JPS61176689A - Hydrogenative liquefaction of coal - Google Patents

Hydrogenative liquefaction of coal

Info

Publication number
JPS61176689A
JPS61176689A JP1904085A JP1904085A JPS61176689A JP S61176689 A JPS61176689 A JP S61176689A JP 1904085 A JP1904085 A JP 1904085A JP 1904085 A JP1904085 A JP 1904085A JP S61176689 A JPS61176689 A JP S61176689A
Authority
JP
Japan
Prior art keywords
hydrogenation
hydrogenation reaction
solvent
coal
reaction tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1904085A
Other languages
Japanese (ja)
Other versions
JPH0146555B2 (en
Inventor
Tetsuo Matsumura
哲夫 松村
Kaizaburou Saitou
斉藤 海三郎
Osamu Okuma
大隈 修
Hiroshi Yoshimura
吉村 洋
Yasuo Sugino
杉野 康雄
Shunichi Yanai
矢内 俊一
Tatsuo Hirano
平野 龍夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KATSUTAN EKIKA KK
Asia Oil Co Ltd
Nippon Brown Coal Liquefaction Co Ltd
Idemitsu Kosan Co Ltd
Kobe Steel Ltd
Mitsubishi Kasei Corp
Original Assignee
NIPPON KATSUTAN EKIKA KK
Asia Oil Co Ltd
Nippon Brown Coal Liquefaction Co Ltd
Idemitsu Kosan Co Ltd
Kobe Steel Ltd
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KATSUTAN EKIKA KK, Asia Oil Co Ltd, Nippon Brown Coal Liquefaction Co Ltd, Idemitsu Kosan Co Ltd, Kobe Steel Ltd, Mitsubishi Kasei Corp filed Critical NIPPON KATSUTAN EKIKA KK
Priority to JP1904085A priority Critical patent/JPS61176689A/en
Priority to DE19863602802 priority patent/DE3602802C2/en
Priority to AU52914/86A priority patent/AU587009B2/en
Publication of JPS61176689A publication Critical patent/JPS61176689A/en
Publication of JPH0146555B2 publication Critical patent/JPH0146555B2/ja
Priority to US07/590,695 priority patent/US5269910A/en
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To improve the recovery of oil without increasing the consumption of hydrogen, by blowing a hydrogen-containing gas obtained from the hydrogenation reaction product to the first hydrogenation reaction column, and carrying out the hydrogenation under a specific condition while stripping the light oil component from the solvent. CONSTITUTION:A slurry mixture of coal powder and solvent is preheated and supplied to a plurality of hydrogenation reaction columns connected in series to effect the hydro-cracking. In the above process, the gaseous product is separated from the hydrogenation reaction product in each reaction column, the light oil component and water are removed from the gaseous product, and the obtained hydrogen-containing gas is introduced to the bottom of at least the first hydrogenation reaction column. The hydrogenation is carried out while stripping the light oil component in the solvent in a manner that the weight ratio of the fraction having a boiling point of 300-420 deg.C (reduced to normal pressure) in the solvent existing in the reaction column to the sum of the coal and the fraction having a boiling point of >=420 deg.C in the slurry mixture becomes 0.20-1.20.

Description

【発明の詳細な説明】 本発明は石炭の水添液化方法に関し、詳細には、水添反
応条件を格別に厳しくすることなく且つ水素消費量の増
大を招くことなく油分の回収率を著しく高めることので
きる水添液化方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for hydrogenating and liquefying coal, and in particular, it significantly increases the oil recovery rate without making hydrogenation reaction conditions particularly severe and without increasing hydrogen consumption. The present invention relates to a hydrogenation and liquefaction method that can be used for hydrogenation and liquefaction.

石炭を分解して有用な液状物質に変換する方法の一つと
して水添液化方法がある。この方法は、予め粉砕した石
炭をスラリー化溶剤と混合又は溶剤と混合後石炭を粉砕
してスラリー化した後水添反応塔へ送り、水素ガス加圧
下に高温で石炭を水添分解する方法であり、代表的な方
法は第1図に示す通りである。即ち第1図において、石
炭粉はスラリー化溶剤と共に混合してスラリーとした後
、スラリーポンプPによって予熱器1へ送られ、所定の
温度まて昇温される。この場合、スラリー調製段階で適
当な水添触媒を添加することもあり、又水添用の高圧水
素は通常予熱器lの直前でスラリー送給管内へ吹込まれ
る。予熱されたスラリー及び水素ガスは気・掖・固の3
相混合物となって、第1水添反応塔2a、第2水添反応
塔2b、第3水添反応塔2Cを通過しつつ順次水添分解
反応を受けた後、最下流側の第3水添反応塔2Cから気
液分離器3へ送られる。内因では3個の水添反応塔2a
〜2Cを直列に配置したものを示したが、水添反応塔は
2個以下である場合もあるし、或は4個以上を直列に配
置したものもある。気液分離器3では灰分(石炭中の無
機物質及び触媒を含む)およびSRCを含む重質分が液
状物として排出され、或は更に2次水添工程へ送られる
と共に、軽質油分や水及び未反応水素ガス等を含むガス
成分は凝縮器4で水及び軽質油を凝縮させた後油木分離
器5で分離し軽質油を製品として回収する一方、凝縮器
4で分離されたガス成分は系外へ排出される。この系外
へ排出されるガスの中には水添分解工程で未消費の水素
を多量含んでいる(水素含量は60%程度以上)ので、
Co、CO2、C+−C3f)炭化水1g’4ノ一部も
しくは全部を除去した後、水添分解用の水素として循環
使用することも考えられている。また水添反応塔2a〜
2C内における分解反応は発熱反応であり、スラリー濃
度や石炭の種類によっては反応温度が異常に高くなるこ
ともあるので、上記排出ガスの一部を各水添反応塔2a
〜2Cの側壁から冷却用ガスとして吹込む場合もある。
Hydrogenation and liquefaction is one of the methods for decomposing coal and converting it into a useful liquid substance. In this method, pre-pulverized coal is mixed with a slurry-forming solvent, or after mixing with a solvent, the coal is crushed into a slurry, and then sent to a hydrogenation reaction tower, where the coal is hydrogenolyzed at high temperature under pressure of hydrogen gas. A typical method is shown in FIG. That is, in FIG. 1, coal powder is mixed with a slurry-forming solvent to form a slurry, and then sent to a preheater 1 by a slurry pump P, where it is heated to a predetermined temperature. In this case, a suitable hydrogenation catalyst may be added during the slurry preparation stage, and high-pressure hydrogen for hydrogenation is usually blown into the slurry feed pipe immediately before the preheater l. The preheated slurry and hydrogen gas are air, air, and solid.
The phase mixture passes through the first hydrogenation reaction tower 2a, the second hydrogenation reaction tower 2b, and the third hydrogenation reaction tower 2C and undergoes a hydrogenolysis reaction sequentially. It is sent from the addition reaction tower 2C to the gas-liquid separator 3. Internally, three hydrogenation reaction towers 2a
-2C are shown arranged in series, but the number of hydrogenation reaction columns may be two or less, or four or more may be arranged in series. In the gas-liquid separator 3, heavy components including ash (including inorganic substances and catalysts in coal) and SRC are discharged as liquid substances or are further sent to a secondary hydrogenation process, and light oil, water and Gas components including unreacted hydrogen gas are condensed with water and light oil in the condenser 4, and then separated in the Yuki separator 5 to recover light oil as a product, while the gas components separated in the condenser 4 are Expelled outside. The gas discharged outside the system contains a large amount of unconsumed hydrogen during the hydrogen cracking process (hydrogen content is approximately 60% or more).
It is also considered that after removing part or all of 1g'4 of Co, CO2, C+-C3f) hydrocarbon water, it can be recycled and used as hydrogen for hydrogenolysis. In addition, the hydrogenation reaction tower 2a~
The decomposition reaction in 2C is an exothermic reaction, and the reaction temperature may become abnormally high depending on the slurry concentration and the type of coal.
~2C may be blown in as a cooling gas from the side wall.

更に気液分離器3で分離される重質分の一部をスラリー
化溶剤として返還する方法も知られている。
Furthermore, a method is also known in which a portion of the heavy components separated in the gas-liquid separator 3 is returned as a slurry-forming solvent.

ところで上記の様な従来の水添液化プロセスにおいては
、操業を安全且つ安定して行なうことができる様、温和
な圧力及び温度で且つ水素消費量をできるだけ抑えた条
件で運転を行なっているが、この場合には液化生成物中
の重質分(SRC)の割合が高く留出油分の収率は低い
ものとなっていた。〜方留出油分の収率を高める為には
、更に温度及び圧力を高めると共に触媒量を増大する等
により反応条件を厳しくする必要があるが、そうすると
水添分解時の発熱が著しくなって温度制御が困難となり
操業安定性及び安全性に問題が生じやすく、留出油分の
分解も著しくなって低炭素のガス成分量が増大し、留出
油分全体としての回収率はそれほど向上しない。
By the way, in the conventional hydrogenation and liquefaction process as described above, in order to ensure safe and stable operation, operation is carried out at mild pressure and temperature and under conditions that suppress hydrogen consumption as much as possible. In this case, the proportion of heavy components (SRC) in the liquefied product was high and the yield of distillate oil was low. In order to increase the yield of distillate oil, it is necessary to make the reaction conditions more severe by further raising the temperature and pressure as well as increasing the amount of catalyst, but in this case the heat generated during hydrogenolysis becomes significant and the temperature Control becomes difficult, problems tend to occur in operational stability and safety, the decomposition of distillate oil becomes significant, the amount of low-carbon gas components increases, and the overall recovery rate of distillate oil does not improve much.

一方水添液化反応においては、スラリー化溶剤の種類に
よって留出油分回収率が著しく変わってくることが確認
されており、重質なもの(3〜4環以上)はどスラリー
化溶剤として優れた性能を発揮する。その為スラリー化
溶剤としては、できるだけ重質のものを使用する方向で
操業管理が行なわれるが、重質溶剤は粘性が高く従って
石炭粉との混合スラリーも高粘性となって流動性が乏し
くなり、スラリーの調製及び輸送等のハンドリング上困
難を生じるので、実操業においては重質溶剤と共に相当
量の軽質溶剤を使用してスラリーの粘性を調整している
。こうした軽質溶剤の併用は、スラリーの調製及び輸送
の面から考えると極めて有効であるが、反面水添反応効
率という点では明らかにマイナスとなる。即ち水添分解
効率を高めるうえで重質溶剤が好ましいことは先に述べ
た通りであり、スラリー化溶剤として軽質溶剤を併用す
るとその使用比率に応じて反応効率(NJも留出油分回
収率)は低下する。しかも重質溶剤の希釈によっても反
応効率は低下し、更に水添反応塔内においては、水添分
解により生成する軽質油分の生成・増量によって重質油
分の濃度は更に低下するので、これらが相乗的に悪影響
を及ぼして反応効率の上昇を妨げているものと考えられ
る。
On the other hand, in hydrogenation and liquefaction reactions, it has been confirmed that the distillate oil recovery rate varies significantly depending on the type of slurrying solvent, and heavy ones (3 to 4 rings or more) are excellent as slurrying solvents. Demonstrate performance. For this reason, operations are managed to use as heavy a slurry solvent as possible, but heavy solvents have a high viscosity, so the slurry mixed with coal powder also becomes highly viscous and has poor fluidity. However, in actual operation, a considerable amount of a light solvent is used in addition to a heavy solvent to adjust the viscosity of the slurry. The combined use of such light solvents is extremely effective from the standpoint of slurry preparation and transportation, but on the other hand, it is clearly negative in terms of hydrogenation reaction efficiency. In other words, as mentioned above, heavy solvents are preferable in order to increase the hydrogenolysis efficiency, and when a light solvent is used in combination as a slurrying solvent, the reaction efficiency (NJ also increases the distillate oil recovery rate) depending on the usage ratio. decreases. Furthermore, the reaction efficiency decreases due to the dilution of the heavy solvent, and furthermore, in the hydrogenation reaction tower, the concentration of the heavy oil decreases further due to the production and increase in the amount of light oil produced by hydrogenolysis. This is thought to have an adverse effect on the reaction efficiency and hinder the increase in reaction efficiency.

この他予熱段階において石炭粉をより完全に溶解させる
と共に重縮合反応を抑制する為には十分な量の溶剤が必
要であるが、水添分解段階では軽質化反応によって溶剤
が著しく希釈されるので、スラリー化溶剤自体は少なく
しておく方が好ましい、この様に予熱段階と水添反応段
階を対比すると適正溶剤量は反比例する関係にあるが、
従来は両者の兼ね合いで溶剤量を定めているので、水添
反応時の溶剤濃度は最適濃度よりも相当薄めとならざる
を得ない。
In addition, a sufficient amount of solvent is required in the preheating stage to more completely dissolve the coal powder and to suppress the polycondensation reaction, but in the hydrogenolysis stage the solvent is significantly diluted by the lightening reaction. It is preferable to keep the amount of the slurry-forming solvent to a minimum.If we compare the preheating stage and the hydrogenation reaction stage, the appropriate amount of solvent is inversely proportional.
Conventionally, the amount of solvent has been determined based on a balance between the two, so the concentration of the solvent during the hydrogenation reaction has to be considerably thinner than the optimum concentration.

この様に従来の水添液化法には、水添反応塔内における
スラリー化溶剤の重質化及び高濃度という点で問題があ
り、留出油分の回収率を満足のいく程度まで高めること
はできなかった。
As described above, conventional hydrogenation and liquefaction methods have problems in that the slurry solvent becomes heavy and highly concentrated in the hydrogenation reaction tower, and it is difficult to increase the recovery rate of distillate oil to a satisfactory level. could not.

本発明者等はこうした事情に着目し、水添反応段階にお
けるスラリーの高濃度化と溶剤の重質化を推進し、もっ
て留出油分の回収率を高めることのできる技術を確立、
しようとして鋭意研究を進めてきた0本発明はかかる研
究の結果完成されたものであって、その構成は、石炭粉
と溶剤の混合スラリーを予熱して直列に接続した複数の
水添反応塔へ送り水添分解を行なう石炭の水添液化方法
において、各水練反応塔毎に、水添反応生成物よりガス
状生成物を分離し、該ガス状生成物から軽質油分及び水
分を除いて得られる水素含有ガスを、少なくとも最前段
の前記水添反応塔の底部から吹込み1反応塔内に存在す
る溶剤中の沸点(常圧換算)300〜420℃の留分が
、前記混合スラリー中の石炭(無水無灰石炭基準)と沸
点(常圧換3i)420℃以上の留分との合計量に対し
、重量比で0.20〜1.20となるよう溶剤中の軽質
油分をストリッピングしつり水添を行なうところに要旨
を有するものである。
The present inventors focused on these circumstances, and established a technology that can increase the concentration of the slurry and increase the weight of the solvent in the hydrogenation reaction stage, thereby increasing the recovery rate of distillate oil.
The present invention was completed as a result of such research, and its configuration consists of preheating a mixed slurry of coal powder and a solvent to multiple hydrogenation reaction towers connected in series. In a coal hydrogenation and liquefaction method that performs feed hydrocracking, a gaseous product is separated from the hydrogenation reaction product in each water mixing reaction tower, and the gaseous product is obtained by removing light oil and moisture from the gaseous product. Hydrogen-containing gas is blown into at least the bottom of the hydrogenation reaction tower in the first stage, and a fraction with a boiling point (normal pressure equivalent) of 300 to 420°C in the solvent present in the first reaction tower is added to the coal in the mixed slurry. (based on anhydrous ash-free coal) and the distillate with a boiling point (normal pressure conversion 3i) of 420°C or higher, the light oil content in the solvent is stripped to a weight ratio of 0.20 to 1.20. The gist of this method is that it performs hanging hydrogenation.

以下実施例図面を参照しながら本発明の構成及び作用効
果を詳細に説明する。第2図は本発明の実施例を示す概
略フロー図であり、基本的な構成は第1図の従来例と実
質的に同じである。但し本例では、スラリー化溶剤とし
て重質溶剤(3〜4環以上)の他相当量の軽質溶剤を併
用し、スラリー粘度を低下させる他、特に、水添反応塔
群2の反応物排出ラインに気液分離器3、凝縮I14及
び油水分離器5を設けると共に、各水添反応塔2a、2
bの反応物排出ラインにも気液分離器3a、3b、凝縮
器4a、4b及び油水分離器5a、5bを夫々設け、各
気液分離器3a、3bで分離され凝縮器4a、4bで軽
質油分及び水分の除去された水素含有ガス(以下循環ガ
スということがある)Ga、Gbを、ガス循環ポンプ8
a、8b及び加熱器9a、9bを通して各水添反応塔2
a、2bの底部より吹込む点において第1図の例とは異
なり、またその点に本発明最大の特徴がある。即ち第2
図に示す如く各水添反応塔2a、2bから排出されるガ
ス化生成物の中から水素含有ガスを分離し、加熱器9a
、9bで加熱した後各水添反応塔2a、2bの底部から
吹込むと、各水添反応塔2a、2b内の低清点成分は循
環ガスと共に該反応塔2a、2b内をすみやかに上昇し
、各反応塔の溶剤成分は実質的に著しく重質化される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration and effects of the present invention will be described in detail below with reference to the drawings. FIG. 2 is a schematic flow diagram showing an embodiment of the present invention, and the basic configuration is substantially the same as the conventional example shown in FIG. However, in this example, in addition to a heavy solvent (3 to 4 rings or more), a considerable amount of a light solvent is used as the slurry-forming solvent to reduce the viscosity of the slurry. A gas-liquid separator 3, a condensation I 14, and an oil-water separator 5 are installed in the hydrogenation reaction towers 2a and 2.
The reactant discharge line b is also provided with gas-liquid separators 3a, 3b, condensers 4a, 4b, and oil-water separators 5a, 5b. The hydrogen-containing gas (hereinafter sometimes referred to as circulating gas) Ga and Gb from which oil and moisture have been removed is transferred to a gas circulation pump 8.
a, 8b and heaters 9a, 9b to each hydrogenation reaction tower 2.
This differs from the example shown in FIG. 1 in that the air is blown from the bottom of points a and 2b, and this is the most distinctive feature of the present invention. That is, the second
As shown in the figure, hydrogen-containing gas is separated from the gasified products discharged from each hydrogenation reaction tower 2a, 2b, and a heater 9a
, 9b and then blowing from the bottom of each hydrogenation reaction tower 2a, 2b, the low clean point component in each hydrogenation reaction tower 2a, 2b quickly rises in the reaction tower 2a, 2b together with the circulating gas. , the solvent component of each reaction column is substantially heavier.

その結果、各水添反応塔2a、2b内の水添条件を格別
厳しくしなくとも水添反応効率は著しく向上し、液化油
の回収率を大幅に高めることができる。しかも従来の水
添反応塔内においては、未液化の石炭や高沸点成分と共
に、スラリー化溶剤中に含有させた軽質溶剤や水添分解
により生成した軽質油分もほぼ同様の速度で塔内を上昇
しなから水添分解を受け、更に低炭素量のガス成分(C
H4やC2H6等)まで水添分解される為、軽質油分の
回収率はそれほど向上しないが、本例では、前述の様に
軽質油分は循環ガスと共に水添処理雰囲気を高速で通過
し、各水添反応塔の反応物排出ラインで気液分離されて
系外へ抜き出されるのでその低分子化も抑制され、溶剤
重質化による水添分解効率の向上とも相まって軽質油分
の回収率を大幅に高めることができる。更に上記の如く
水添反応塔内で溶剤の重質化を行なうことができるので
、スラリーの調製段階ではかなり多量の軽質溶剤を配合
することができ、スラリーの調製及びパイプライン輸送
のハンドリング性を高め得ると共に、予熱器1による石
炭粉の溶解も短時間で効率良く行なうことができる。
As a result, the hydrogenation reaction efficiency is significantly improved without making the hydrogenation conditions in each hydrogenation reaction tower 2a, 2b particularly strict, and the recovery rate of liquefied oil can be significantly increased. Moreover, in a conventional hydrogenation reaction tower, along with unliquefied coal and high-boiling components, the light solvent contained in the slurry solvent and the light oil produced by hydrogenolysis rise inside the tower at almost the same speed. It undergoes hydrogenolysis from the inside and further produces a gas component with a low carbon content (C
However, in this example, as mentioned above, the light oil passes through the hydrogenation treatment atmosphere at high speed together with the circulating gas, and each water Gas and liquid are separated in the reactant discharge line of the addition reaction tower and extracted from the system, which suppresses the formation of low-molecular substances, and together with the improvement of hydrogen cracking efficiency by making the solvent heavier, the recovery rate of light oil is greatly increased. can be increased. Furthermore, since the solvent can be made heavier in the hydrogenation reaction tower as described above, a considerably large amount of light solvent can be blended in the slurry preparation stage, which improves the handling of slurry preparation and pipeline transportation. In addition, the coal powder can be melted efficiently in a short time by the preheater 1.

尚容気液分離器3a、3bで分離された液状物は未分解
の石炭及び重質油分を多量含んでいるので、順次下流側
の水添反応塔に送って水添分解に付し、最終の水添反応
塔2Cに設けた気液分離器3で分離された液状物は、脱
灰装置6を経て重質油分(SRC)として排出され、或
は更に2次水添工程へ送られる。又各凝縮器4a、4b
−1?凝縮された後油水分離器5a、5bで分離された
軽質油分は、最終の気液分離器3から凝縮器4及び油水
分離器5を通して抜き出される軽質油分と合流され、或
は個別に製品として取り出される。また気液分離器3a
、3bからのガス状物の抜き出し量は、ガス循環ポンプ
8a、8bのサクションの程度をコントロールすること
によって調整される。更に第2図では、最終段の水添反
応塔2Cから排出される生成物を気液分離し、凝縮器4
で軽質油分及び水分の除去された水素含有ガスGcも水
添反応塔2Cの底部から吹込む様にしており。
The liquid separated by the gas-liquid separators 3a and 3b contains a large amount of undecomposed coal and heavy oil, so it is sequentially sent to the downstream hydrogenation reaction tower for hydrogenolysis, and the final The liquid separated by the gas-liquid separator 3 provided in the hydrogenation reaction tower 2C is discharged as heavy oil (SRC) through a deashing device 6, or is further sent to a secondary hydrogenation step. Also, each condenser 4a, 4b
-1? After being condensed, the light oil separated in the oil-water separators 5a and 5b is combined with the light oil extracted from the final gas-liquid separator 3 through the condenser 4 and the oil-water separator 5, or is separately processed as a product. taken out. Also, the gas-liquid separator 3a
, 3b is adjusted by controlling the degree of suction of the gas circulation pumps 8a, 8b. Furthermore, in FIG. 2, the product discharged from the final stage hydrogenation reaction tower 2C is separated into gas and liquid, and then passed through the condenser 4.
The hydrogen-containing gas Gc from which light oil and moisture have been removed is also blown into the hydrogenation reaction tower 2C from the bottom.

該水添反応塔2C内におけろ水添反応率も高め得る様に
しているが、この部分の循環ガス吹込みは省略すること
も可能である。その理由は、複数の水添反応塔を直列に
配列した図例の様な設備においては、石炭の水添分解は
最終段の水添反応塔へ至るまでにかなり進んでおり、最
終段の水添反応塔内における反応効率を高めても設備全
体としての油分回収率の向上にはそれほど寄与しないか
らである。しかし最終段の水添反応塔2Cにも図示した
様なガス吹込み処理を施せば、それなりに油分の回収率
が向上することは明白である。
Although the hydrogenation reaction rate in the hydrogenation reaction tower 2C can also be increased, it is also possible to omit the blowing of circulating gas into this part. The reason for this is that in equipment like the one shown in the figure, in which multiple hydrogenation reaction towers are arranged in series, the hydrogenolysis of coal has progressed considerably by the time it reaches the final stage hydrogenation reaction tower, and This is because even if the reaction efficiency in the addition reaction tower is increased, it does not contribute much to improving the oil recovery rate of the entire equipment. However, it is clear that if the gas blowing treatment as shown in the figure is also applied to the final stage hydrogenation reaction tower 2C, the oil recovery rate can be improved to a certain degree.

ところで水添反応は前述の如く発熱反応であり、塔底部
から吹込む循環ガスの加熱温度によっては塔内温度が上
昇しすぎる恐れもあるが、この様な場合は、第2図に破
線で示した如く、予熱前の循環ガスを冷却用ガスとして
例えば各反応塔の側部から吹込んで反応温度を調節する
ことも可能である。この場合1反応温度が逆に降下しす
ぎることもあることを配慮して、加熱された循環ガスを
各基の側部から吹込み得る様にすることも有効である。
By the way, as mentioned above, the hydrogenation reaction is an exothermic reaction, and depending on the heating temperature of the circulating gas blown in from the bottom of the tower, there is a risk that the temperature inside the tower will rise too much. Similarly, it is also possible to adjust the reaction temperature by blowing the circulating gas before preheating as a cooling gas, for example, from the side of each reaction tower. In this case, taking into account that the reaction temperature may drop too much, it is also effective to blow heated circulating gas into each group from the side.

尚循環ガスGa、Gb、Gcは前述の如く多量の水素を
含んでいるので、還元反応用の水素源として有効に消費
されるとしても、少なくとも水添分解反応を阻害するこ
とはない、この他第2図に鎖線で示した様に、該設備か
ら連続的に抜出される重質油分や軽質油分の一部をスラ
リー化溶剤として返還利用することも可能である。
As mentioned above, the circulating gases Ga, Gb, and Gc contain a large amount of hydrogen, so even if they are effectively consumed as a hydrogen source for the reduction reaction, they do not inhibit the hydrogen cracking reaction. As shown by the chain line in FIG. 2, it is also possible to return and use a portion of the heavy oil and light oil that are continuously extracted from the equipment as a slurrying solvent.

内因では3基の水添反応塔を直列に接続した例を示した
が、水添反応塔の組合せ数は格別制限される訳ではなく
、2基或は4基以上を配列したものであっても勿論かま
わない、また図では各水添反応塔の反応物排出ラインで
分離抽出された水素含有ガスを当該水添反応塔の底部よ
り吹込む例を示したが、この他水添反応塔の反応物排出
ラインから抜出した水素含有ガスを、それよりも上流側
の水添反応塔の底部より吹込むことも可能である。
In the internal explanation, an example was shown in which three hydrogenation reaction towers were connected in series, but the number of combinations of hydrogenation reaction towers is not particularly limited, and two or four or more hydrogenation reaction towers may be arranged. Of course, there is no problem.Also, the figure shows an example in which the hydrogen-containing gas separated and extracted in the reactant discharge line of each hydrogenation reaction tower is blown into the bottom of the hydrogenation reaction tower, but there are other hydrogenation reaction towers. It is also possible to blow in the hydrogen-containing gas extracted from the reactant discharge line from the bottom of the hydrogenation reaction tower on the upstream side.

尚循環ガスのより好ましい吹込方法は、水添効率を最も
高める必要のある第1水添反応塔2aへの循環ガス吹込
量を最大とし、以降の第2.第3、・・・・・・の水添
反応塔への循環ガス吹込量は順次減少させて行く方法で
あり、例えば3基の水添反応塔を直列に接続した設備に
おける循環ガス吹込量の比率は下記の通りである。
A more preferable method for blowing the circulating gas is to maximize the amount of circulating gas blown into the first hydrogenation reaction tower 2a, where hydrogenation efficiency needs to be maximized, and to blow the circulating gas into the second hydrogenation reaction tower 2a, which needs to maximize the hydrogenation efficiency. The amount of circulating gas blown into the third hydrogenation reaction tower is gradually reduced. For example, the amount of circulating gas blown into the third hydrogenation reaction tower is decreased in series. The ratio is as follows.

(以下余白) (以下余白) 水添反応条件も格別の制約はなく、従来の水添液化条件
を殆んどそのまま適用することができるが、最も代表的
な条件を例示すれば下記の通りである。
(Hereinafter in the margin) (Hereinafter in the margin) There are no particular restrictions on the hydrogenation reaction conditions, and conventional hydrogenation and liquefaction conditions can be applied almost as they are, but the most typical conditions are as follows. be.

反応温度:400〜470℃(より好ましくは430〜
450℃) 反応圧カニ 50〜300kg/cm2 G (より好
ましくは150〜200kg/cm2 G)触  媒:
鉄、イオウ系触媒 溶媒重量/石炭重量(e+af:無水無灰石炭基準)〜
1.7〜3.0(より好ましくは2.Q〜2.5) 重質溶剤: B、P、180℃程度以上の高沸点炭化水
素 ところで水素含有ガスの循環による上記ストリッピング
効果を有効に発揮させる為の条件を明確にする為に種々
の実験を行なったところによると、 (A)反応塔内に存在する溶剤中、沸点が300〜42
0℃(常圧換算)の留分(X)と、(B)水添反応塔へ
供給される混合スラリー中の石炭(無水無灰石炭基準)
と沸点が420℃(常圧換算)以上の留分との合計(Y
)の重量比率(X/Y)はストリッピング効果を左右し
且つ反応塔内の状況を左右する重要な因子であることが
分かった。即ち(X/Y)を0.20〜1.2.0、よ
り確実には0.30〜0.80の範囲に調整することを
主眼として水素含有ガスの循環供給制御を行なうことに
よって、本発明の目的を有効に達成し得ることが確認さ
れた。これらの数値範囲の設定理由を以下に説明する。
Reaction temperature: 400-470°C (more preferably 430-470°C
450℃) Reaction pressure: 50 to 300 kg/cm2 G (more preferably 150 to 200 kg/cm2 G) Catalyst:
Weight of iron and sulfur catalyst solvent/weight of coal (e+af: based on anhydrous ash-free coal) ~
1.7 to 3.0 (more preferably 2.Q to 2.5) Heavy solvent: B, P, high boiling point hydrocarbon of about 180°C or higher By the way, the above-mentioned stripping effect by circulation of hydrogen-containing gas is effective. According to various experiments conducted to clarify the conditions for this effect, (A) The solvent present in the reaction tower has a boiling point of 300 to 42
Fraction (X) at 0°C (normal pressure equivalent) and (B) coal in the mixed slurry supplied to the hydrogenation reaction tower (based on anhydrous ash-free coal)
and the fraction with a boiling point of 420°C (converted to normal pressure) or higher (Y
It has been found that the weight ratio (X/Y) of ) is an important factor that influences the stripping effect and the situation inside the reaction column. In other words, by controlling the circulating supply of hydrogen-containing gas with a focus on adjusting (X/Y) within the range of 0.20 to 1.2.0, more reliably within the range of 0.30 to 0.80, this It was confirmed that the object of the invention could be effectively achieved. The reason for setting these numerical ranges will be explained below.

水添反応塔の底部から水素名有ガスを循環供給すると、
反応塔内の液相部分のうち低沸点成分はストリッピング
効果を受けて早期に塔外へ排出され、溶剤の重質化が推
進される。このことは既に明らかにしたが該重質化の程
度は水添反応の温度や圧力、スラリー化溶剤の種類やス
ラリー濃度によってかなり変動する為、循環ガスの量や
温度だけで重質化の程度を正確に規制することは極めて
困難である。そこで水添分解効率の向上、即ち油分回収
率の向上という観点から、その目的を達成する為に最低
限必要な重質化の程度、及びコーキングを起こすことな
く水添反応を進めることのできる最大限の重質化の程度
を明確にすべく、原料スラリーとガス循環処理時におけ
る塔内成分の相関々係を調べた。即ち予備実験を含めた
多数の実験の中から、■循環ガス吹込み効果の一応認め
られた実験データ(軽処理例)と、■ボトムリサイクル
法を併用すると共に循環ガス吹込みを十分に行ない、こ
れ以上の吹込みを続けるとコーキングを生ずる恐れがあ
ると予測される実験データ(重処理例)を選択し、夫々
の原料スラリー組成と循環ガス吹込み処理後における塔
内成分組成を調べたところ、第3図(A)、(B)及び
第4図(A)、(B)に示す結果が得られた。
When hydrogen gas is circulated and supplied from the bottom of the hydrogenation reaction tower,
Low-boiling components in the liquid phase within the reaction tower are quickly discharged outside the tower due to the stripping effect, promoting heavier solvents. As already clarified, the degree of heavyization varies considerably depending on the temperature and pressure of the hydrogenation reaction, the type of slurry forming solvent, and the slurry concentration. It is extremely difficult to regulate accurately. Therefore, from the perspective of improving hydrogen cracking efficiency, that is, improving oil recovery rate, we need to determine the minimum degree of heaviness necessary to achieve this objective, and the maximum degree that allows the hydrogenation reaction to proceed without causing coking. In order to clarify the extent of the increase in weight, the correlation between the raw material slurry and the components in the column during gas circulation treatment was investigated. In other words, from a large number of experiments including preliminary experiments, we found: ■ Experimental data that showed the effectiveness of circulating gas injection (light treatment example), and ■ Using the bottom recycling method in combination with sufficient circulating gas injection. We selected experimental data (example of heavy processing) in which it is predicted that coking may occur if the injection continues any longer than this, and investigated the composition of each raw material slurry and the composition of the components in the column after the circulating gas injection treatment. The results shown in FIGS. 3(A), (B) and 4(A), (B) were obtained.

これらの実験データより、軽処理時及び重処理時におけ
る重質化の程度を、(A)処理後の塔内成分のうち沸点
が300〜420℃の軽赤中質油分量(X)と、CB)
原料スラリー中の炭材及び沸点が420℃以上の重質油
分の総和(Y)の比率(X/Y)で比較してみると、軽
処理時では第3図(A)、(B)からも明らかな様に X/Y=37/33=1.12 となる、一方重処理時では第4図(A)、(B)からも
明らかな様に X/Y= 19/64=0.30 となる。
From these experimental data, the degree of heavyization during light treatment and heavy treatment can be determined by (A) the amount of light red medium oil with a boiling point of 300 to 420°C (X) among the components in the column after treatment; CB)
Comparing the ratio (X/Y) of the total sum (Y) of carbonaceous materials and heavy oil with a boiling point of 420°C or higher in the raw material slurry, Figure 3 (A) and (B) show that during light processing, As is clear, X/Y=37/33=1.12, while during heavy processing, as is clear from FIGS. 4(A) and (B), X/Y=19/64=0. It becomes 30.

即ちこれらの計算値から、溶剤重質化の目的が達成され
る(X/Y)比の値は一応1.12ということになるが
、石炭やスラリー溶剤の種類或は水添条件等によっては
この値を1,20程度まで高め得るものと考えられる。
In other words, from these calculated values, the value of the (X/Y) ratio that achieves the purpose of making the solvent heavier is 1.12, but depending on the type of coal or slurry solvent, hydrogenation conditions, etc. It is thought that this value can be increased to about 1.20.

一方溶剤重量化の上限(即ち重質化が進み過ぎて塔内で
コーキングを生ずる直前の状1fB)は、上記第4図(
A)、(B)に示した重処理時の(X/Y)値を基準に
して予測することができ、水添条件等を適正に調整して
やれば重質化の上限は(X/Y)〜0.20程度まで低
減し得るものと考えられる。これらの結果から0.20
≦(X/Y)≦1.!2という範囲が導かれるが、更に
他の多くの実験データも加味して重質化効果をより確実
に発揮させることのできる範囲を求めたところ、(X/
y)=0.30〜0.80の範囲であることが明らかと
なった。
On the other hand, the upper limit of the weight of the solvent (i.e., the state 1 fB just before it becomes too heavy and causes coking in the column) is shown in Figure 4 above (
It can be predicted based on the (X/Y) values during heavy processing shown in A) and (B), and if the hydrogenation conditions etc. are properly adjusted, the upper limit of heavy processing will be (X/Y). It is thought that it can be reduced to about 0.20. From these results 0.20
≦(X/Y)≦1. ! A range of 2 was derived, but when we also took into account many other experimental data to determine the range where the weighting effect could be more reliably exerted, we found that (X/
y)=0.30 to 0.80.

本発明において循環ガスGの温度や吹込量も石炭及びス
ラリー化溶剤の種類やスラリー濃度、水添条件等に応じ
て任意に調整すればよいが、最も一般的な基準として示
すならば吹込量はスラリー中の溶剤1トン当り反応条件
下の実流量として60m″程度以下(より好ましくはl
O〜45rr1″)である、しかして吹込量が上記範囲
を超えたり。
In the present invention, the temperature and injection amount of the circulating gas G may be arbitrarily adjusted according to the types of coal and slurry solvent, slurry concentration, hydrogenation conditions, etc., but as the most general standard, the injection amount is The actual flow rate under reaction conditions per ton of solvent in the slurry is approximately 60 m'' or less (more preferably l
0 to 45rr1''), and the amount of injection exceeds the above range.

循環ガスの加熱温度が高すぎると、塔内の溶剤が過度に
気相に移行してコーキングを生じる恐れがあるので注意
すべきである。
It should be noted that if the heating temperature of the circulating gas is too high, the solvent in the column may transfer excessively to the gas phase and cause coking.

上記の様な条件のもとで本発明の方法を実施することに
より、以下に示す如く水添液化処理による留出油分の回
収率を大幅に高めることができた。即ち下記第1表及び
第5図は、反応塔3基からなる実験用水添反応装置を使
用し、反応温度:430℃、圧カニ 150kg/cm
2 G、溶剤重量/石炭重量(■af):2.5 、触
媒:鉄・イオウ系、供給水素量:10重量%(■af)
 C1反応塔への返還ガス:430℃、26■3/溶剤
1トン(分離比−第1反応塔:9部、第2反応塔=3部
、第3反応塔:2部)、組成(H2:84.2%、Co
−1−CO2:8.8%、CHs  :4.3%、その
他=2.B%)の条件で水添液化を行なったときの供給
 炭(無水無灰石炭基準)当たりの各分解生成物の収率
を、循環ガス吹込みを行なわなかった場合の結果と対比
して示したものである。
By carrying out the method of the present invention under the above conditions, it was possible to significantly increase the recovery rate of distillate oil by hydrogenation and liquefaction treatment, as shown below. That is, in Table 1 and Figure 5 below, an experimental hydrogenation reactor consisting of three reaction towers was used, reaction temperature: 430°C, pressure crab 150kg/cm.
2G, solvent weight/coal weight (■af): 2.5, catalyst: iron/sulfur system, amount of hydrogen supplied: 10% by weight (■af)
Gas returned to the C1 reaction tower: 430°C, 26x3/1 ton of solvent (separation ratio - 1st reaction tower: 9 parts, 2nd reaction tower = 3 parts, 3rd reaction tower: 2 parts), composition (H2 :84.2%, Co
-1-CO2: 8.8%, CHs: 4.3%, others = 2. The yield of each decomposition product per supplied coal (based on anhydrous and ash-free coal) when hydrogenated and liquefied under conditions of It is something that

(以下余白) 第   1   表 第1表及び第5図の結果からも明らかな様に、ガススト
リッピング処理を行なうと、留出油分の回収率を従来例
に比べて1.5倍以上に高め得ることが確認できる。
(Left below) Table 1 As is clear from the results in Table 1 and Figure 5, gas stripping increases the recovery rate of distillate by more than 1.5 times compared to the conventional method. I can confirm that I get it.

第6図は本発明の他の実施例を示したものであり、水添
反応塔2a、2b内の頂部で気液分離を行なう様にした
他は前記第2図の例と実質的に変わらない、即ち第2図
では各水添反応塔2a。
FIG. 6 shows another embodiment of the present invention, which is substantially different from the example shown in FIG. 2 above, except that gas-liquid separation is performed at the top of the hydrogenation reaction towers 2a and 2b. No, that is, each hydrogenation reaction tower 2a in FIG.

2bの頂部側に別途気液分離部3a、3bを設けたが、
本例では各水添反応塔2a、2b内の頂部に気液分離部
3a、3bを一体に設けており、それ以外の構成及び実
施可能な設計変更の態様等は第2図と全く同様に理解す
ればよい。
Separate gas-liquid separation sections 3a and 3b were provided on the top side of 2b, but
In this example, gas-liquid separation sections 3a and 3b are integrally provided at the top of each hydrogenation reaction tower 2a and 2b, and the other configurations and possible design changes are exactly the same as in Fig. 2. Just understand.

本発明は以上の様に構成されており、その効果を要約す
れば次の通りである。
The present invention is constructed as described above, and its effects can be summarized as follows.

(1)スラリー化溶剤中の軽質分及び石炭の水添分解に
よって生成する軽質油分はガスと共にすみやかに反応塔
中を上昇するので、水添反応塔内におけるスラリー化溶
剤は著しく重質化され、比較的温和な条件でも水添分解
効率を十分に高めることができる、しかも軽質油分はす
みやかに反応塔内を上昇するのでそれ以上水添分解を受
けてガス化することがなく、これらが相乗的に好結果を
もたらして油分、殊に留出油の回収率を大幅に高めるこ
とができる。
(1) The light content in the slurrying solvent and the light oil produced by hydrogenolysis of coal quickly rise in the reaction tower together with the gas, so the slurrying solvent in the hydrogenation reaction tower becomes significantly heavier. The hydrogen cracking efficiency can be sufficiently increased even under relatively mild conditions, and since the light oil quickly rises in the reaction tower, it does not undergo further hydrogen cracking and becomes gasified, and these are synergistic. The recovery rate of oil, especially distillate oil, can be greatly increased.

(2)上記の様に水添反応塔内でスラリー化溶剤を十分
に重質化することができるので、スラリー調製工程で相
当量の軽質溶剤を併用しても水添反応効率の低下する恐
れがなく、スラリー調製及び該スラリーのパイプライン
輸送を良好なハンドリング性のもとに実施することがで
きる。
(2) As mentioned above, the slurry-forming solvent can be made sufficiently heavy in the hydrogenation reaction tower, so even if a considerable amount of light solvent is used in the slurry preparation process, the hydrogenation reaction efficiency may decrease. Therefore, slurry preparation and pipeline transportation of the slurry can be carried out with good handling properties.

(3)循環ガスは多量の水素ガスを含んでいるので、そ
の循環吹込みによって新たに吹込む水素ガス量を減少す
ることができる。
(3) Since the circulating gas contains a large amount of hydrogen gas, the amount of newly blown hydrogen gas can be reduced by circulating the gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は公知の石炭水添液化法を示す概略フロー図、第
2図は本発明の実施例を示す概略フロー図、第3図(A
)、(B)及び第4図(A)、(B)は循環ガス吹込み
による重質化の好適範囲を求める為に行なった実験デー
タを示すグラフ、第5図は循環ガス吹込みの有無と反応
器内での重質化の程度を例示するグラフ、第6図は本発
明の他の実施例を示す概略フロー図である。 l・・・予熱器 2a、2b、2c・・・水添反応塔 3.3a、3b・・・気液分離器 4.4a、4b・・・凝縮器 5.5a、5b・・・油水分離器 8.8a、8b・・・ガス循環ポンプ 9.9a、9b・・・加熱器 出願人  株式会社 神戸製鋼所 同   三菱化成工業株式会社 同   出光興産株式会社 同   アジア石油株式会社
Fig. 1 is a schematic flow diagram showing a known coal hydrogenation and liquefaction method, Fig. 2 is a schematic flow chart showing an embodiment of the present invention, and Fig. 3 (A
), (B) and Figures 4 (A) and (B) are graphs showing experimental data conducted to determine the suitable range for increasing weight by circulating gas injection, and Figure 5 is a graph showing the presence and absence of circulating gas injection. FIG. 6 is a schematic flow diagram showing another embodiment of the present invention. l... Preheater 2a, 2b, 2c... Hydrogenation reaction tower 3.3a, 3b... Gas-liquid separator 4.4a, 4b... Condenser 5.5a, 5b... Oil-water separation Applicants: Kobe Steel, Ltd. Mitsubishi Chemical Industries, Ltd. Idemitsu Kosan Co., Ltd. Asia Oil Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)石炭粉と溶剤の混合スラリーを予熱して直列に接
続した複数の水添反応塔へ送り水添分解を行なう石炭の
水添液化方法において、各水添反応塔毎に、水添反応生
成物よりガス状生成物を分離し、該ガス状生成物から軽
質油分及び水分を除いて得られる水素含有ガスを、少な
くとも最前段の前記水添反応塔の底部から吹込み、反応
塔内に存在する溶剤中の沸点(常圧換算)300〜42
0℃の留分が、前記混合スラリー中の石炭(無水無灰石
炭基準)と沸点(常圧換算)420℃以上の留分との合
計量に対し、重量比で0.20〜1.20となるよう溶
剤中の軽質油分をストリッピングしつつ水添を行なうこ
とを特徴とする石炭の水添液化方法。
(1) In a coal hydrogenation and liquefaction method in which a mixed slurry of coal powder and a solvent is preheated and sent to a plurality of hydrogenation reaction towers connected in series for hydrogenolysis, the hydrogenation reaction is performed in each hydrogenation reaction tower. A gaseous product is separated from the product, and a hydrogen-containing gas obtained by removing light oil and water from the gaseous product is blown into the bottom of the hydrogenation reaction tower at least in the first stage and into the reaction tower. Boiling point in existing solvent (converted to normal pressure) 300-42
The weight ratio of the fraction at 0° C. to the total amount of coal (based on anhydrous ash-free coal) and the fraction having a boiling point (converted to normal pressure) of 420° C. or higher in the mixed slurry is 0.20 to 1.20. A method for hydrogenating and liquefying coal, characterized by carrying out hydrogenation while stripping light oil in a solvent so that the following is achieved.
(2)各水添反応塔内の頂部にて、水添反応生成物より
ガス状生成物を分離する特許請求の範囲第1項記載の水
添液化方法。
(2) The hydrogenation and liquefaction method according to claim 1, wherein the gaseous product is separated from the hydrogenation reaction product at the top of each hydrogenation reaction tower.
(3)各水添反応塔外にて、水添反応生成物よりガス状
生成物を分離する特許請求の範囲第1項記載の水添液化
方法。
(3) The hydrogenation and liquefaction method according to claim 1, wherein a gaseous product is separated from the hydrogenation reaction product outside each hydrogenation reaction tower.
JP1904085A 1985-02-01 1985-02-01 Hydrogenative liquefaction of coal Granted JPS61176689A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1904085A JPS61176689A (en) 1985-02-01 1985-02-01 Hydrogenative liquefaction of coal
DE19863602802 DE3602802C2 (en) 1985-02-01 1986-01-30 Process for the liquefaction of coal by hydrogenation
AU52914/86A AU587009B2 (en) 1985-02-01 1986-01-31 Method of coal liquefaction by hydrogenation
US07/590,695 US5269910A (en) 1985-02-01 1990-09-28 Method of coil liquefaction by hydrogenation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1904085A JPS61176689A (en) 1985-02-01 1985-02-01 Hydrogenative liquefaction of coal

Publications (2)

Publication Number Publication Date
JPS61176689A true JPS61176689A (en) 1986-08-08
JPH0146555B2 JPH0146555B2 (en) 1989-10-09

Family

ID=11988312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1904085A Granted JPS61176689A (en) 1985-02-01 1985-02-01 Hydrogenative liquefaction of coal

Country Status (1)

Country Link
JP (1) JPS61176689A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761084A (en) * 1980-09-30 1982-04-13 Kobe Steel Ltd Liquefaction of coal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761084A (en) * 1980-09-30 1982-04-13 Kobe Steel Ltd Liquefaction of coal

Also Published As

Publication number Publication date
JPH0146555B2 (en) 1989-10-09

Similar Documents

Publication Publication Date Title
KR100311429B1 (en) Process and apparatus for recovering product from hydrogenation reactor reactor stream
EP1783194A1 (en) A process for direct liquefaction of coal
US9127209B2 (en) Process and apparatus for recovering hydroprocessed hydrocarbons with stripper columns
EP1171554B1 (en) Method of removing contaminants from used oil in a continuous flow process
CN104105780A (en) Solvent de-asphalting with cyclonic separation
US4414103A (en) Selective removal and recovery of ammonia and hydrogen sulfide
US4606816A (en) Method and apparatus for multi-component fractionation
US9150797B2 (en) Process and apparatus for recovering hydroprocessed hydrocarbons with single product fractionation column
US9079118B2 (en) Process and apparatus for recovering hydroprocessed hydrocarbons with stripper columns
CN205152158U (en) Coal tar suspension bed hydrocracking unit
US4214974A (en) Process for hydrogenation of coal
EP1436362B1 (en) Hydrodesulfurisation method comprising a stripping section and a vacuum fractionation section
US5269910A (en) Method of coil liquefaction by hydrogenation
JPS61176689A (en) Hydrogenative liquefaction of coal
JPS581784A (en) Coal liquefaction
CN112391197B (en) Suspension bed residual oil hydrocracking system and method
CN104531211B (en) A kind of coal tar hydrogenating produces technique and the process matched therewith system of fuel or industrial oil
JPS61176690A (en) Hydrogenative liquefaction of coal
US20140296595A1 (en) Methods And Apparatus For Producing Aromatics From Coal
CN111348981A (en) Crude benzene hydrofining method and device
CN112745943A (en) Method and system for cracking crude oil
US20160340591A1 (en) Integrated direct coal liquefaction process and system
US9994778B2 (en) Direct coal liquefaction process and system
US8911693B2 (en) Process and apparatus for recovering hydroprocessed hydrocarbons with single product fractionation column
US4424115A (en) Selective removal and recovery of ammonia and hydrogen sulfide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees