JPS61176929A - Image forming element - Google Patents

Image forming element

Info

Publication number
JPS61176929A
JPS61176929A JP60017040A JP1704085A JPS61176929A JP S61176929 A JPS61176929 A JP S61176929A JP 60017040 A JP60017040 A JP 60017040A JP 1704085 A JP1704085 A JP 1704085A JP S61176929 A JPS61176929 A JP S61176929A
Authority
JP
Japan
Prior art keywords
layer
image forming
image
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60017040A
Other languages
Japanese (ja)
Inventor
Yukio Nishimura
征生 西村
Takashi Nakagiri
孝志 中桐
Kunihiro Sakai
酒井 邦裕
Yoshinori Tomita
佳紀 富田
Takeshi Eguchi
健 江口
Kenji Saito
謙治 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60017040A priority Critical patent/JPS61176929A/en
Publication of JPS61176929A publication Critical patent/JPS61176929A/en
Priority to US07/462,912 priority patent/US4960679A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To enable an image high in resolution by forming an image forming layer composed of a phase-transitive org. compd. having both of hydrophilic and hydrophobic sites and an unsatd. bond in the molecular structure and a functional compd., and a resistance heating layer for giving heat energy to the image forming layer. CONSTITUTION:The image forming layer 3 composed of a phase-transitive org. compd. A having both of hydrophilic and hydrophobic sites and an unsatd. bond in the molecular structure and a functional compd. B, and a resistance heating layer 2 for giving heat energy to the image forming layer 3 are formed, and the layer 2 is heated as bias for forming an image to cause phase transition of the compd. A of the overlying layer 3, resulting in converting the layer 3 into a fluid state. The layer 3 is exposed to light 6 in accordance with a pattern for forming an image or input information, at a prescribed position 5 to cause optical change of the molecule B. The displayed image can be seen or read by illuminating the layer 3 e.g., from the reverse side with illumination light 7, thus permitting an image high in compactness and resolution to be formed, and this image forming element to be used also for recording and memory devices.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱エネルギーを利用する新規な像形成素子に関
し、とりわけ有機機能性膜によって構成され、記録素子
又は表示素子としても利用され得る像形成素子に関する
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a novel image forming element that utilizes thermal energy, and in particular to an image forming element that is constructed of an organic functional film and that can also be used as a recording element or a display element. Regarding elements.

〔従来の技術〕[Conventional technology]

波長λ1の光により色が変化し、暗所、熱又は波長入2
の光により元に戻る機能性分子のことをフォトクロミッ
ク分子といい古くから知られている(例えば、mta高
分子材料研究所研究報告No、141 1984−3)
 。
The color changes depending on the light of wavelength λ1, and when exposed to light in the dark, heat or wavelength 2
Photochromic molecules have long been known as functional molecules that return to their original state when exposed to light (for example, MTA Polymer Materials Research Institute Research Report No. 141 1984-3).
.

しかしながら、このように可逆的に色が変化する機能性
分子でありながら、従来、ごく一部の限られた範囲を除
いて、表示素子や記録素子や記憶素子等の光学素子に利
用されていないのは固体状態では光応答性が生じないか
又は不十分であるためであった。
However, despite being a functional molecule that reversibly changes color, it has not been used in optical elements such as display elements, recording elements, and memory elements, except in a very limited range. This is because photoresponsiveness does not occur or is insufficient in the solid state.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで、本発明の目的は、かかる技術分野における従来
技術の解決しえなかった課題を解決することである。
Therefore, an object of the present invention is to solve problems that could not be solved by the conventional techniques in this technical field.

つまり、本発明の目的は、コントラストの高い、簡易な
表示装置、記録装置、記憶装置等に利用する像形成素子
を提供することである。
That is, an object of the present invention is to provide an image forming element that has high contrast and is used in simple display devices, recording devices, storage devices, and the like.

本発明の別の目的は、カラー表示装置、カラー記録装置
等に利用する表示素子を提供することである。
Another object of the present invention is to provide a display element for use in color display devices, color recording devices, and the like.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的は以下の本発明により解決される。 The above object is solved by the present invention as follows.

すなわち本発明は、少なくとも親水性部位と疎水性部位
を有し、且つ分子骨格中に不飽和結合を有する相転移性
有機化合物分子と、少なくとも親木性部位と疎水性部位
を有する機能性分子よりなる像形成層と該像形成層に熱
エネルギーを付与するための発熱要素とを有することを
4.+F徴とする像形成素子である。
That is, the present invention provides a phase-transitionable organic compound molecule having at least a hydrophilic site and a hydrophobic site and an unsaturated bond in the molecular skeleton, and a functional molecule having at least a lignophilic site and a hydrophobic site. 4. having an image forming layer and a heat generating element for applying thermal energy to the image forming layer; This is an image forming element with a +F characteristic.

〔作用〕[Effect]

本発明でいう相転移とは、物質が熱によって不動の固体
状態から動的な状態に変わる場合をいう、従って、堅固
な状態から流動的、乃至は柔軟な状態、静的な状態から
動的な状態、結晶相から液晶相、固体から液体、ある種
の液晶相から別種の液晶相等に変化することは全て相転
移である。
Phase transition as used in the present invention refers to when a substance changes from an immobile solid state to a dynamic state due to heat. Therefore, from a solid state to a fluid or flexible state, from a static state to a dynamic state. A change in state, from a crystalline phase to a liquid crystalline phase, from a solid to a liquid, from one kind of liquid crystalline phase to another, etc. are all phase transitions.

機能性分子とは、像形成機能(表示機能。Functional molecules have an image-forming function (display function).

記録機能、記憶機能)及び像変換以外の情報変M!!機
能(演算機能)をいい、さらに物質又はエネルギーの輸
送機能を含む。さらに、光や電気エネルギーの付与によ
って機能を発現する場合に限らず、熱、磁気、圧力、物
質等の付与による機能発現を含むものである。
Recording function, memory function) and information change other than image conversion M! ! Refers to functions (arithmetic functions), and also includes functions for transporting matter or energy. Furthermore, it is not limited to the case where a function is expressed by the application of light or electric energy, but also includes the case where a function is expressed by the application of heat, magnetism, pressure, substance, etc.

次に、本発明の素子の基本的な駆動原理を説明する。Next, the basic driving principle of the element of the present invention will be explained.

ある種の機能性分子はエネルギーの付与により、液体乃
至は流動体中では高速に化学変化するが、堅固な固体中
では化学変化しないが或いはその変化が極めて遅い。
When energy is applied to certain functional molecules, chemical changes occur rapidly in liquids or fluids, but chemical changes do not occur or occur very slowly in solid solids.

相転移する有機化合物分子と混合膜を構成する機能性分
子は、前述の如き分子、即ち堅固な状態では化学変化し
ないか又は、しにくいために機能の発現をしないか又は
、しにくいが、柔軟な状態では化学変化しやすいため機
能を発現しうるような材料が選択される。
The organic compound molecules that undergo a phase transition and the functional molecules that make up the mixed film are molecules such as those mentioned above, that is, molecules that do not change chemically in a rigid state, or that do not express their functions because it is difficult to do so, or that are flexible but are difficult to change. Since it is easy to undergo chemical changes under certain conditions, materials that can perform functions are selected.

このように構成された前記混合膜を前記発熱要素を用い
て相転移温度以上に加温することにより前記有機化合物
分子を柔軟性に富む状態に維持させる。かかる状態の中
に存在する前記機能性分子は化学変化しやすい状態にお
かれるから、入力エネルギーの付与に対して高速に応答
(機能発現)する0以上に述べた構成によって本発明の
目的は達成されるものである。
The organic compound molecules are maintained in a highly flexible state by heating the thus configured mixed film to a temperature higher than the phase transition temperature using the heating element. Since the functional molecules existing in such a state are in a state where they are susceptible to chemical changes, the object of the present invention can be achieved by the above-described configuration that responds (functions) quickly to the application of input energy. It is something that will be done.

要するに本発明は、 1、液体の媒体では用途が限定され、不安定であるので
固体媒体が望まれること、 2、しかし、固体の媒体では機能が充分発現できないこ
と、 の2点を相転移性有機化合物を混合することによって解
決したものである。
In short, the present invention solves the following two problems: 1. A solid medium is desired because a liquid medium has limited uses and is unstable; 2. However, a solid medium cannot fully express its functions. This problem was solved by mixing organic compounds.

更に、本発明の像形成素子の例を図面に従って説明する
Furthermore, examples of the image forming element of the present invention will be explained with reference to the drawings.

第1図は本発明に係る像形成素子の断面図であり、第1
図(A)は透過型の像形成素子を、また第1図(B)は
反射型の像形成素子をそれぞれ示している。lは基板、
2はジュール熱によって発熱する発熱抵抗層、3は相転
移性有機化合物分子と光によって機能を発現する機能性
分子との混合膜から構成される像形成層、4は保護用基
板である。tJS1図(A)の透過型の像形成素子の作
像原理は、次のとおりである。
FIG. 1 is a sectional view of an image forming element according to the present invention, and the first
FIG. 1A shows a transmission type image forming element, and FIG. 1B shows a reflection type image forming element. l is the substrate,
2 is a heat-generating resistor layer that generates heat by Joule heat; 3 is an image forming layer composed of a mixed film of phase-transition organic compound molecules and functional molecules that exhibit functions when exposed to light; and 4 is a protective substrate. The image forming principle of the transmission type image forming element shown in tJS1 (A) is as follows.

作像のためにバイアスとして発熱抵抗層2を加熱し、加
熱された発熱抵抗層2上の前記像形成層3の構成成分で
ある相転移性有機化合物分子に相転移変化を生ぜしめる
。その結果、流動的乃至柔軟な状態におかれた前記像形
成層3に作像のためにあるパターン乃至は入力情報に従
い、像形成層3の所望する位置、例えば位置5に光6(
赤外線、可視光線、紫外線又はX線なと)を照射し、像
形成層3の構成成分である機能性分子に後述の光化学変
化を生ぜしめる。かくして、この光化学変化をしたパタ
ーン乃至は情報(光化学変化領域5)を素子の裏面側か
ら照明光7を照らしつつ、直接・間接にとらえて表示乃
至は読みとる。
For image formation, the heat generating resistor layer 2 is heated as a bias, causing a phase transition change in the phase transition organic compound molecules, which are the constituent components of the image forming layer 3, on the heated heat generating resistor layer 2. As a result, light 6 (6) is applied to a desired position of the image forming layer 3, for example, position 5, according to a pattern or input information for forming an image on the image forming layer 3, which is kept in a fluid or flexible state.
The image forming layer 3 is irradiated with infrared rays, visible light, ultraviolet rays, or X-rays to cause a photochemical change, which will be described later, in the functional molecules constituting the image forming layer 3. In this way, this photochemically changed pattern or information (photochemically changed area 5) is directly or indirectly captured and displayed or read while illuminating the illumination light 7 from the back side of the element.

第1図(B)の反射型の像形成素子においては、照明光
隻を透過型とは逆に保護用基板4側から入射し、前記混
合膜3より基板1側に設けである反射膜9によって反射
せしめ、光化学変化領域5と光化学変化領域以外の領域
におり)て反射される反射光8の強弱等をとらえて表示
乃至は読みとる。なお、反射層9と発熱抵抗層2どの間
に必要に応じ絶縁層lOを設ける0本発明の像形成素子
の前記像形成層3を構成する分子骨格中に不飽和結合を
有する相転移性有機化合物分子としては、以下のものが
例示される。
In the reflective image forming element shown in FIG. 1(B), the illumination light beam enters from the protective substrate 4 side, contrary to the transmission type, and the reflective film 9 is provided on the substrate 1 side from the mixed film 3. The intensity, etc. of the reflected light 8 reflected by the photochemical change area 5 and areas other than the photochemical change area are captured and displayed or read. Note that an insulating layer 1O is provided between the reflective layer 9 and the heat-generating resistive layer 2 if necessary. Examples of compound molecules include the following.

(1)不飽和高級脂肪酸 CH2=CH(CH2)8COOH CH2= CH(CH2)、、C00HCH2=CH(
CH2)2oCOOH CH3(CH2)、7CC0OH CH2 CH3(CH2)8C=C−C=C(CH2)8COO
HCH3(CH2)3CH=CHCH=CHCH=CH
(CH2)7COOHCH3(CH2)7CH=CH(
CH2)、C00HCH3(CH2)7CH=CHCO
OHCH3= CH(CH2)8COOH CH3(CH2)。C=C−C=C(CH2)、 C0
0HCH3(CH2)1.C=C−C=C(CH2)8
COOHCH3(CH2)、3CミC−C=C(CH2
)、C00H(2)7アニン色素 シアニン色素の具体例を以下ζこ例示する。
(1) Unsaturated higher fatty acid CH2=CH(CH2)8COOH CH2= CH(CH2),, C00HCH2=CH(
CH2)2oCOOH CH3(CH2),7CCOOH CH2 CH3(CH2)8C=C-C=C(CH2)8COO
HCH3(CH2)3CH=CHCH=CHCH=CH
(CH2)7COOHCH3(CH2)7CH=CH(
CH2), C00HCH3(CH2)7CH=CHCO
OHCH3= CH(CH2)8COOH CH3(CH2). C=C-C=C(CH2), C0
0HCH3(CH2)1. C=C-C=C(CH2)8
COOHCH3(CH2), 3CmiC-C=C(CH2
), C00H(2) 7-anine dye Specific examples of the cyanine dye are illustrated below.

(3)アゾ色素 (R2はCIo 、30のアルキル基である。)(4)
リン脂質 レシチン ケファリン スフィンゴミエリン プラスイロダン 次に、光応答する機能性分子としては、光によって色が
変化する化合物、すなわちフォトクロミック化合物があ
げられる。そのようなものとしては、以下のものが例示
される。
(3) Azo dye (R2 is CIo, 30 alkyl group) (4)
Phospholipid lecithin kephalin sphingomyelin plus irodan Next, examples of functional molecules that respond to light include compounds that change color depending on light, that is, photochromic compounds. Examples of such things include the following:

(5)スピロピラン及び類似体(イオン解#)波長入1
の光によりイオン解離し、右側の構造に変化し、これが
暗所で熱的に、又は別の波長入2の光により左側の構造
に戻る。
(5) Spiropyran and analogs (ion solution #) wavelength input 1
The ions are dissociated by light, changing to the structure on the right, which returns to the structure on the left either thermally in the dark or by light at another wavelength of 2.

(6)シス−トランス異性化 C=C1C=N、N=Nなどの不飽和二重結合の異性化
に基づ〈例 ・チオインジゴ (7)水素移動を伴う互変異性化 ・ケト−エノール異性化 ・aci−ニトロ異性化 QCONHN=C)IQ Ph、c、N(H−Ph 。・ξ2h (8)光閉項反応 ・シス−スチルベン ・フルギド (9)へテロ環を含む原子価異性化反応ニトロン−オキ
サシリンシン系 (1G)  1−フェノキシアントラキノン類(11)
光二量化反応 (12)芳香族多環化合物への光二量化反応(13)光
レドックス反応 チアジン色素系 ビオロゲン 前記相転移性有機化合物分子と前記機能性分子を混合し
て混合膜を作成する方法としては、ラングミュア−プロ
ジェット法(41分子累植成形成法(LB法))がある
(6) Cis-trans isomerization Based on isomerization of unsaturated double bonds such as C=C1C=N, N=N (Example: Thioindigo (7) Tautomerization with hydrogen transfer/keto-enol isomerization -aci-nitroisomerization QCONHN=C)IQ Ph,c,N(H-Ph.・ξ2h (8) Photoclosing term reaction/cis-stilbene fulgide (9) Valence isomerization reaction involving heterocycle Nitrone-oxacillinsine (1G) 1-phenoxyanthraquinones (11)
Photodimerization reaction (12) Photodimerization reaction to aromatic polycyclic compound (13) Photoredox reaction Thiazine dye-based viologen A method for creating a mixed film by mixing the above-mentioned phase-transition organic compound molecules and the above-mentioned functional molecules is , Langmuir-Prodgett method (41 molecule cumulative implantation method (LB method)).

LB法によれば、像形成における品質、効率等に優れる
だけではなく、高解像或は超高解像が得られる利点があ
り、更に液体の相転移性有機化合物分子を固体上に成膜
できるなど、材料の選択範囲が著しく広がるなどの特徴
も有する。
According to the LB method, it not only has excellent quality and efficiency in image formation, but also has the advantage of obtaining high resolution or ultra-high resolution. It also has features such as significantly expanding the range of material selection.

以下、LB法を用いて成膜する場合を説明する。The case of forming a film using the LB method will be described below.

LB法は、分子内に親木基と疎水基を有する構造の分子
において、両者のバランス(両親媒性のバランス)が適
度に保たれているとき、分子は水面上で親木基を下に向
けて単分子膜または単分子層の累積膜を作成する方法で
ある。水面上の単分子層は二次元系の特徴をもつ0分子
がまばらに散開しているときは、一分子当りの面a A
と表面anとの間に二次元理想気体の式、nA=  k
T が成り立ち、゛気体膜″となる。ここに、kはポルツマ
ン定数、Tは絶対温度である。Aを充分小さくすれば分
子間相互作用が強まり二次元固体の゛凝縮膜(または固
体膜)°゛になる。
In the LB method, when a molecule has a parent wood group and a hydrophobic group in its molecule, and the balance between the two (amphiphilic balance) is maintained appropriately, the molecule is placed on the water surface with the parent wood group facing down. This method creates a monomolecular film or a cumulative film of monomolecular layers. The monomolecular layer on the water surface has the characteristics of a two-dimensional system.When the molecules are sparsely dispersed, the area per molecule is a A
and the surface an, the two-dimensional ideal gas equation, nA=k
T holds true, resulting in a "gas film". Here, k is Portzmann's constant and T is the absolute temperature. If A is made sufficiently small, the intermolecular interaction becomes strong, resulting in a two-dimensional solid "condensed film (or solid film)". Become °゛.

凝縮膜はガラス等の基板の表面に発熱抵抗層3が成膜さ
れているときはその表面反射膜9へ一層づつ移すことが
できる。この方法を用いて単分子膜又は単分子層累積膜
は例えば次のようにして製造する。
When the heating resistor layer 3 is formed on the surface of a substrate such as glass, the condensed film can be transferred layer by layer to the surface reflective film 9 of the substrate. Using this method, a monomolecular film or a monomolecular layer stack is produced, for example, as follows.

まず有機化合物分子(混合系を含む)を溶剤に溶解し、
これを水面上に展開し、有機化合物を膜状に析出させる
0次にこの析出物が水面上を自由に拡散して拡がりすぎ
ないように仕切板(または浮子)を設けて展開面積を制
限して膜物質の集合状態を制御し、その集合状態に比例
した表面圧nを得る。この仕切板を動かし、展開面積を
縮小して膜物質の集合状態を制御し、表面圧を徐々に上
昇させ、累積膜の製造に適する表面圧■を設定すること
ができる。この表面圧を維持しながら静かに清浄な基板
を垂直に上下させることにより単分子膜又は二種以上の
分子が混合した混合単分子膜が基板上に移しとられる。
First, organic compound molecules (including mixed systems) are dissolved in a solvent,
This is spread out on the water surface and the organic compound is precipitated in the form of a film.Next, to prevent this precipitate from spreading freely on the water surface and spreading too much, a partition plate (or float) is provided to limit the spread area. The aggregation state of the membrane material is controlled by the method, and a surface pressure n proportional to the aggregation state is obtained. By moving this partition plate, the developed area can be reduced to control the state of aggregation of the film material, and the surface pressure can be gradually increased to set the surface pressure (2) suitable for producing a cumulative film. By gently vertically moving a clean substrate up and down while maintaining this surface pressure, a monomolecular film or a mixed monomolecular film of two or more types of molecules is transferred onto the substrate.

単分子膜は以上で製造されるが、単分子層累積膜は、前
記の操作を繰り返すことにより所望の累積度の単分子層
累積膜が形成される。
A monomolecular layer film is produced as described above, and a monomolecular layer cumulative film having a desired degree of accumulation is formed by repeating the above-mentioned operations.

成膜分子は、前記の有機化合物分子から1種または2種
以上選択される。
The film-forming molecules are selected from one or more of the organic compound molecules described above.

単分子膜又は単分子層累積膜の厚さは30人〜300ル
mが適しており、特に3000人〜30ILmが適して
いる。
The thickness of the monomolecular film or monomolecular layer stack is suitably 30 to 300 ILm, particularly 3000 to 30 ILm.

単分子層を基板上に移すには、上述した垂直浸漬法の他
、水平付着法、回転円筒法などの方法による。水平付着
法は基板を水平に接触させて移しとる方法で、回転円筒
法は、円筒型の基体を水面上に回転させて単分子層を基
体表面に移しとる方法である。前述した垂直浸漬法では
、水面を横切る方向に基板を上げると一層めは親木基が
基板側に向いた単分子層が基板上に形成される。前述の
ように基板を上下させると、各工程ごとの1枚づつ単分
子層が重なっていく、成膜分子の向きが引上げ工程と浸
漬工程で逆になるので、この方法によると各層間は親木
基と親木基、疎水基と疎水基が向かい合うY型膜が形成
される。この様にして作成された中分子層累Wt fl
!Jの模式図を第2図に示す0図中、11−1は親木基
、11−2は疎水基、12−1は相転移性有機分子、1
3は機能性分子である。
In addition to the above-mentioned vertical dipping method, methods such as horizontal deposition method and rotating cylinder method can be used to transfer the monomolecular layer onto the substrate. The horizontal deposition method is a method in which substrates are brought into horizontal contact and transferred, and the rotating cylinder method is a method in which a cylindrical substrate is rotated above the water surface to transfer a monomolecular layer onto the surface of the substrate. In the above-mentioned vertical immersion method, when the substrate is raised in a direction across the water surface, a monomolecular layer is formed on the substrate with the parent wood groups facing the substrate in the first layer. As mentioned above, when the substrate is moved up and down, the monomolecular layers in each step are overlapped one by one.The direction of the film-forming molecules is reversed in the pulling step and the dipping step, so according to this method, each layer is A Y-shaped film is formed in which wood bases and parent wood bases, and hydrophobic groups face each other. The middle molecular layer Wt fl created in this way
! A schematic diagram of J is shown in FIG.
3 is a functional molecule.

それに対し、水平付着法は、基板を水面に水平に接触さ
せて移しとる方法で、疎水基が基板側に向いた単分子層
が基板上に形成される。
On the other hand, the horizontal deposition method is a method in which the substrate is brought into horizontal contact with the water surface and transferred, and a monomolecular layer with hydrophobic groups facing the substrate is formed on the substrate.

この方法では、累積しても、成膜分子の向きの交代はな
く全ての層において、疎水基が基板側に向いたX型膜が
形成される0反対に全ての層において親木基が基板側に
向いた累積膜はZ型膜と呼ばれる。
In this method, there is no change in the direction of the film-forming molecules even if they are accumulated, and an X-type film is formed in which the hydrophobic groups face the substrate in all layers. A side-facing cumulative film is called a Z-type film.

回転円筒υ、は、円筒型の基体を水面上に回転させて単
分子層を基体表面に移しとる方法である。単分子層を基
板上に移す方法は、これらに限定されるわけではなく、
大面積基板を用いる時には、基板ロールから水槽中に基
板を押し出していく方法などもとり得る。又、前述した
親木基、疎水基の基板への向きは原則であり、基板の表
面処理等によって変えることができる。
The rotating cylinder υ is a method in which a cylindrical substrate is rotated above the water surface to transfer a monomolecular layer onto the substrate surface. Methods for transferring a monolayer onto a substrate are not limited to these methods,
When using a large-area substrate, a method such as extruding the substrate from a substrate roll into a water tank may also be used. Furthermore, the orientation of the aforementioned parent wood group and hydrophobic group toward the substrate is a general rule, and can be changed by surface treatment of the substrate, etc.

本発明における機能性分子に疎水性部位を導入する場合
、炭素数が5〜30の長鎖アルキル基が特に好ましい。
When introducing a hydrophobic moiety into a functional molecule in the present invention, a long-chain alkyl group having 5 to 30 carbon atoms is particularly preferred.

基板1として使用することのできるものとしては、ガラ
ス、アルミニウムなどの金属、プラスチック、セラミッ
ク、紙などが挙げられる。
Examples of materials that can be used as the substrate 1 include glass, metals such as aluminum, plastics, ceramics, and paper.

第1図(A)に示した透過型の場合には、できる限り耐
圧性のある透光性のガラスやプラスチック、特に無色乃
至淡色のものが好ましい。
In the case of the transmission type shown in FIG. 1(A), it is preferable to use pressure-resistant and transparent glass or plastic, especially colorless or light-colored ones.

保護用基板4としては、できる限り耐圧性のある透光性
のガラスやプラスチックが適しており、特に無色乃至淡
色のものが好ましい、保護用基板4を設けることは、混
合膜の耐久性、安定性を向上させるためには、好ましい
ことであるが、成膜分子のi!!釈によって保護用基板
は設けても設けなくてもよい。
As the protective substrate 4, pressure-resistant, translucent glass or plastic is suitable as much as possible, and colorless or light-colored ones are particularly preferable.Providing the protective substrate 4 increases the durability and stability of the mixed film. In order to improve the properties, it is desirable that the i! ! Depending on the interpretation, the protective substrate may or may not be provided.

但し、抵抗発熱層2としてはそれ自身は所定の熱に対し
て溶融しないもの例えば、ホウ化/\ウニウムや窒化タ
ンタル等の金属化合物やニクロム等の合金が適している
。発熱抵抗層2の膜厚はエネルギー伝達効率及び解像力
に影響を及ぼす。これらの観点より1発熱抵抗層2の好
適な膜厚がi ooo〜2000人である。像形成素子
が透過型の場合1発熱要素2は可視光に対して透過性(
例えばインジウム・チン・オキサイド膜)膜であること
が要件となる。
However, as the resistance heating layer 2, materials that do not melt by themselves under a predetermined heat, such as metal compounds such as boride/unium or tantalum nitride, or alloys such as nichrome, are suitable. The thickness of the heating resistor layer 2 affects energy transfer efficiency and resolution. From these points of view, the preferred thickness of one heating resistor layer 2 is iooo~2000. When the image forming element is a transmission type, 1 heating element 2 is transparent to visible light (
For example, the film must be an indium tin oxide film.

反射膜9としては、高融点の金属材料又は金属化合物材
料を用いて金属膜、誘電ミラーなどを基板1側にスパッ
タリング法、蒸着法などにより設ける0反射膜9も発熱
抵抗層2又は基板lが反射性のものであればそれらに兼
ねさせることもできる0反射膜9が金属等電導体である
場合には、反射膜9と発熱抵抗!f!2との間にS t
o2、TiO2、等の誘電体から構成される絶縁層10
を設けることが望ましい。
As the reflective film 9, a metal film, dielectric mirror, or the like is formed on the substrate 1 side by sputtering, vapor deposition, etc. using a metal material or a metal compound material with a high melting point. If the reflective film 9 is a conductor such as a metal, it can also serve as a reflective film 9 and a heating resistor! f! 2 and S t
Insulating layer 10 made of dielectric material such as O2, TiO2, etc.
It is desirable to provide

前記相転移を起こす温度、即ち相転移温度(Tc)は物
質によって固有である。Tcは40〜100℃のものが
好適である0例えば、エライジン酸のTcは44〜45
℃、エレオステアリン酸のTcは、71〜72℃である
The temperature at which the phase transition occurs, ie, the phase transition temperature (Tc), is unique depending on the substance. The Tc is preferably 40 to 100°C. For example, the Tc of elaidic acid is 44 to 45.
℃, Tc of eleostearic acid is 71-72℃.

一般的にTcは、アルキル鎖長とともに上昇する。Generally, Tc increases with alkyl chain length.

混合膜の混合比率、即ち相転移性有機化合物分子(A)
に対する機能性分子(B)の比はl/10〜10/1が
望ましい、あらかじめ混合膜を加熱した状態において像
形成してもよいし、像形成と加熱を同時に行ってもよい
Mixing ratio of the mixed film, i.e. phase transition organic compound molecules (A)
The ratio of the functional molecule (B) to the functional molecule (B) is preferably 1/10 to 10/1.The image may be formed in a state where the mixed film is heated in advance, or the image formation and heating may be performed simultaneously.

このような発熱抵抗層社−としては、はぼ、信号光線ビ
ーム(又は消去光線ビーム)の−又は複数の走査線に対
応する線状発熱抵抗層(第1図)や格子状発熱抵抗層(
何れ゛も不図示)等が好適である。線状発熱抵抗層や格
子状発熱抵抗層を用いるときは、信号光線6の像形成層
3゜への照射と発熱抵抗層にへによる像形成R3の加熱
とを同期させるか加熱に対して照射をわすかに遅延させ
るのが好適である。尚、線状発熱抵抗層の場合には不図
示の走査回路の働きで線順次走査することにより順次、
発熱させる。
Such heating resistor layers include a linear heating resistor layer (Fig. 1) corresponding to a signal light beam (or erasing light beam) or a plurality of scanning lines, and a grid-like heating resistor layer (Fig. 1).
(all of which are not shown) are suitable. When using a linear heat generating resistor layer or a lattice heat generating resistor layer, the irradiation of the signal beam 6 onto the image forming layer 3° and the heating of the image forming layer 3 by the heat generating resistor layer may be synchronized or the irradiation may be performed in response to the heating. It is preferable to slightly delay . In the case of a linear heating resistance layer, a scanning circuit (not shown) performs line-sequential scanning to sequentially
cause fever.

なお、線状や格子状の発熱抵抗層を設けた場合には、入
力信号に対応する箇所のみ発熱させ、光をバイアスとし
て像形成を行うことかできる。  ・ 本発明を更に具体的に説明するために、以下に実施例を
挙げる。
Note that when a linear or lattice-shaped heating resistor layer is provided, it is possible to generate heat only at a location corresponding to an input signal and perform image formation using light as a bias. - Examples are given below to further specifically explain the present invention.

実施例1 ・像形成の製造 第3図に示される十分清浄なガラス基板11の表面に、
厚さ100人のインジウム・ティン・オキサイド(IT
O)膜をスノくツタリング法により形成し、続いてこの
製膜面のホトレジストを塗布し、16本/ m mのス
トライブ状発熱抵抗パターンを焼付は後、エツチング処
を設けた。
Example 1 Production of image formation On the surface of a sufficiently clean glass substrate 11 shown in FIG.
100mm thick indium tin oxide (IT
O) A film was formed by a snobbing method, and then a photoresist was applied to the film-formed surface, a striped heating resistor pattern of 16 lines/mm was baked, and an etching step was provided.

次に、この発熱抵抗層3の表面に既述のLB法を用い像
形成層を付着した。
Next, an image forming layer was attached to the surface of this heating resistor layer 3 using the LB method described above.

まず、(1)で表わされるイミダゾール化合物1部と(
II )で表わされるリルン酸1部(1)     O
H tTi)     CIJq (CHqCH= (H”
)* (CH2)7COOHをクロロホルムに各々2.
5X l O−3mo 1/lの濃度に溶かした溶液を
IXIO−3mol/lの濃度で塩化カドミウムを含む
蒸留水を炭酸水素ナトリウムでpH6,3に調整した2
0℃の水相の水面上に滴下展開させた。
First, 1 part of the imidazole compound represented by (1) and (
II) 1 part of lylunic acid (1) O
H tTi) CIJq (CHqCH= (H”
)* (CH2)7COOH in chloroform for 2.
Distilled water containing cadmium chloride at a concentration of IXIO-3 mol/l was adjusted to pH 6.3 with sodium hydrogen carbonate.
It was dropped and developed on the surface of the aqueous phase at 0°C.

溶媒のクロロホルムが発熱除去された後、仕切板を移動
させて水面上に残された混合単分子膜の展開領域を縮め
、その表面圧を20dyn/Cmまで高めた8次いで表
面圧を一定に保ちつつ、前記基板をl Omm/m i
 nの速度で静かに上下させることにより、単分子膜を
基板の表面発熱抵抗層側を移し取り、白色の像形成層を
得た。さらに、この上にガラス基板をのせた。
After the solvent chloroform was removed with heat, the partition plate was moved to reduce the spread area of the mixed monomolecular film left on the water surface, and the surface pressure was increased to 20 dyn/Cm.8Then, the surface pressure was kept constant. while holding the substrate at l Omm/m i
By gently moving the monomolecular film up and down at a speed of n, the monomolecular film was transferred from the surface heating resistor layer side of the substrate to obtain a white image forming layer. Furthermore, a glass substrate was placed on top of this.

斯かる方法により単分子膜の暦数が各々21゜51.1
01,201,301の白色の像形成層を有する5種類
の像形成素子を製造した。
By this method, the calendar number of the monolayer is 21°51.1, respectively.
Five types of imaging elements having white imaging layers of Nos. 01, 201, and 301 were manufactured.

・表示の実施 単分子膜の暦数が51の像形成素子について表示試験を
斤っや、線状の発熱抵抗層15−1゜15−2 、15
−3−一−−の各々の端子に外部電極を接続し、通電加
熱するとともに、出力3mw、波長633mm。
・Display implementation A display test was carried out on an image forming element with a monomolecular film calendar number of 51.
An external electrode was connected to each terminal of -3-1-- and heated with electricity, and the output was 3 mw and the wavelength was 633 mm.

スポット径40μmのHe−Neレーザビームを1、□
ッ、3つ9アえゎヮ、い!!−,よを7キヤL! −3
、−−−一に移行して同様の”加熱及び照射を行った。
1, □ He-Ne laser beam with a spot diameter of 40 μm
Wow, 3, 9, ah! ! -, Yo 7kiya L! -3
, ---1, and similar heating and irradiation were performed.

その結果、情報信号に対応した深紅色の像が得られた。As a result, a deep red image corresponding to the information signal was obtained.

これにより加熱下における被照射部分のみが色変化する
ことが確認された。
This confirmed that only the irradiated area under heating changed color.

その後、この素子を暗所下に置くと、画像は消え、元の
白色に戻った。単分子膜の暦数が異なる他の4種類の表
示素子についても同様の表示試験を行ったところ、同様
の結果が得られた。
When the device was then placed in a dark place, the image disappeared and the original white color returned. Similar display tests were conducted on four other types of display elements with different monomolecular film numbers, and similar results were obtained.

実施例2 化化合物1部と(IV)で表わされるジアゾ化合物1部
とを クロロホルムに各々2.5X10−3mo l/lの濃
度に溶かした溶液を用いた以外は実施例1と同様の方法
・条件により各々単分子膜に暦数が21゜51.101
,201,301の黄色の像形成層2を有する5種類の
像形成素子を製造した。
Example 2 The same method as in Example 1 was used, except that a solution of 1 part of the compound represented by (IV) and 1 part of the diazo compound represented by (IV) dissolved in chloroform at a concentration of 2.5 x 10-3 mol/l was used. Depending on the conditions, each monolayer has a calendar number of 21°51.101.
Five types of imaging elements having a yellow imaging layer 2 of 201, 301 were manufactured.

・表示の実施 単分子膜の層数が21の像形成素子について表示試験を
行った。線状の発熱抵抗層15−1.15−2.15−
3.−−−一の各々の端子に外部電極を接続し、情報信
号に対応した所定の組み合わせ発熱抵抗層をτ(τ≦1
0)秒間の通電加熱する間に、出力3mw、波長633
mm、スポット径4−0gmのHe−Neレーザビーム
で線状の発熱抵抗層に直交する順次2行目、3行目のレ
ーザビーム走査を行うとともにそれに同期させた情報信
号に従って所定の組み合わせの発熱抵抗層を通電加熱し
た。
- Display test A display test was conducted on an image forming element having 21 monomolecular film layers. Linear heating resistance layer 15-1.15-2.15-
3. --- Connect external electrodes to each terminal of the
0) Output 3 mw, wavelength 633 during heating with electricity for seconds
A He-Ne laser beam with a spot diameter of 4 to 0 gm is used to sequentially scan the second and third lines perpendicular to the linear heating resistor layer, and generate heat in a predetermined combination according to the information signal synchronized therewith. The resistance layer was electrically heated.

その結果、情報信号に対応した赤色像が得られた。単分
子膜の暦数が異なる他の4種類の表示素子についても同
様の表示試験を行ったところ、同様の結果が得たれた。
As a result, a red image corresponding to the information signal was obtained. Similar display tests were conducted on other four types of display elements with different monomolecular film numbers, and similar results were obtained.

これにより加熱下における被照射部分のみが色変化する
ことが確認された。
This confirmed that only the irradiated area under heating changed color.

実施例3 で表わされるエラ・イジン酸1部とを (V)      Me Me 18H37 (Vl)   CH3(CH2) 7CH= (CH2
) 7COOHクロロホルムに各/?2.5X 10−
3mo l/!;Lの濃度に溶かした溶液を用いた以外
は実施例1と同様の方法・条件により各々単分子膜に暦
数が21゜51.101,201,301の無色の像形
成層2を有する5種類の像形成素子を製造した。
Example 3: (V) Me Me 18H37 (Vl) CH3(CH2) 7CH= (CH2
) 7 COOH chloroform each/? 2.5X 10-
3mol/! 5, each having a colorless image forming layer 2 with a calendar number of 21°51.101, 201, and 301 in the monomolecular film by the same method and conditions as in Example 1 except that a solution dissolved at a concentration of L was used. Different types of imaging elements were manufactured.

争表示の実施 単分子膜の層数が101の像形成素子について表示試験
を行った。線状の発熱抵抗層15−1.15−2.15
−3.−−−−の各々の端子に外部電極を接続し、情報
信号に対応した所定の組み合わせの発熱抵抗層をτ(τ
≦10)秒間の通電加熱する間に、出力3mw、波長3
56mm、スポット径40gmの紫外線ビームで線状の
発熱抵抗層に直交する第1行目を走査した。
Display test was carried out on an image forming element having 101 monomolecular film layers. Linear heating resistance layer 15-1.15-2.15
-3. An external electrode is connected to each terminal of −−−−, and a predetermined combination of heating resistor layers corresponding to the information signal is connected to τ (τ
≦10) During energization heating for seconds, the output is 3 mw and the wavelength is 3.
The first line perpendicular to the linear heating resistor layer was scanned with an ultraviolet beam having a diameter of 56 mm and a spot diameter of 40 gm.

順次2行目、3行目のレーザビーム走査を行うとともに
それに同期させた情報信号に従って所定の組み合わせの
発熱抵抗層を通電加熱した。
The second and third rows were sequentially scanned with the laser beam, and a predetermined combination of heating resistor layers was heated by energization in accordance with an information signal synchronized therewith.

その結果、情報信号に対応した青い明瞭像が得られた。As a result, a clear blue image corresponding to the information signal was obtained.

単分子Hりの層数が異なる他の4種類の表示素子につい
ても同様の表示試験を行ったところ、同様の結果が得た
れた。これにより加熱下における被照射部分のみが色変
化することが確認された。
Similar display tests were conducted on other four types of display elements having different numbers of monomolecular H layers, and similar results were obtained. This confirmed that only the irradiated area under heating changed color.

本発明の主要な効果をまとめると以下の通りである。The main effects of the present invention are summarized as follows.

(1)微小な単分子膜又は単分子層累積膜の照射部又は
加熱部の1個を機素単位として高密度に配列することが
可能であるから、高解像度の像形成ができる。
(1) Since it is possible to arrange one of the irradiation parts or heating parts of a minute monomolecular film or a monomolecular layer stack as a unit of element in a high density, high-resolution images can be formed.

(2)機能性分子の調整又は選択により静止画、又はス
ローモーションを含む動画の表示が容易にできる。
(2) Still images or moving images including slow motion can be easily displayed by adjusting or selecting functional molecules.

(3)機能性分子の調整、選択によりカラー表示を容易
に実施することができる。
(3) Color display can be easily implemented by adjusting and selecting functional molecules.

(4)素子の構造が比較的随略であるから、その生産性
に優れているし、素子の耐久性が高く信頼性に優れてい
る。
(4) Since the structure of the device is relatively simple, productivity is excellent, and the device has high durability and reliability.

(5)広範囲な駆動方式に適応できる。(5) Applicable to a wide range of drive systems.

(6)ラングミュア・ブロジェット法を用いて単分子膜
又は単分子層累積膜を作成できるので、大面積化が極め
て容易に図れる。
(6) Since a monomolecular film or a monomolecular layer cumulative film can be created using the Langmuir-Blodgett method, it is extremely easy to increase the area.

(7)液晶のような液体を用いないので、製作が容易で
あり、かつ安全である。
(7) Since no liquid such as liquid crystal is used, manufacturing is easy and safe.

(8)相転移温度はそれ程高くないので、像形成素子等
に用いる電力が少なくて済み、それだけ電源部、即ち、
像形成装置を小型化できる。
(8) Since the phase transition temperature is not so high, less power is required for the image forming element, etc., and the power supply section, i.e.,
The image forming device can be downsized.

(9)混合膜(単分子又は単分子層累積膜の)相転移を
利用する場合において混合膜(単分子膜)構成分子の構
造によっては、相転移した状態を長く保持するものもあ
る。このような場合には、本発明に係る像形成素子は記
録装置(材料)、記憶装置(材料)として利用すること
もできる。
(9) When utilizing a phase transition of a mixed film (of a monomolecular or monomolecular layer stack), some molecules may maintain a phase-transitioned state for a long time depending on the structure of the constituent molecules of the mixed film (monolayer film). In such a case, the image forming element according to the present invention can also be used as a recording device (material) or a storage device (material).

(lO)迅速に像形成を得ることができる。(lO) Imaging can be obtained quickly.

(11)像消去・再生も可能である。(11) Image erasure/reproduction is also possible.

(12)生体脂質の機能に近似するので、分子デバイス
、バイオエレクトロニクス等との適合性がある。
(12) Since it approximates the function of biological lipids, it is compatible with molecular devices, bioelectronics, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の像形成素子の断面図を示し、(A)は
、透過型像形成素子、(B)は、反射型像形成素子の断
面図であり、第2図は木発明に係る単分子累積膜の模式
図であり、第3図は本発明の他の実施例を示す平面図で
ある。 1   基板 2   発熱抵抗層 3   像形成層 5   保護用基板 6光 7・8 照明光 11−2 疎水性部位 12   相転移性有機化合物分子 13   機能性分子 14   ガラス基板 15   発熱抵抗層
FIG. 1 shows a sectional view of an image forming element of the present invention, (A) is a sectional view of a transmission type image forming element, (B) is a sectional view of a reflective type image forming element, and FIG. 2 is a sectional view of the image forming element of the invention. FIG. 3 is a schematic diagram of such a monomolecular cumulative film, and FIG. 3 is a plan view showing another embodiment of the present invention. 1 Substrate 2 Heat generating resistor layer 3 Image forming layer 5 Protective substrate 6 Lights 7 and 8 Illumination light 11-2 Hydrophobic portion 12 Phase changeable organic compound molecule 13 Functional molecule 14 Glass substrate 15 Heat generating resistor layer

Claims (1)

【特許請求の範囲】[Claims] 少なくとも親水性部位と疎水性部位を有し、かつ分子骨
格中に不飽和結合を有する相転移性有機化合物分子と、
少なくとも親水性部位と疎水性部位を有する機能性分子
よりなる像形成層と該像形成層に熱エネルギーを付与す
るための発熱抵抗層とを有することを特徴とする像形成
素子。
A phase-transitionable organic compound molecule having at least a hydrophilic site and a hydrophobic site and having an unsaturated bond in the molecular skeleton;
An image forming element comprising an image forming layer made of a functional molecule having at least a hydrophilic site and a hydrophobic site, and a heat generating resistive layer for applying thermal energy to the image forming layer.
JP60017040A 1985-01-31 1985-01-31 Image forming element Pending JPS61176929A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60017040A JPS61176929A (en) 1985-01-31 1985-01-31 Image forming element
US07/462,912 US4960679A (en) 1985-01-31 1990-01-11 Image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60017040A JPS61176929A (en) 1985-01-31 1985-01-31 Image forming element

Publications (1)

Publication Number Publication Date
JPS61176929A true JPS61176929A (en) 1986-08-08

Family

ID=11932883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60017040A Pending JPS61176929A (en) 1985-01-31 1985-01-31 Image forming element

Country Status (1)

Country Link
JP (1) JPS61176929A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129339A (en) * 1986-11-20 1988-06-01 Teijin Ltd Optical recording medium and optical recording and reproducing method
EP0312339A2 (en) * 1987-10-13 1989-04-19 Mitsui Petrochemical Industries, Ltd. Optical information recording media and optical recording systems
JPH01259357A (en) * 1988-04-11 1989-10-17 Agency Of Ind Science & Technol Optical recording medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129339A (en) * 1986-11-20 1988-06-01 Teijin Ltd Optical recording medium and optical recording and reproducing method
JPH0451819B2 (en) * 1986-11-20 1992-08-20 Teijin Ltd
EP0312339A2 (en) * 1987-10-13 1989-04-19 Mitsui Petrochemical Industries, Ltd. Optical information recording media and optical recording systems
JPH01259357A (en) * 1988-04-11 1989-10-17 Agency Of Ind Science & Technol Optical recording medium
JPH0447297B2 (en) * 1988-04-11 1992-08-03 Kogyo Gijutsuin

Similar Documents

Publication Publication Date Title
JP3298607B2 (en) Liquid crystal element and manufacturing method thereof
JPS61175087A (en) Image forming and erasing method
US4960679A (en) Image forming device
JPS61176929A (en) Image forming element
US4957851A (en) Image recording medium comprising a diacetylene derivative compound film and a radiation absorbing layer
JPS61175085A (en) Image formation
JPS61176928A (en) Image forming element
JPS61176930A (en) Image forming element
JPS61255982A (en) Image forming apparatus
JPS61176926A (en) Image forming element
JPS61255987A (en) Image forming apparatus
JPS61255986A (en) Image forming apparatus
JPS61255981A (en) Image forming apparatus
JPS61175083A (en) Image forming element
JPS61175082A (en) Image forming element
JPS61255984A (en) Image forming apparatus
JPS61176927A (en) Image forming element
JPS61175081A (en) Image forming element
JPS61176925A (en) Image forming element
JPS61255983A (en) Image forming apparatus
JPS61255985A (en) Image forming apparatus
JPS61175086A (en) Image formation
JPS61175080A (en) Image forming element
JPH0148524B2 (en)
JPS61175084A (en) Image forming element