継手部などが該当
する。また、シース電流が不連続になるという点ではブ
ッシング部及びケーブル接続部などもこれに該当する。
In such locations, it is difficult to install an in-phase shunt to bypass the sheath current, since the current carrying capacity of the bellows is smaller than the strength issue, and it absorbs the displacement between the installation location of the external current transformer and the divided foundation. This applies to large displacement expansion joints, etc. This also applies to bushings, cable connections, etc. in that the sheath current becomes discontinuous.

このようなシース電流が不連続になる箇所において、シ
ース電流が分流する割合は、通電導体2のインピーダン
スと立上げ接地線5と埋設接地メツシュなどよりなる回
路のインピーダンスとの比で決ってくる。
At a point where the sheath current becomes discontinuous, the rate at which the sheath current is divided is determined by the ratio of the impedance of the current-carrying conductor 2 to the impedance of the circuit consisting of the raised grounding wire 5 and the buried grounding mesh.

とくに、超高圧以上のGISでは、開閉器動作時に金属
ケースに誘導さ几るサージ電圧を低減させるために、3
m間隔程度の埋設接地メツシュが用いられるので、後者
のインピーダンスが低くなる。
In particular, in GIS with ultra-high voltage or higher voltage, 3.
The impedance of the latter is low because buried ground meshes are used at intervals of about m.

またとくに、機器が基礎面、あるいは地表面近くに配置
される場合においては、立上げ接地線5の長さも短くな
るため、後者のインピーダンスがさらに小さくなるため
、立上げ接地線5に流入する電流が大きくなる。また立
上げ接地線5を通して、埋設接地メツシュに流入する電
流値は、このような場合に、主回路電流の30%近くに
なり、8,0OOA定格で換算すると、2.40OAに
も達し、接地線および接地メツシュが過度に加熱される
おそれがある。
In addition, especially when the equipment is placed on the foundation surface or near the ground surface, the length of the rising grounding wire 5 is also shortened, and the impedance of the latter becomes further smaller, so that the current flowing into the rising grounding wire 5 becomes larger. In addition, the current value flowing into the buried grounding mesh through the stand-up grounding wire 5 will be close to 30% of the main circuit current in such a case, and when converted to an 8,0OOA rating, it will reach 2.40OA. Wires and ground mesh may become excessively heated.

このような接地線の温度上昇は基礎コンクリートの強度
低下、ひいてはひび割れにもつながるので防止する必要
がある。
It is necessary to prevent such a temperature rise in the grounding wire because it leads to a decrease in the strength of the foundation concrete and even cracks.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点を考慮してなされたもので、その目的
とするところは、接地線に流入する電流を低減する接地
構成を有するガス絶縁開閉装置を提供することにある。
The present invention has been made in consideration of the above points, and an object of the present invention is to provide a gas insulated switchgear having a grounding configuration that reduces the current flowing into the grounding wire.

〔発明の概要〕[Summary of the invention]

かかる目的を達成するために本発明によれば、各相の金
属ケースを接続する通電導体によりなる閉ループの最外
郭部に位置する通電導体付近に設けられる立上げ接地線
の位置を、各相の金属ケースの軸線間距離の少なくとも
2倍の距離をとるとともに閉ループの内側に配設するこ
とにより、立上げ接地線に流入する電流を低減すること
を特徴とする。
In order to achieve such an object, according to the present invention, the position of the stand-up grounding wire provided near the current-carrying conductor located at the outermost part of the closed loop made of the current-carrying conductor connecting the metal cases of each phase is changed to The current flowing into the rising ground wire is reduced by providing a distance at least twice the distance between the axes of the metal case and arranging it inside the closed loop.

〔発明の実施例〕[Embodiments of the invention]

以下本発明はガス絶縁開閉装置の一実施例を第1図ない
し第3図を参照して説明する。第5図と同一部分は同符
号を付しである。金属ケース内部に充電部を収納し、こ
の金属ケース内部に絶縁ガスを封入してなるガス絶縁開
閉装置は第1図に示すように、ガス絶縁開閉装置の母線
装置3は各相の金属ケースla、lb、lc相互をそれ
ぞれケースフランジ絶縁部6a 、 6b 、 6cに
おいて絶縁部材を介して絶縁して接合する。そしてそれ
ぞれのケースフランジ絶縁部6a 、 6b 、 6c
の付近の立上げ接地線5a工t5a2;5bl 、 5
b2 ;5cl 、 5c2の設置位置は、各相の金属
ケースla、lb、lcを短絡するいわゆる相間シャン
トすなねち通常導体2の取付位置から距離りとなるよう
にする。この距離りは各相の金属ケースの軸線間距離d
 (以下相間距はと略記する)の少なくとも2倍にとる
Hereinafter, one embodiment of a gas insulated switchgear according to the present invention will be described with reference to FIGS. 1 to 3. The same parts as in FIG. 5 are given the same reference numerals. As shown in FIG. 1, a gas insulated switchgear is constructed by housing a live part inside a metal case and sealing an insulating gas inside the metal case. , lb, and lc are insulated and joined to each other via insulating members at case flange insulating parts 6a, 6b, and 6c, respectively. And each case flange insulation part 6a, 6b, 6c
Standing grounding wire 5a near t5a2; 5bl, 5
b2 ; 5cl and 5c2 are installed at a distance from the installation position of the normal conductor 2, which is a so-called interphase shunt that shorts the metal cases la, lb, and lc of each phase. This distance is the distance d between the axes of the metal case of each phase.
(hereinafter abbreviated as interphase distance).

すなわち、立上げ接地線5は金属ケース1及び相間シャ
ント2などからなる閉ループの最外郭部に位置する相間
シャント2、すなわちケースフランジ絶縁部6近くの相
間シャント2の位置より、相間距離dの2倍以上の距離
をとり、閉ループの内側に設けられ、接地メツシュのメ
ツシュ電流路7により閉ループを形成する。
That is, the rising grounding wire 5 is connected to the phase-to-phase shunt 2 located at the outermost part of the closed loop consisting of the metal case 1 and the phase-to-phase shunt 2, that is, from the position of the phase-to-phase shunt 2 near the case flange insulating part 6, to the phase-to-phase distance d of 2. The mesh current path 7 of the ground mesh is provided inside the closed loop at a distance more than twice that of the current mesh current path 7 of the ground mesh.

次に本発明の作用効果について説明する。このような実
際の500にガス絶縁開閉装置を用いた測定結果につい
て第2図及び第3図の線図を示す。
Next, the effects of the present invention will be explained. The line diagrams in FIGS. 2 and 3 are shown for the measurement results using the actual 500 gas insulated switchgear.

第2図は縦軸に立上げ接地線電流(%)をとり、横軸に
D/dをとるとD/dがほぼ2以上、すなわちDad≧
2のときは立上げ接地線電流は少なくなる。
In Figure 2, the vertical axis shows the rising and grounding line current (%), and the horizontal axis shows D/d, so that D/d is approximately 2 or more, that is, Dad≧
At the time of 2, the rising ground line current decreases.

また第3図は縦軸に相間シャント電流(%)をとり。In addition, in Figure 3, the vertical axis represents the interphase shunt current (%).

横軸D/dをとるとD/dがほぼ2以上、すなわちD/
d≧2のときは相間シャント電流(%)がほぼ飽和する
ような曲線を示した。
If we take the horizontal axis D/d, D/d is approximately 2 or more, that is, D/d.
When d≧2, a curve was shown in which the interphase shunt current (%) was almost saturated.

このように第2図及び第3図に示すようにD/dが大き
くなるほど、つまり立上げ接地線の位置が閉ループの内
側になればなる程、この接地線に流入する電流は低減し
、逆に最外郭部の相間シャントに流れる電流が増大する
ことがわかる。
As shown in Figures 2 and 3, as D/d increases, that is, the position of the stand-up ground wire is located inside the closed loop, the current flowing into this ground wire decreases, and vice versa. It can be seen that the current flowing through the interphase shunt at the outermost part increases.

すなわち、ケースフランジ絶縁部6の近くではシー入電
流は相間シャント2及び立上げ接地線5に分流する。例
えば、立上げ接地線5clに流入した電流は、主に立上
げ接地線5c工から接地メツシュ電流路7を通り立上げ
接地線5c2から金属ケース1cという経路を通って流
れる。これは閉ループを流れる誘導電流は最外郭部に集
中する性質があることにより容易に推考される。
That is, near the case flange insulating portion 6, the incoming current is divided into the interphase shunt 2 and the rising ground wire 5. For example, the current flowing into the rising ground line 5cl mainly flows through a path from the rising ground line 5c through the grounding mesh current path 7 and from the rising ground line 5c2 to the metal case 1c. This can be easily inferred from the fact that the induced current flowing through the closed loop tends to concentrate at the outermost portion.

すなわち、立上げ接地線5c工、接地メツシュ電流路7
及び立上げ接地線5c2からなる回路のインピーダンス
が低いと、それがケースフランジ絶縁部6cのバイパス
回路となるので、このバイパス回路も含めて金属ケース
1及び相間シャント2よりなるさらに大きな閉ループが
構成できるので、誘導雷98前述のように外側の閉ルー
プに多く流れようとする傾向があるので、バイパス回路
に大きな電流が流れることになる。
That is, the stand-up grounding wire 5c, the grounding mesh current path 7
If the impedance of the circuit consisting of the stand-up grounding wire 5c2 is low, it becomes a bypass circuit for the case flange insulating section 6c, so that a larger closed loop consisting of the metal case 1 and the phase-to-phase shunt 2 can be configured including this bypass circuit. Therefore, since the induced lightning 98 tends to flow more into the outer closed loop as described above, a large current will flow into the bypass circuit.

これを防止するためにはバイパス回路のインピーダンス
を大きくすればよい。すなわち第2図及び第3図に示す
ように立上げ接地線5を金属ケース1及び相間シャント
2などよりなる閉ループの内側に設けることにより、バ
イパス回路のインピーダンスを増大する。
In order to prevent this, the impedance of the bypass circuit can be increased. That is, as shown in FIGS. 2 and 3, the impedance of the bypass circuit is increased by providing the rising ground line 5 inside the closed loop consisting of the metal case 1, the interphase shunt 2, and the like.

実器を用いた試験結果によれば、D/dが2以上になれ
ば、立上げ接地線5に流れる電流は主回路電流の7%程
度以下になる。この場合、定格電流を8000Aとする
と立上げ接地線5に流れる電流は8000 X 0.7
 = 560A以下になるので、通常の立上げ  −接
地線を2条程度用いれば対処可能な問題ない値となる。
According to test results using an actual device, when D/d becomes 2 or more, the current flowing through the rising ground wire 5 becomes about 7% or less of the main circuit current. In this case, if the rated current is 8000A, the current flowing through the stand-up grounding wire 5 is 8000 x 0.7
= 560A or less, so it is a value that can be handled without any problem by using about two normal startup-ground wires.

次に本発明の他の実施例を第4図を参照して説明する。Next, another embodiment of the present invention will be described with reference to FIG.

第1図と同一部分は同符号を付しである。The same parts as in FIG. 1 are given the same reference numerals.

ブッシング部においても、シース電流は不連続になるの
で、立上げ接地線5の位置を金属ケース1及び相間シャ
ント2などによりなる閉ループの内側に配置することに
より接地線流入電流を大幅に低減することができる。ま
た同様なことはケーブル接続部においても適用すること
ができる。
Since the sheath current is also discontinuous in the bushing section, the grounding wire inflow current can be significantly reduced by locating the rising grounding wire 5 inside the closed loop formed by the metal case 1, interphase shunt 2, etc. I can do it. The same thing can also be applied to cable connections.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、各相の金属ケース
を接続する通電導体によりなる閉ループの最外郭部に位
置する通電導体付近に設けられる立上げ接地線の位置を
、各相の金属ケースの相間距離の少なくとも2倍の距離
をとるとともに閉ループの内側に配設することにより、
立上げ接地線に流入する電流を低減することのできるガ
ス絶縁開閉装置を提供することができる。
As explained above, according to the present invention, the position of the stand-up grounding wire provided near the current-carrying conductor located at the outermost part of the closed loop formed by the current-carrying conductor connecting the metal cases of each phase is adjusted to the metal case of each phase. By providing at least twice the distance between the phases and arranging it inside the closed loop,
It is possible to provide a gas insulated switchgear that can reduce the current flowing into the rising ground wire.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のガス絶縁開閉装置の斜視図。 第2図及び第3図は本発明のガス絶縁開閉装置のD/d
に対するそれぞれ立上げ接地線電流(%)及び相間シャ
ント電流(%)の線図、第4図は本発明の他の実施例の
斜視図、第5し:は従来のガス絶縁開閉装置の斜視図で
ある。 1・・・金属ケース。 la、lb、Ic・・・各相の金属ケース。 2・・・通電導体(相間シャント)。 3・・・ガス絶縁開閉装置の母線装置。 5・・・立上げ接地線。 5ax + 5b1? 5c1j 5a2g 5b2r
 5C2・=各相の立上げ接地線。 6・・・ケースフランジ絶縁部。 7・・・メツシュ電流路。 D・・・接地線と通電導体との距離。 d・・・各相の金属ケースの軸線間距離(相間距離)。
FIG. 1 is a perspective view of the gas insulated switchgear of the present invention. Figures 2 and 3 show D/d of the gas insulated switchgear of the present invention.
Figure 4 is a perspective view of another embodiment of the present invention, and Figure 5 is a perspective view of a conventional gas-insulated switchgear. It is. 1...Metal case. la, lb, Ic...metal cases for each phase. 2... Current-carrying conductor (interphase shunt). 3... Busbar device of gas insulated switchgear. 5... Standing ground wire. 5ax + 5b1? 5c1j 5a2g 5b2r
5C2 = Startup grounding wire for each phase. 6...Case flange insulation part. 7...Metshu current path. D: Distance between the grounding wire and the current-carrying conductor. d... Distance between axes of metal cases of each phase (distance between phases).

Claims (1)

【特許請求の範囲】[Claims] 金属ケース内に充電部を絶縁ガスとともに収納封入し、
この金属ケースを多点にて接地するとともに、各相の前
記金属ケース間を通電導体にて接続することにより前記
金属ケースおよび前記通電導体よりなる閉ループを構成
し、前記金属ケースに主回路電流とほぼ逆位相の誘導電
流を通電させるガス絶縁開閉装置において、各相の金属
ケースを接続する通電導体によりなる閉ループの最外郭
部に位置する前記通電導体付近に設けられる立上げ接地
線の位置を、通電導体から各相の前記金属ケースの軸線
間距離の少なくとも2倍の距離をとるとともに、前記閉
ループの内側とすることを特徴とするガス絶縁開閉装置
The live part is enclosed in a metal case along with insulating gas.
This metal case is grounded at multiple points, and the metal cases of each phase are connected with a current-carrying conductor to form a closed loop consisting of the metal case and the current-carrying conductor, and the main circuit current is connected to the metal case. In a gas-insulated switchgear that conducts induced currents of almost opposite phase, the position of a rising grounding wire provided near the current-carrying conductor located at the outermost part of the closed loop formed by the current-carrying conductor connecting the metal cases of each phase, A gas insulated switchgear characterized in that the distance from the current-carrying conductor is at least twice the distance between the axes of the metal case of each phase, and the distance is located inside the closed loop.
JP60015358A 1985-01-31 1985-01-31 Gas insulated switchgear Pending JPS61177111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60015358A JPS61177111A (en) 1985-01-31 1985-01-31 Gas insulated switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60015358A JPS61177111A (en) 1985-01-31 1985-01-31 Gas insulated switchgear

Publications (1)

Publication Number Publication Date
JPS61177111A true JPS61177111A (en) 1986-08-08

Family

ID=11886576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60015358A Pending JPS61177111A (en) 1985-01-31 1985-01-31 Gas insulated switchgear

Country Status (1)

Country Link
JP (1) JPS61177111A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132713A (en) * 1981-02-05 1982-08-17 Kansai Electric Power Co Gas insulated electric device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132713A (en) * 1981-02-05 1982-08-17 Kansai Electric Power Co Gas insulated electric device

Similar Documents

Publication Publication Date Title
US5515230A (en) Poly-phase coaxial power line efficiency enhancements
CN209419178U (en) Transmission line of electricity pipeline and gas-insulated lines
JPS61177111A (en) Gas insulated switchgear
JP3448062B2 (en) Three-phase conductor structure
JPS6111042B2 (en)
JPS58186302A (en) Ac/dc conversion station
JPS60197107A (en) Gas insulated switching device
JPS61164414A (en) Lightning method of transmission line
JPH0681372B2 (en) Gas insulated switchgear
JP3767227B2 (en) Gas insulated electrical equipment
CN109449861A (en) Transmission line of electricity pipeline and gas-insulated lines
JPS61102109A (en) Gas insulated switchgear
JPS5953773B2 (en) Multiphase bulk gas insulated electrical equipment
JPH0314890Y2 (en)
JPS60219906A (en) Gas insulated switching device
JPH03235613A (en) Arrester unit for transmission steel tower
JPS6259524B2 (en)
JPH0314889Y2 (en)
JPS61121712A (en) Gas insulated switchgear
JPH02184215A (en) Power cable path
JPS6233468Y2 (en)
JPS5937814A (en) Gas insulated electric device
JP2684925B2 (en) A method for obtaining voltage phase information of power cable lines
JPS6259523B2 (en)
JPS62287536A (en) Three-phase breaker