JPS61176840A - X-ray spectroscope - Google Patents

X-ray spectroscope

Info

Publication number
JPS61176840A
JPS61176840A JP60018438A JP1843885A JPS61176840A JP S61176840 A JPS61176840 A JP S61176840A JP 60018438 A JP60018438 A JP 60018438A JP 1843885 A JP1843885 A JP 1843885A JP S61176840 A JPS61176840 A JP S61176840A
Authority
JP
Japan
Prior art keywords
point
axis
straight line
moving
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60018438A
Other languages
Japanese (ja)
Other versions
JPH0554638B2 (en
Inventor
Kazuyasu Kawabe
河辺 一保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP60018438A priority Critical patent/JPS61176840A/en
Publication of JPS61176840A publication Critical patent/JPS61176840A/en
Publication of JPH0554638B2 publication Critical patent/JPH0554638B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • G01N23/2076Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions for spectrometry, i.e. using an analysing crystal, e.g. for measuring X-ray fluorescence spectrum of a sample with wavelength-dispersion, i.e. WDXFS

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To make possible the disposition of many spectroscopes around an X-ray generating point by coupling a spectral crystal and detector unit by a specific link mechanism. CONSTITUTION:X-rays are diffracted by the spectral crystal 7. A motor 3 is driven to rotate a revolving shaft 14 and when a moving base 5 moves toward the point A' direction, a carriage 9 linked thereto via an arc rail 6 moves in the point A direction. A carriage 12 is moved in the point D direction by the effect of specified length legs 14, 15 on moving of the carriage 9 in the direction A and the shaft 10 rotates in the direction where acute angleADD' increases. A carriage 19 which slides on the shaft 10 rotating around the point D and a revolving shaft C restrained on a Rowland circle R are linked by maintaining the conditions acute angleADB=acute angleBDD' and therefore acute angleBCD is always maintained at pi-alpha. Since the carriage 19 is made rotatable with respect to the revolving shaft C, the detector unit 20 is always directed toward the direction of the crystal 7.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、分光結晶をX線発生点を通る直線上を移動さ
せるようにした、いわゆる直進集光型X線分光器の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an improvement in a so-called straight condensing X-ray spectrometer in which a spectroscopic crystal is moved on a straight line passing through an X-ray generation point.

[従来の技Ifl] X線マイクロアナライザ等に使用されている、分光結晶
を直進させる直進集光型のX線分光器は、例えば、特公
昭47−47838号公報に記載されている。
[Conventional Technique Ifl] A linear condensing type X-ray spectrometer, which is used in an X-ray microanalyzer or the like, in which a spectroscopic crystal moves in a straight line, is described in, for example, Japanese Patent Publication No. 47-47838.

この形の分光器では、xI!発生点からのX線の取出し
方向を常に一定にした状態でX線の分光を行うため、直
線に沿って湾曲分光結晶を移動させると共に、同時に結
晶自体も回動させて該結晶に入射するX線の入射角を変
化させている。
With this type of spectrometer, xI! In order to perform X-ray spectroscopy while keeping the direction of X-ray extraction from the generation point constant, a curved spectroscopy crystal is moved along a straight line, and at the same time the crystal itself is rotated to detect the X-rays incident on the crystal. The angle of incidence of the line is changed.

[発明が解決しようとする問題点] 通常、この直進集光型X線分光器では、湾曲結晶部およ
びその近くにX線検出器の駆動機構等の機構要素が多数
配置されており、その結果、該分光結晶部が厚くなる。
[Problems to be Solved by the Invention] Normally, in this linear focusing type X-ray spectrometer, a large number of mechanical elements such as the driving mechanism of the X-ray detector are arranged in and near the curved crystal part. , the spectroscopic crystal part becomes thicker.

該分光結晶部は、X線発生点の近くまで移動される関係
上、該結晶部分が厚くなるに従って、該X線発生点の周
囲に配置することができるX線分光器の数に制限が加え
られる。
Since the spectroscopic crystal section is moved close to the X-ray generation point, the thicker the crystal section becomes, the more limited the number of X-ray spectrometers that can be placed around the X-ray generation point becomes. It will be done.

又、分光器を縦型にし、分光結晶部分が上部に配置され
ると、結晶部分が重くなり、ローランド円面に垂直であ
るべき結晶が倒れてしまい、ローランド円と結晶との所
定の関係が崩れてしまう。
Also, if the spectrometer is made vertical and the spectroscopic crystal part is placed at the top, the crystal part becomes heavy and the crystal, which should be perpendicular to the Rowland circle, falls over, causing the predetermined relationship between the Rowland circle and the crystal to be distorted. It will collapse.

本発明は、上述した点に鑑みてなされたもので、多数の
分光器をX線発生点の周囲に配置することを可能とする
X線分光器に関する。
The present invention has been made in view of the above-mentioned points, and relates to an X-ray spectrometer that allows a large number of spectrometers to be arranged around an X-ray generation point.

[発明の原理説明1 次に、第2図に基づいて、本発明の基本となる考え方を
説明する。図中、AはX線発生点、Bは分光結晶の中央
部、Cはxta検出器のスリット点であり、直進集光型
X11分光器を構成するためには、A点を通る直IIA
−A’上でB点を移動させた場合、点A9点B1点Cが
常にローランド円R上に位置し、距離ABと距離BGと
が等しくなり、分光結晶の格子面接線B’−8#はB点
でローランド円Rと接し、更に、検出器が点Cから点B
方向を向くようにすれば良い。
[Explanation of Principle of the Invention 1 Next, the basic idea of the present invention will be explained based on FIG. 2. In the figure, A is the X-ray generation point, B is the center of the spectroscopic crystal, and C is the slit point of the XTA detector.
- When point B is moved on A', point A9 point B1 point C is always located on Rowland circle R, distance AB and distance BG are equal, and lattice tangent line B'-8# of the spectroscopic crystal touches the Rowland circle R at point B, and the detector also moves from point C to point B.
You just have to face the direction.

ここで、xlI発生点Aで直線A−A’ と交差する直
線A−A’とローランド円Rとの交点をDとし、定値B
DをB点が直線A−A’ に沿って動き、D点が直線A
−A“に沿りて動くようにすれば、点A1点B0点りは
必ずローランド円R上に乗って動くことは自明である。
Here, the intersection point of the Roland circle R and the straight line A-A' which intersects the straight line A-A' at the xlI generation point A is set as D, and the constant value B
Point B moves along straight line A-A', and point D moves along straight line A.
-A", it is obvious that points A1 and B0 will always move on the Roland circle R.

こうした状況で、上記直進集光型X1分光器の条件が満
たされているとき、乙ADB、 tBDc、 LDCB
を考えてみると、分光結晶への入射角(乙ABB’ )
をθとし、2つの直線A−A’およびA−A“の交角す
なわち、4A’ AA”をαとすると、 乙ADO−θ・・・・・・(弧ABの張る円周角)lB
 D C−θ・・・・・・(弧BGの張る円周角)lD
 CB =π−α (α〉θの時)となる。従って、上
記点りを中心に回転可能な軸DD’を設け、直線A−A
=に対して定値BDがなす角度乙ADBに対して、軸D
D’が直線A−A“となす角度1ADD’が2倍になる
ように軸DD’を定値BDにリンクすれば、集光点Cは
、ローランド円Rと軸DD’ の交点となり、そして、
分光結晶によって回折されたxmxは軸DD’ に対し
、一定角度π−αで0点に入射することになる。
Under these circumstances, when the above conditions for the straight focusing type X1 spectrometer are met, Otsu ADB, tBDc, LDCB
Considering this, the angle of incidence on the spectroscopic crystal (ABB')
If θ is the intersection angle of the two straight lines A-A' and A-A", that is, 4A'AA" is α, then ADO-θ... (circumferential angle spanned by arc AB) lB
D C-θ・・・(circumferential angle spanned by arc BG) lD
CB = π-α (when α>θ). Therefore, an axis DD' which can be rotated around the above point is provided, and a straight line A-A
The angle B made by the constant value BD with respect to ADB, the axis D
If the axis DD' is linked to the constant value BD so that the angle 1ADD' that D' makes with the straight line A-A'' is doubled, the focal point C becomes the intersection of the Roland circle R and the axis DD', and,
The xmx diffracted by the spectroscopic crystal will be incident on the 0 point at a constant angle π-α with respect to the axis DD'.

[問題点を解決するための手段] 従って、本発明に基づくX線分光器は、X線発生点を通
る第1の直線<A−A’ )に沿って配置された第1の
移動軸と、該X線発生点を通る第2の直II (A−A
’ )に沿って配置された第2の移動輪と、該第1の移
動軸上を移動する台上に、その格子面接線がローランド
円に接するように配置された分光結晶と、該第2の直線
(A−A” )と交差する第3の直線(D−D’ )に
沿って配置され、該第2の軸を移動する台上に、該第2
の直線と第3の直線の交点(D)において回動可能に設
けられた第3の軸と、該第1の軸上を移動する分光結晶
の中央部(B)と該第2の直線と第3の直線の交点(D
)の間の良さを、該分光結晶の移動によっても常に一定
に維持するための、該第1の移動軸上の移動台と該第2
の移動軸上の移動台の移動をリンクする機構と、該第3
の軸と、該第2の直線とのなす角度が、該交点(D)の
移動によっても常に、分光結晶の中央部(B)と該交点
(D)とを結ぶ直線と該第2の直線(A−A′)とのな
す角度の2倍の関係を保つようにするための機構と、該
第3の軸上をスライドする台上に設けられ、そのスリッ
ト点が常にローランド円上にあるように束縛されている
X線検出器とを備えたことを特徴としている。
[Means for Solving the Problems] Therefore, the X-ray spectrometer based on the present invention has a first movement axis disposed along the first straight line <A-A') passing through the X-ray generation point; , the second direct line II (A-A
); a spectroscopic crystal disposed on a stage that moves on the first moving axis so that its lattice planes are in contact with the Rowland circle; The second axis is disposed along a third straight line (D-D') that intersects the straight line (A-A''), and is moved along the second axis.
A third axis rotatably provided at the intersection (D) of the straight line and the third straight line, a central part (B) of the spectroscopic crystal that moves on the first axis, and the second straight line. Intersection point of the third straight line (D
) on the first movement axis and the second
a mechanism for linking the movement of the moving table on the moving axis of the third
The angle formed between the axis of (A-A') is provided on the table that slides on the third axis, and the slit point is always on the Rowland circle. It is characterized by comprising an X-ray detector which is bound in such a manner.

[実施例] 以下本発明の一実施例を添附図面に基づいて詳述する。[Example] An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

第1図において、1は被分析試料であり、該試料1には
、細く収束された電子線2が照射され、該試料1の電子
線照射点Aからは該試料に応じた特性X線が発生する。
In FIG. 1, 1 is a sample to be analyzed, the sample 1 is irradiated with a narrowly focused electron beam 2, and a characteristic X-ray corresponding to the sample is emitted from the electron beam irradiation point A of the sample 1. Occur.

該電子線照射点点を通る直線A−A’ に沿って、モー
タ3によって回転する駆動軸4が設けられており、該駆
動軸4には、結晶移動台5が取り付けられている。該移
動台5の直線A−A’上の点Bには回転軸が設けられ、
該回転軸にはローランド円と同心円の円弧レール6が回
転可能に取り付けられている。該円弧レール6の一端に
は、その格子面接線が該ローランド円Rに接するように
湾曲分光結晶7が固定されている。該電子線照射点Aを
通る直線A−A“に沿って補助レール8が配置されてお
り、該補助レール8には台車9が摺動可能に取り付けら
れている。
A drive shaft 4 rotated by a motor 3 is provided along a straight line AA' passing through the electron beam irradiation point, and a crystal moving stage 5 is attached to the drive shaft 4. A rotation axis is provided at a point B on the straight line A-A' of the moving table 5,
A circular arc rail 6 concentric with the Roland circle is rotatably attached to the rotating shaft. A curved spectroscopic crystal 7 is fixed to one end of the arcuate rail 6 so that its lattice surface is in contact with the Rowland circle R. An auxiliary rail 8 is arranged along a straight line A-A'' passing through the electron beam irradiation point A, and a cart 9 is slidably attached to the auxiliary rail 8.

該台車9上の点りには回転軸が設けられており、該回転
軸には該円弧レール6の他端と、軸10とが回転可能に
取り付けられている。該円弧レールの他端には、点Bと
点りを結ぶ線に沿った軸11が一体的に設けられており
、該軸11には台車12が摺動可能に取り付けられてい
る。該台車12の線B−D上に固定されたピボット13
には、同じ長さの2本の定長足14.15が回転可能に
設けられている。該定長足14の他端は、該台車9の直
線A−A’上に設けられたピボット16に回転可能に取
り付けられており、該定長足15の他端は、該軸10に
設けられたピボット17に回転可能に取り付けられてい
る。なお、D点とピボット16までの距離と点りからピ
ボット17までの距離は等しくされている。該円弧レー
ル6には台車18が摺動可能に設けられており、該台車
18上には、点Cに設けられた回転軸の回りに回転可能
で軸10に沿って摺動可能な台車19が取り付けられて
いる。該台車19には、検出器ユニット20が配置され
ているが、該検出器ユニット中のスリット点は、該0点
と一致されている。
A rotating shaft is provided at a point on the truck 9, and the other end of the arcuate rail 6 and a shaft 10 are rotatably attached to the rotating shaft. A shaft 11 along a line connecting point B is integrally provided at the other end of the arcuate rail, and a cart 12 is slidably attached to the shaft 11. A pivot 13 fixed on the line B-D of the truck 12
is rotatably provided with two fixed length legs 14,15 of the same length. The other end of the constant length foot 14 is rotatably attached to a pivot 16 provided on the straight line A-A' of the truck 9, and the other end of the constant length foot 15 is rotatably attached to a pivot 16 provided on the straight line AA' of the truck 9. It is rotatably attached to the pivot 17. Note that the distance from point D to the pivot 16 and the distance from the point to the pivot 17 are made equal. A truck 18 is slidably provided on the arcuate rail 6, and a truck 19 is mounted on the truck 18, which is rotatable around a rotation axis provided at a point C and slidable along an axis 10. is installed. A detector unit 20 is disposed on the truck 19, and the slit point in the detector unit is aligned with the zero point.

上述した如き構成において、試料1への電子線の照射に
より、電子線照射点Aからは特性X線が発生する。該X
線は、分光結晶7によって波長に応じて回折され、特定
波長のX線がX線検出器ユニット20によって検出され
る。ここで、モータ3を駆動して回転軸4を回転させれ
ば、該回転軸4に設けられた移動台5は直線A−A’ 
に沿って移動することになる。該移動台5の移動により
、円弧レール6を介してリンクされている台車9は補助
レール8上を移動することになる。例えば、該移動台5
が点A′方向に移動すると、台車9は点点方向に移動す
ることになるが、この時、点Bと点りの間の距離に変更
はなく、又、点Bおよび点りは共に、ローランド円R上
に位置する。該台車9がへ方向に移動すると、定長足1
4.15の作用によって台車12がD点方向に移動し、
軸10は乙ADD’が大きくなる方向に回転する。この
結果、直線A−A’上のD点と直線BD上の軸11と直
線D−D’ に沿った軸10とは同じ長さの定長足14
.15によってリンクされているため、乙ADBとZB
DD’ とは常に等しくなり、発明の原理説明で述べた
条件が満たされることになる。又、乙ADB−48DD
’の条件を保って、点りを中心に回転する軸10上をス
ライドする台車19とローランド円R上に束縛されてい
る回転軸Cとをリンクさせていることから、乙BCDは
常にπ−αに保たれる。更に、該台車19は該回転軸C
に対して回転可能にしであるので、検出器ユニット20
をいったん分光結晶7の方向を向くように談合19に載
置すれば、該検出器ユニット20は、常に、分光結晶7
の方向を向くことになる。なお、第1図の構成で、台車
12や回転軸Cを、バネ等によってD点方向に常に引張
ったりして、機械的なガタをなくすように構成すること
は好ましい。
In the configuration as described above, characteristic X-rays are generated from the electron beam irradiation point A by irradiating the sample 1 with the electron beam. The X
The rays are diffracted according to their wavelength by the spectroscopic crystal 7, and X-rays of specific wavelengths are detected by the X-ray detector unit 20. Here, if the motor 3 is driven to rotate the rotary shaft 4, the movable table 5 provided on the rotary shaft 4 will move along the straight line A-A'
will move along. Due to the movement of the moving platform 5, the cart 9 linked via the arcuate rail 6 moves on the auxiliary rail 8. For example, the moving table 5
When moves in the direction of point A', the trolley 9 moves in the direction of point A', but at this time, the distance between point B and the point does not change, and both point B and point Located on circle R. When the trolley 9 moves in the direction, the constant length leg 1
4. Due to the action of 15, the trolley 12 moves in the direction of point D,
The shaft 10 rotates in the direction in which ADD' increases. As a result, point D on the straight line A-A', the axis 11 on the straight line BD, and the axis 10 along the straight line D-D' have a constant length leg 14 of the same length.
.. 15, so Otsu ADB and ZB
DD' is always equal, and the conditions stated in the explanation of the principle of the invention are satisfied. Also, Otsu ADB-48DD
Since the carriage 19 that slides on the shaft 10 that rotates around the dot and the rotating shaft C that is constrained on the Roland circle R are linked while maintaining the condition of ', BCD is always π- It is kept at α. Further, the trolley 19 is rotated around the rotating shaft C.
Since the detector unit 20 is rotatable relative to
Once placed on the rigging 19 so as to face the direction of the spectroscopic crystal 7, the detector unit 20 always faces the spectroscopic crystal 7.
It will be facing the direction of. In the configuration shown in FIG. 1, it is preferable to always pull the cart 12 and the rotating shaft C in the direction of point D using a spring or the like to eliminate mechanical play.

以上、本発明の一実施例を詳述したが、本発明はこの実
施例に限定されず、幾多の変形が可能である。例えば、
検出器ユニットや0点をローランド円に束縛する手段と
しては、上述した円弧レールを用いる以外にも他の手段
を用いることができる。例えば、ローランド円中心を直
線BDの垂直2等分線の上に求め、その求めたローラン
ド円中心にそこを回転中心とするローランド円半径と等
しい長さのアームを設け、その他端に軸C1すなわち、
検出器のスリット点を設けるように構成しても良い。
Although one embodiment of the present invention has been described in detail above, the present invention is not limited to this embodiment and can be modified in many ways. for example,
As a means for constraining the detector unit and the zero point to the Rowland circle, other means than the above-mentioned arc rail can be used. For example, the center of the Rowland circle is found on the perpendicular bisector of the straight line BD, and an arm with a length equal to the radius of the Rowland circle with the center of rotation set at the center of the Rowland circle is provided at the center of the Rowland circle, and the other end is attached to the axis C1 or ,
The detector may be configured to have a slit point.

[効l!]。[Effect! ].

以上詳述した如く、本発明の構成により、検出器の位置
出し機構等の諸要素を分光結晶部分から離すことができ
、その結果、試料の回りに多数の分光器を配置すること
ができる。更に、分光結晶部分の重さを軽くできるので
、分光結晶部が倒れやすい等の弊害が解消される。
As described above in detail, the configuration of the present invention allows various elements such as the detector positioning mechanism to be separated from the spectroscopic crystal part, and as a result, a large number of spectrometers can be arranged around the sample. Furthermore, since the weight of the spectroscopic crystal part can be reduced, problems such as the tendency for the spectroscopic crystal part to fall down are eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す図、第2図は本発明の
原理説明に用いた図である。 1・・・試料      2・・・電子線3・・・モー
タ     4・・・駆動軸5・・・移動台     
6・・・円弧レール7・・・分光結晶    8・・・
補助レール9.12.18.19・・・台車 10.11・・・軸 13.16.17・・・ピボット 14.15・・・定長足 20・・・検出器ユニット
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a diagram used to explain the principle of the present invention. 1... Sample 2... Electron beam 3... Motor 4... Drive shaft 5... Moving table
6... Arc rail 7... Spectroscopic crystal 8...
Auxiliary rail 9.12.18.19...Dolly 10.11...Axle 13.16.17...Pivot 14.15...Constant length leg 20...Detector unit

Claims (2)

【特許請求の範囲】[Claims] (1)X線発生点を通る第1の直線(A−A′)に沿っ
て配置された第1の移動軸と、該X線発生点を通る第2
の直線(A−A″)に沿って配置された第2の移動軸と
、該第1の移動軸上を移動する台上に、その格子面接線
がローランド円に接するように配置された分光結晶と、
該第2の直線(A−A″)と交差する第3の直線(D−
D′)に沿って配置され、該第2の軸を移動する台上に
、該第2の直線と第3の直線の交点(D)において回動
可能に設けられた第3の軸と、該第1の軸上を移動する
分光結晶の中央部(B)と該第2の直線と第3の直線の
交点(D)の間の長さを、該分光結晶の移動によっても
常に一定に維持するための、該第1の移動軸上の移動台
と該第2の移動軸上の移動台の移動をリンクする機構と
、該第3の軸と、該第2の直線とのなす角度が、該交点
(D)の移動によっても常に、分光結晶の中央部(B)
と該交点(D)とを結ぶ直線と該第2の直線(A−A″
)とのなす角度の2倍の関係を保つようにするための機
構と、該第3の軸上をスライドする台上に設けられ、そ
のスリット点が常にローランド円上にあるように束縛さ
れているX線検出器とを備えたX線分光器。
(1) A first movement axis disposed along the first straight line (A-A') passing through the X-ray generation point, and a second axis passing through the X-ray generation point.
A second moving axis arranged along the straight line (A-A''), and a spectroscopic device arranged on a table moving on the first moving axis so that its lattice surface lines are in contact with the Rowland circle. crystal and
A third straight line (D-
a third axis rotatably provided at the intersection (D) of the second straight line and the third straight line on a table disposed along the line D' and moving the second axis; The length between the central part (B) of the spectroscopic crystal moving on the first axis and the intersection (D) of the second straight line and the third straight line is always kept constant even as the spectroscopic crystal moves. a mechanism for linking the movements of the moving platform on the first moving axis and the moving platform on the second moving axis, and the angle formed by the third axis and the second straight line; However, even if the intersection point (D) moves, the central part (B) of the spectroscopic crystal always changes.
and the intersection (D) and the second straight line (A-A″
) is provided on a table that slides on the third axis, and is constrained so that the slit point is always on the Rowland circle. An X-ray spectrometer equipped with an X-ray detector.
(2)該分光結晶の中央部Bと該交点Dをローランド円
に沿った円弧レールによってリンクさせ、該円弧レール
に束縛してX線検出器を移動させるように構成した特許
請求の範囲第1項記載のX線分光装置。
(2) The central part B of the spectroscopic crystal and the intersection D are linked by an arcuate rail along a Rowland circle, and the X-ray detector is moved by being bound to the arcuate rail. The X-ray spectrometer described in Section 1.
JP60018438A 1985-02-01 1985-02-01 X-ray spectroscope Granted JPS61176840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60018438A JPS61176840A (en) 1985-02-01 1985-02-01 X-ray spectroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60018438A JPS61176840A (en) 1985-02-01 1985-02-01 X-ray spectroscope

Publications (2)

Publication Number Publication Date
JPS61176840A true JPS61176840A (en) 1986-08-08
JPH0554638B2 JPH0554638B2 (en) 1993-08-13

Family

ID=11971644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60018438A Granted JPS61176840A (en) 1985-02-01 1985-02-01 X-ray spectroscope

Country Status (1)

Country Link
JP (1) JPS61176840A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228799A (en) * 2001-02-01 2002-08-14 Shimadzu Corp X-ray spectroscope

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763252U (en) * 1980-09-30 1982-04-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763252U (en) * 1980-09-30 1982-04-15

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228799A (en) * 2001-02-01 2002-08-14 Shimadzu Corp X-ray spectroscope
JP4632167B2 (en) * 2001-02-01 2011-02-16 株式会社島津製作所 X-ray spectrometer

Also Published As

Publication number Publication date
JPH0554638B2 (en) 1993-08-13

Similar Documents

Publication Publication Date Title
JPS61176840A (en) X-ray spectroscope
US3144498A (en) High resolution filter-grating spectrometer
US10732134B2 (en) X-ray diffraction apparatus
US6240159B1 (en) Fluorescent X-ray analyzer with path switching device
JP2001033408A (en) X-ray spectrometer
JPH0743322A (en) Rectilinear condensing type x-ray spectroscope
JP3419133B2 (en) X-ray spectrometer
JP3952330B2 (en) Spectrometer
JP3098806B2 (en) X-ray spectrometer and EXAFS measurement device
JP2861736B2 (en) X-ray spectrometer
JP2000035409A (en) X-ray apparatus and x-ray measuring method
KR100429830B1 (en) X-ray electronic spectrum analyzer
JPH05249054A (en) X-ray analysis apparatus and scanning unit fit to the apparatus
JP3222720B2 (en) Wavelength dispersion type X-ray detector
Kolesnikov et al. Compact High-Resolution Monochromators for the Wavelength Range of 110–160 Å
JPH09236697A (en) X-ray spectroscope
JP2666871B2 (en) X-ray monochromator
JP2001194325A (en) Device and method for x-ray analysis
SU579567A1 (en) X-ray spectrometer
JPH0643562U (en) X-ray analyzer
JP3624207B2 (en) Point-focusing X-ray spectrometer
JPH08105846A (en) X-ray analyzer
JPH0666736A (en) X-ray spectroscope and exafs measuring instrument
JP2000009666A (en) X-ray analyzer
JP2727939B2 (en) X-ray spectrometer