JPS6117672Y2 - - Google Patents

Info

Publication number
JPS6117672Y2
JPS6117672Y2 JP13939079U JP13939079U JPS6117672Y2 JP S6117672 Y2 JPS6117672 Y2 JP S6117672Y2 JP 13939079 U JP13939079 U JP 13939079U JP 13939079 U JP13939079 U JP 13939079U JP S6117672 Y2 JPS6117672 Y2 JP S6117672Y2
Authority
JP
Japan
Prior art keywords
microphone
output
variable
frequency
phase shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13939079U
Other languages
Japanese (ja)
Other versions
JPS5656289U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13939079U priority Critical patent/JPS6117672Y2/ja
Priority to US06/185,516 priority patent/US4354059A/en
Priority to DE3033985A priority patent/DE3033985C2/en
Priority to GB8029371A priority patent/GB2062406B/en
Publication of JPS5656289U publication Critical patent/JPS5656289U/ja
Application granted granted Critical
Publication of JPS6117672Y2 publication Critical patent/JPS6117672Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Description

【考案の詳細な説明】 本考案は可変指向性マイクロホンに係り、マイ
クロホンの出力に可変移相回路を接続して他のマ
イクロホンの出力と混合する構成とすることよ
り、可変移相回路の移相量の可変に応じて指向特
性を任意に可変し得ると共に、特に低域周波数に
おけるレベルの損失を防止し得、周波数補正する
ためのイコライザを補正量の小さいものを用いて
SN比の劣化のない信号を得るようにした可変指
向性マイクロホンを提供することを目的とする。
[Detailed description of the invention] The present invention relates to a variable directional microphone, and has a configuration in which a variable phase shift circuit is connected to the output of the microphone and mixed with the output of other microphones. In addition to being able to arbitrarily vary the directivity characteristics according to the variation of the amount, it is also possible to prevent loss of level, especially in low frequencies, by using an equalizer with a small correction amount for frequency correction.
It is an object of the present invention to provide a variable directional microphone capable of obtaining a signal without deterioration of the SN ratio.

従来、マイクロホンの指向性を可変させる方法
として、第1図に示す如く、周波数特性が平坦で
1次音圧傾度単一指向性(以下、1次単一指向性
という)のマイクロホン2a,2bを軸l上に音
源1に対して前向きに設置し、マイクロホン2
a,2bよりの出力を混合器3にて逆位相で混合
してその混合比を可変させて1次単一指向性から
2次音圧傾度単一指向性(以下、2次単一指向性
という)を得る例がある。この場合、マイクロホ
ン2aの感度をA、マイクロホン2bの感度を
B、マイクロホン2a,2bの軸lと音源1との
なす角度をθ、マイクロホン2aとマイクロホン
2bとの距離をD、波長定数をKとすると、マイ
クロホン2aの出力とマイクロホン2bの出力と
を混合した指向性パターンPは、 P=A・ejt・1+cosθ/2 −B・ej(t+KDcos)・1+cosθ/2……(1
) となり、マイクロホン2aの感度Aとマイクロホ
ン2bの感度Bとが同一であり、A=Bとすれ
ば、上式は、 P=A・1+cosθ/2 ・ejt・{1−ej(KDcos)} ……(2) となる。又、(2)式中、Aの値を適宜選定すれば、
第2図に示す如き2次単一指向性のパターンを得
ることができ、(2)式中、D=3cmとすれば、第3
図に示す如き周波数特性を得ることができる。
Conventionally, as a method of varying the directivity of a microphone, as shown in FIG. Microphone 2 is installed on axis l facing forward to sound source 1.
The outputs from a and 2b are mixed in opposite phase in the mixer 3, and the mixing ratio is varied to change from primary unidirectional to secondary sound pressure gradient unidirectional (hereinafter referred to as secondary unidirectional). ) is obtained. In this case, the sensitivity of the microphone 2a is A, the sensitivity of the microphone 2b is B, the angle between the axis l of the microphones 2a and 2b and the sound source 1 is θ, the distance between the microphone 2a and the microphone 2b is D, and the wavelength constant is K. Then, the directivity pattern P which is a mixture of the output of the microphone 2a and the output of the microphone 2b is: P=A・e jt・1+cos θ/2 −B・e j(t+KDcos)・1+cos θ/2... …(1
), and if the sensitivity A of the microphone 2a and the sensitivity B of the microphone 2b are the same, and A=B, then the above equation becomes P=A・1+cosθ/2・e jt・{1−e j( KDcos) } ...(2) becomes. Also, if the value of A in formula (2) is selected appropriately,
A secondary unidirectional pattern as shown in Figure 2 can be obtained, and if D = 3 cm in equation (2), the 3rd order unidirectional pattern can be obtained.
Frequency characteristics as shown in the figure can be obtained.

このものは、マイクロホン2aの出力とマイク
ロホン2bの出力とを逆位相で混合しているため
に、第3図に示す如く、入来音波の波長がマイク
ロホン2aとマイクロホン2bとの距離D(=3
cm)と等しい波長の周波数11.3kHzにおいてデイ
ツプを生じ、一方、入来音波の波長が距離Dより
も極めて低い周波数においては6dB/OCTの割合
でレスポンスが低下する傾向を示す。そこで、こ
のままでは低域周波数の音を確実に収音し得ない
ため、混合器3の出力を第3図に示す如き周波数
特性と逆の周波数特性を持つイコライザ4にて周
波数補正して低域及び中域周波数付近の周波数特
性を平坦にし、出力端子5よりとり出すようにし
ていた。
In this case, since the output of the microphone 2a and the output of the microphone 2b are mixed in opposite phase, the wavelength of the incoming sound wave is the distance D (=3
A dip occurs at a frequency of 11.3 kHz with a wavelength equal to cm), while the response tends to decrease at a rate of 6 dB/OCT at frequencies where the wavelength of the incoming sound wave is much lower than the distance D. Therefore, since it is not possible to reliably pick up sounds with low frequencies in this state, the output of the mixer 3 is frequency-corrected by an equalizer 4 having frequency characteristics opposite to those shown in FIG. The frequency characteristics near the mid-range frequency are flattened, and the frequency characteristics are output from the output terminal 5.

このため、この従来のマイクロホンは、イコラ
イザ4にて例えば100Hz付近の周波数では29dB程
度補正しなければならないために補正量の大きい
イコライザを用いなければならず、この結果、
SN比が劣化し、又、いわゆる風雑音を生じ易
く、又、触れた時にいわゆるタツチノイズを生じ
易い等の欠点があつた。
For this reason, in this conventional microphone, the equalizer 4 must correct approximately 29 dB at frequencies around 100 Hz, so an equalizer with a large correction amount must be used, and as a result,
It has drawbacks such as a deteriorated signal-to-noise ratio, a tendency to generate so-called wind noise, and a tendency to generate so-called touch noise when touched.

本考案は上記欠点を除去したものであり、第4
図以下と共にその一実施例について説明する。
The present invention eliminates the above drawbacks, and the fourth
An example will be described below with reference to the drawings.

第4図は本考案になる可変指向性マイクロホン
の一実施例のブロツク系統図を示し、同図中、第
1図と同一部分には同一番号を付す。同図におい
て、マイクロホン2aよりの出力は第5図に示す
如き位相特性をもち、第6図に示す如き回路構成
の可変1次移相回路6にて所定の移相量を以て移
相され、マイクロホン2bよりの出力と同相で混
合器(加算器)7にて混合される。なお、この混
合器7はマイクロホン2a,2bの出力の混合比
を可変せしめる構成とされていない。移相回路6
の位相特性は第5図より明らかな如く、角周波数
ωと90゜位相遅れの角周波数ωaとの比ω/ωa
1より大なる周波数軸においては−180゜方向に
移相、ω/ωaが1より小なる周波数軸においては
0゜方向に移相するように設定されているため、
移相回路6の出力は例えば、ω/ωa=1より極め
て大なる周波数帯域では入力信号に対して180゜
位相が回転し、一方ω/ωa=1より極めて小なる
周波数帯域では入力信号に対して位相が回転しな
い。
FIG. 4 shows a block system diagram of an embodiment of the variable directional microphone according to the present invention, in which the same parts as in FIG. 1 are given the same numbers. In the figure, the output from the microphone 2a has a phase characteristic as shown in FIG. It is mixed in the mixer (adder) 7 in the same phase as the output from 2b. Note that this mixer 7 is not configured to vary the mixing ratio of the outputs of the microphones 2a and 2b. Phase shift circuit 6
As is clear from Fig. 5, the phase characteristics of ω are shifted in the −180° direction on the frequency axis where the ratio ω/ω a between the angular frequency ω and the angular frequency ω a with a 90° phase lag is greater than 1. On the frequency axis where /ω a is smaller than 1, the phase is set to shift in the 0° direction, so
For example, the output of the phase shift circuit 6 rotates in phase by 180° with respect to the input signal in a frequency band where ω/ω a =1, while the phase rotates by 180° with respect to the input signal in a frequency band where ω/ω a =1. The phase does not rotate relative to the

従つて、高域周波数においてはマイクロホン2
aの出力は180゜位相回転されてマイクロホン2
bの出力に混合(マイクロホン2bの出力からマ
イクロホン2aの出力を減算)されるため、混合
器7の出力は第1図に示す従来例の混合器3の出
力と同様であり、第3図に示す従来のものの周波
数特性と略同じ特性を得ることができる。一方、
低域周波数においてはマイクロホン2aの出力は
位相回転されることなくマイクロホン2bの出力
に混合(マイクロホン2aの出力とマイクロホン
2bの出力とを加算)されるため、特に、入力信
号の波長がマイクロホン2aとマイクロホン2b
との距離Dを無視し得る程度の低域周波数におい
てはマイクロホン2aの出力とマイクロホン2b
の出力とを加算しても実質上マイクロホン2aの
出力の倍の出力域いはマイクロホン2bの出力の
倍の出力がとり出されるものとみなし得る。従つ
て、この低域周波数においては、周波数特性が平
坦で1次単一指向性のマイクロホンと略同じ特性
が得られ、第3図に示す従来のものの特性のよう
に減衰することはない。
Therefore, at high frequencies, microphone 2
The output of a is phase-rotated by 180° and sent to microphone 2.
b (by subtracting the output of microphone 2a from the output of microphone 2b), the output of mixer 7 is the same as the output of mixer 3 of the conventional example shown in FIG. It is possible to obtain almost the same frequency characteristics as the conventional one shown in FIG. on the other hand,
At low frequencies, the output of the microphone 2a is mixed with the output of the microphone 2b (adding the output of the microphone 2a and the output of the microphone 2b) without undergoing phase rotation. Microphone 2b
At low frequencies where the distance D between microphone 2a and microphone 2b can be ignored, the output of microphone 2a and microphone 2b
Even if the output of the microphone 2a is added to the output of the microphone 2a, it can be considered that an output range that is twice the output of the microphone 2a or an output that is twice the output of the microphone 2b is obtained. Therefore, at this low frequency range, the frequency characteristics are flat and substantially the same as those of a first-order unidirectional microphone, and there is no attenuation unlike the characteristics of the conventional microphone shown in FIG.

移相回路6の位相特性をφ(ω)とすると、マ
イクロホン2aの出力とマイクロホン2bの出力
とを混合した指向性パターンPは、 P=A・(1+cosθ/2)・ej(t-()) +B・(1+cosθ/2)・ej(t-KDcos)
…(3) となり、マイクロホン2aの感度Aとマイクロホ
ン2bの感度Bとが同一であり、A=Bとすれ
ば、上式は、 P=A・(1+cosθ/2)ejt ・{e-j()+e-jKDcos〓} ……(4) となる。ここで、φ(ω)は、 φ(ω)=2tan-1ω/ω と表わされる。又、(4)式中、A・(1+cosθ/2
)・ejtを定数、{e-j()+e-jKDcos〓}を変数と
みなし、可変1次移相回路6の可変抵抗器VR1
変位させて90゜位相遅れの角周波数ωaを10Hzか
ら400Hzまで変化させ、距離D=3cm,θ=0
゜,90゜を上記変数に代入した場合の周波数特性
を第7図(θ=90゜)及び第8図(θ=0゜)
に、指向性パターンを第9図(ωa=50Hzのと
き)に夫々示す。第7図乃至第9図より明らかな
如く、高域周波数においては第2図の従来のもの
の指向特性と略同じ2次単一指向性の特性を示
し、低域周波数においては1次単一指向性の指向
特性を示し、特に低域及び中域周波数においては
第3図に示す従来のもののようにレスポンスが低
下せず、最高値と最低値との差はωa=50Hzで
高々13dB程度であり、第3図に示す従来のもの
よりも小さい。
Assuming that the phase characteristic of the phase shift circuit 6 is φ(ω), the directivity pattern P that is a mixture of the output of the microphone 2a and the output of the microphone 2b is P=A・(1+cosθ/2)・e j(t-()) +B・(1+cosθ/2)・e j(t-KDcos)
...(3), and if the sensitivity A of the microphone 2a and the sensitivity B of the microphone 2b are the same, and A=B, then the above equation becomes P=A・(1+cosθ/2)e jt・{e -j() +e -jKDcos 〓} ...(4). Here, φ(ω) is expressed as φ(ω)=2tan −1 ω/ω a . Also, in formula (4), A・(1+cosθ/2
)・e j 〓 Regarding t as a constant and {e -j() +e -jKDcos 〓} as a variable, the variable resistor VR 1 of the variable primary phase shift circuit 6 is displaced to obtain a 90° phase lag angle. Change the frequency ω a from 10Hz to 400Hz, distance D = 3cm, θ = 0
Figure 7 (θ = 90°) and Figure 8 (θ = 0°) show the frequency characteristics when ゜, 90° are substituted into the above variables.
The directivity patterns are shown in FIG. 9 (when ω a =50Hz). As is clear from Figures 7 to 9, at high frequencies, it exhibits a second-order unidirectional pattern, which is almost the same as the conventional one shown in Figure 2, and at low frequencies, it exhibits a first-order unidirectional pattern. In particular, in the low and mid-range frequencies, the response does not deteriorate like the conventional one shown in Figure 3, and the difference between the highest and lowest values is at most 13 dB at ω a = 50 Hz. 3, which is smaller than the conventional one shown in FIG.

このように混合器7の出力の周波数特性は中域
周波数においてωa=50Hzで13dB程度低下するだ
けであるので、周波数を平坦にせしめるための可
変イコライザ8は13dB程度を補正し得る第8図
の特性と逆の特性をもつものでよく、第1図に示
す従来のイコライザの補正量よりも少なくて済
み、これにより、従来の如きSN比の劣化はな
く、又、風雑音を生じにくく、いわゆるタツチノ
イズを生じにくい。この場合、可変イコライザ8
を第10図に示す構成としてその可変抵抗器VR2
を可変1次移相回路6の可変抵抗器VR1に連動さ
せ、1次移相回路6の移相量の可変と同時に可変
イコライザ8の特性を可変せしめ得る構成とされ
ている。なおコンデンサC2の容量値をコンデン
サC1のそれの10倍以上に設定し、可変抵抗器
VR1,VR2の抵抗値の最大値において最大の補正
量が得られるようにコンデンサC1,C2の容量値
及び抵抗Rの抵抗値を夫々選定する。又、抵抗
R1の抵抗値は抵抗R、可変抵抗器VR1,VR2のそ
れよりも大に選定する。
In this way, the frequency characteristic of the output of the mixer 7 is reduced by only about 13 dB at ω a =50 Hz in the mid-range frequency, so the variable equalizer 8 for flattening the frequency can compensate for about 13 dB. The equalizer may have characteristics opposite to those of the equalizer, and the amount of correction required is smaller than that of the conventional equalizer shown in Fig. 1.Thereby, there is no deterioration of the S/N ratio as in the conventional equalizer, and it is less likely to cause wind noise. Less likely to cause so-called touch noise. In this case, variable equalizer 8
With the configuration shown in Fig. 10, the variable resistor VR 2
is linked to the variable resistor VR 1 of the variable primary phase shift circuit 6, so that the characteristics of the variable equalizer 8 can be varied at the same time as the amount of phase shift of the primary phase shift circuit 6 is varied. In addition, set the capacitance value of capacitor C 2 to 10 times or more that of capacitor C 1 , and use a variable resistor.
The capacitance values of the capacitors C 1 and C 2 and the resistance value of the resistor R are respectively selected so that the maximum amount of correction can be obtained at the maximum value of the resistance values of VR 1 and VR 2 . Also, resistance
The resistance value of R 1 is selected to be larger than that of the resistor R and the variable resistors VR 1 and VR 2 .

なお、一般の録音の場合には200Hz以下の低域
周波数の信号は2次単一指向性及び1次単一指向
性のいずれで録音しても効果は殆ど変らないた
め、本考案マイクロホンのように200Hz付近以下
の低域周波数において1次単一指向性しか得るこ
とができないでも実質上殆ど問題はない。
In addition, in the case of general recording, the effect of low frequency signals below 200 Hz is almost the same whether recorded with secondary unidirectionality or primary unidirectionality, so the microphone of this invention Even if only the first-order unidirectionality can be obtained at low frequencies below around 200Hz, there is practically no problem.

一方、第8図より明らかな如く、ωaが大きい
程その周波数特性は平坦に近ずき(即ち、周波数
特性が平坦である1次単一指向性マイクロホンの
特性に近ずき)、ωaが小さい程その周波数特性は
平坦でなくなる(即ち、マイクロホンの一般の使
用帯域内において第3図に示す2次単一指向性マ
イクロホンの特性と略同じ特性に近ずく)。従つ
て、可変1次移相回路6にて移相量を可変せしめ
れば、所望の指向特性を得ることができ、この移
相量をωa=10Hzからωa=400Hzまで連続的に可
変せしめれば、1次単一指向性から2次単一指向
性までの範囲を連続的に可変せしめ得る。
On the other hand, as is clear from Fig. 8, the larger ω a is, the closer the frequency characteristics are to flatness (that is, the closer the frequency characteristics are to the characteristics of a first-order unidirectional microphone, which is flat), and ω a The smaller the frequency characteristic is, the less flat the frequency characteristic is (that is, the frequency characteristic approaches approximately the same characteristic as the characteristic of the secondary unidirectional microphone shown in FIG. 3 within the microphone's generally used band). Therefore, by varying the amount of phase shift in the variable primary phase shift circuit 6, desired directivity characteristics can be obtained, and this amount of phase shift can be continuously varied from ω a =10Hz to ω a =400Hz. If possible, the range from the first-order unidirectionality to the second-order unidirectionality can be continuously varied.

又、移相回路は第6図に示す如き可変1次移相
回路を用いる他、可変2次移相回路を用いても同
様の効果を得ることができる。
Furthermore, in addition to using a variable first-order phase shift circuit as shown in FIG. 6, the same effect can be obtained by using a variable second-order phase shift circuit as the phase shift circuit.

更に、使用するマイクロホンは2個に限定され
ることはなく、第4図中、マイクロホン2bと逆
向きにかつその振動膜どうしを面一にして別に1
個のマイクロホンを設け、合計3個のマイクロホ
ンよりの出力の混合比を可変して無指向性、1次
単一指向性、2次単一指向性を得るようにしても
よい。
Furthermore, the number of microphones to be used is not limited to two; in FIG.
It is also possible to provide omnidirectionality, first-order unidirectionality, and second-order unidirectionality by providing three microphones and varying the mixing ratio of the outputs from the three microphones in total.

又、第4図中、マイクロホン2a,2bの出力
側に可変1次或いは可変2次移相回路を適宜組合
わせて接続し、第7図及び第8図に示す周波数特
性を得るようにしてもよい。
Furthermore, the frequency characteristics shown in FIGS. 7 and 8 may be obtained by connecting an appropriate combination of variable primary or variable secondary phase shift circuits to the output sides of the microphones 2a and 2b in FIG. 4. good.

上述の如く、本考案になる可変指向性マイクロ
ホンは、少なくとも1個のマイクロホンに可変移
相回路を接続し、可変移相回路にこの回路よりの
出力を他のマイクロホンからの出力に混合する混
合回路を接続したため、可変移相回路の移相量の
可変に応じて指向特性を任意に可変せしめ得、こ
れにより、例えばビデオカメラ等のズーム機構に
連動させて指向特性を可変させるようにすれば画
面と音との一体感を強調し得、又、指向特性を可
変せしめるために移相量を可変しているので、各
マイクロホンの出力の混合比を可変せしめる構成
の従来のマイクロホンのようにバツフア回路を設
ける必要はなく、回路を簡単に構成し得、又、マ
イクロホンの出力を移相せしめて他のマイクロホ
ンの出力と混合しているため、高域周波数におい
ては実質上マイクロホンからの出力を減算混合し
たのと同様になり、これにより、従来のものと同
様に2次単一指向性パターンを得、一方、低域周
波数においては実質上、マイクロホンからの出力
を加算混合したのと同様になり、これにより、混
合後の出力は実質的に周波数特性が平坦で1次単
一指向性のマイクロホン1個からの出力と等価に
みなし得るためにその指向性は1次単一指向性パ
ターンとなり、そのレスポンスは従来のもののよ
うに低下することはないため、周波数特性は1次
単一指向性マイクロホンの出力を単に減算混合し
ただけの従来のものの周波数特性に比して特に低
域周波数におけるレベルの損失を防止し得、この
ため、混合後の信号の周波数特性を平坦になるよ
うに周波数補正するためのイコライザの補正量を
小に設定し得、これにより、SN比を向上せしめ
得、又、いわゆる風雑音やいわゆるタツチノイズ
を生じることはない等の特長を有する。
As mentioned above, the variable directional microphone according to the present invention has a variable phase shift circuit connected to at least one microphone, and a mixing circuit that mixes the output from this circuit with the output from other microphones. Since the directional characteristics are connected, the directional characteristics can be arbitrarily varied according to the variable phase shift amount of the variable phase shift circuit.Thereby, for example, if the directional characteristics are varied in conjunction with the zoom mechanism of a video camera, the screen In addition, since the amount of phase shift is varied in order to vary the directional characteristics, it is possible to emphasize the sense of unity between the sound and the sound, so it is possible to use a buffer circuit like a conventional microphone configured to vary the mixing ratio of the output of each microphone. There is no need to provide a microphone, and the circuit can be easily configured. Also, since the output of the microphone is phase-shifted and mixed with the output of other microphones, at high frequencies, the output from the microphone is essentially subtracted and mixed. This results in a secondary unidirectional pattern similar to the conventional one, while at low frequencies it is essentially the same as adding and mixing the outputs from the microphones. As a result, the output after mixing has a substantially flat frequency characteristic and can be considered equivalent to the output from a single first-order unidirectional microphone, so its directivity becomes a first-order unidirectional pattern. Since the response does not drop like in conventional microphones, the frequency response is significantly lower than that of conventional microphones, which simply subtract and mix the output of a primary unidirectional microphone. Therefore, the equalizer correction amount for frequency correction to flatten the frequency characteristics of the mixed signal can be set to a small value, thereby improving the S/N ratio. It has features such as not producing wind noise or so-called touch noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の可変指向性マイロホンの一例の
ブロツク系統図、第2図及び第3図は夫々第1図
に示す回路によつて得られる2次音圧傾度単一指
向特性図及びその周波数特性図、第4図は本考案
になる可変指向性マイクロホンの一実施例のブロ
ツク系統図、第5図及び第6図は第4図に示す移
相回路の位相特性図及びその具体的回路図、第7
図及び第8図は夫々第4図に示す回路によつて得
られる90゜方向及び0゜方向の周波数特性図、第
9図は第4図に示す回路によつて得られる指向特
性図、第10図は第4図に示す可変イコライザの
具体的回路図である。 1……音源、2a,2b……マイクロホン、5
……出力端子、6……可変1次移相回路、7……
混合器(加算器)、8……可変イコライザ。
Figure 1 is a block system diagram of an example of a conventional variable directivity microphone, and Figures 2 and 3 are diagrams of secondary sound pressure gradient unidirectional characteristics and their frequencies obtained by the circuit shown in Figure 1, respectively. Figure 4 is a block system diagram of an embodiment of the variable directional microphone of the present invention, Figures 5 and 6 are phase characteristic diagrams of the phase shift circuit shown in Figure 4 and their specific circuit diagrams. , 7th
8 and 8 are frequency characteristic diagrams in the 90° direction and 0° direction, respectively, obtained by the circuit shown in FIG. 4, and FIG. 9 is a directional characteristic diagram obtained by the circuit shown in FIG. FIG. 10 is a specific circuit diagram of the variable equalizer shown in FIG. 4. 1...Sound source, 2a, 2b...Microphone, 5
...Output terminal, 6...Variable primary phase shift circuit, 7...
Mixer (adder), 8...variable equalizer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 複数の1次音圧傾度単一指向性マイクロホンか
らの出力を夫々混合せしめてその指向性を可変す
る可変指向性マイクロホンにおいて、上記複数の
単一指向性マイクロホンのうち少なくとも1個の
マイクロホンに可変移相回路を接続し、該可変移
相回路に該可変移相回路よりの出力を他の上記単
一指向性マイクロホンからの出力に混合する混合
回路を接続してなる可変指向性マイクロホン。
In a variable directional microphone that mixes the outputs from a plurality of primary sound pressure gradient unidirectional microphones to vary the directivity thereof, a variable transfer to at least one microphone among the plurality of unidirectional microphones is provided. A variable directional microphone comprising a phase circuit connected to the variable phase shift circuit, and a mixing circuit for mixing an output from the variable phase shift circuit with an output from another unidirectional microphone.
JP13939079U 1979-09-11 1979-10-08 Expired JPS6117672Y2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP13939079U JPS6117672Y2 (en) 1979-10-08 1979-10-08
US06/185,516 US4354059A (en) 1979-09-11 1980-09-09 Variable-directivity microphone device
DE3033985A DE3033985C2 (en) 1979-09-11 1980-09-10 Microphone device with variable directivity
GB8029371A GB2062406B (en) 1979-09-11 1980-09-11 Variable-directivity microphone device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13939079U JPS6117672Y2 (en) 1979-10-08 1979-10-08

Publications (2)

Publication Number Publication Date
JPS5656289U JPS5656289U (en) 1981-05-15
JPS6117672Y2 true JPS6117672Y2 (en) 1986-05-29

Family

ID=29370729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13939079U Expired JPS6117672Y2 (en) 1979-09-11 1979-10-08

Country Status (1)

Country Link
JP (1) JPS6117672Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2883082B2 (en) * 1986-05-29 1999-04-19 三菱自動車工業株式会社 Microphone device for hands-free car phone
JP5698592B2 (en) * 2011-04-20 2015-04-08 株式会社オーディオテクニカ Secondary sound pressure gradient type electret condenser microphone

Also Published As

Publication number Publication date
JPS5656289U (en) 1981-05-15

Similar Documents

Publication Publication Date Title
US4354059A (en) Variable-directivity microphone device
CA1158173A (en) Receiving system having pre-selected directional response
EP0418252A1 (en) Stereo synthesizer.
CA1198060A (en) Method and apparatus for operating a loudspeaker below resonant frequency
US5910904A (en) Digital filter apparatus
JPS6117672Y2 (en)
US4156851A (en) Constant-phase delay network
JPH0250676B2 (en)
JPS602837B2 (en) Secondary sound pressure gradient unidirectional microphone system
US3701037A (en) Active filter
JPS601994B2 (en) variable directional microphone
JPS6211112Y2 (en)
JPS6022875B2 (en) variable directional microphone
JPH04318796A (en) Microphone equipment
JP2002171590A (en) Stereophonic microphone adopting ms system
JPS6228158Y2 (en)
JPH0137920B2 (en)
JPS5929968B2 (en) Frequency characteristic adjustment circuit
Sessler et al. Toroidal microphones
JPS6022876B2 (en) variable directional microphone
JPH11187478A (en) Microphone system
JPS6123856Y2 (en)
JPH057392A (en) Microphone device
JP2919475B2 (en) Adaptively controlled Hilbert transformer in FM demodulator
JPS6269714A (en) Digital filter