JPS61175862A - Picture processing device - Google Patents
Picture processing deviceInfo
- Publication number
- JPS61175862A JPS61175862A JP60016952A JP1695285A JPS61175862A JP S61175862 A JPS61175862 A JP S61175862A JP 60016952 A JP60016952 A JP 60016952A JP 1695285 A JP1695285 A JP 1695285A JP S61175862 A JPS61175862 A JP S61175862A
- Authority
- JP
- Japan
- Prior art keywords
- picture
- memory
- image
- pixel
- stored
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Image Processing (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は図形認識等における最も基本的な処理であると
ころの空間フィルタリング処理に用いられる画像処理装
置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an image processing device used for spatial filtering processing, which is the most basic processing in figure recognition and the like.
空間フィルタリング処理は、1テ列状に配列される画素
毎の多値データとして表される画像データ中の、右方向
(X方向)にi番目・下方向(y方向)にj番目の画素
を注目画素とし1例えばその画素とその8近傍の画素の
画素値
P(i−1,j−1) P(i、j−1) P(
i+l、j−1)P (i−1,j) P(i、
j) P (i+1.j)P(i−1,j+1)
P(i、j+1) P(i+1.j+1
)との各々に対し1例えば第2図(alに例示するよう
な重み係数を乗じたものの和
S (i、j) = −P (i−1,j−1) +
P (i+1.3−1)−P (i−1,j) +
P (i+1.j)−P (i−1,j+1) +
P (i+1.j+1)を求めることにより、その画
素における+X方向の濃度勾配(微分値)を求め、同様
にして第2図011)・(C)・+d)の重み係数を用
いて処理することにより、−X方向・+y方向・−y方
向の濃度勾配を求めるものである。Spatial filtering processes the i-th pixel in the right direction (X direction) and the j-th pixel in the downward direction (y direction) in image data expressed as multivalued data for each pixel arranged in a 1-te column. Assume that the pixel of interest is 1, for example, the pixel values of that pixel and its 8 neighboring pixels P(i-1, j-1) P(i, j-1) P(
i+l,j-1)P(i-1,j)P(i,
j) P (i+1.j)P(i-1,j+1)
P(i,j+1) P(i+1.j+1
), for example, the sum S (i, j) = -P (i-1, j-1) +
P (i+1.3-1)-P (i-1,j) +
P (i+1.j)-P (i-1,j+1) +
By finding P (i+1.j+1), find the density gradient (differential value) in the +X direction at that pixel, and process in the same way using the weighting coefficients of Figure 2 011), (C), +d). Accordingly, the concentration gradients in the -X direction, +y direction, and -y direction are determined.
この際、コントラストなど画質の異なる各種の画像に対
し良好な処理結果が得られることが望ましい。At this time, it is desirable to be able to obtain good processing results for various images with different image qualities such as contrast.
第3図は空間フィルタリング処理に用いられる画像処理
装置の従来例の構成を示すブロック図であり1図におい
て。FIG. 3 is a block diagram showing the configuration of a conventional image processing device used for spatial filtering processing, and is similar to FIG. 1.
lは濃淡−像を512行×512列の行列状に配列され
る画素毎に8ビツトで表現されるO〜255の多値デー
タとして記憶する入力1ibJ像メモリ。1 is an input 1ibJ image memory that stores a grayscale image as multivalued data of 0 to 255 expressed by 8 bits for each pixel arranged in a matrix of 512 rows x 512 columns.
2は5×5画素の空間フィルタの各要素の重み係数を記
憶する係数メモリ。2 is a coefficient memory that stores weighting coefficients of each element of a 5×5 pixel spatial filter.
31〜34は入力画像メモリ1に記憶する濃淡画像をラ
スク走査によって読み取った1iI!l素毎の多値デー
タを順次にシフトする512画素長のシフトレジスタ。1iI! 31 to 34 are grayscale images stored in the input image memory 1 that are read by rask scanning. A 512 pixel long shift register that sequentially shifts multi-value data for each l pixel.
401〜405は入力画像メモリlに記憶する濃淡画像
をラスク走査によって読み取った1画素毎の多値データ
を、順次にシフトして一時記憶する1画素長のレジスタ
(R)、406〜410.411〜415゜416〜
420.421〜425は、それぞれシフトレジスタ3
1・同33・同33・同34から出力される1画素毎“
の多値データを、順次にシフトして一時記憶する11
111素長のレジスタ(R)。401-405 are 1-pixel length registers (R) for sequentially shifting and temporarily storing multivalued data for each pixel obtained by reading the grayscale image stored in the input image memory l by rask scanning, 406-410.411 ~415°416~
420.421 to 425 are shift register 3, respectively.
Each pixel output from 1, 33, 33, and 34
11. Sequentially shifting and temporarily storing the multivalued data of
111 prime length register (R).
501〜525は25個のレジスタ401〜425の記
憶内容の各々と、係数メモリ2に記憶される5×5の空
間フィルタの25個の要素の重み係数の各々との乗算を
行う加算器。Adders 501 to 525 multiply each of the stored contents of the 25 registers 401 to 425 by each of the weighting coefficients of the 25 elements of the 5×5 spatial filter stored in the coefficient memory 2.
6は25個の乗算器501〜525によって得られた2
5個の積の和を求める積算器。6 is 2 obtained by 25 multipliers 501 to 525.
An integrator that calculates the sum of five products.
7は加算器6の出力を注目画素毎に格納する出力内像メ
モリである。7 is an output internal image memory that stores the output of the adder 6 for each pixel of interest.
以上のような構成においてレジスタ401〜425は5
×5の演算処理窓を構成し、入力画像メモリlに記憶す
る濃淡画像をX方向を主走査方向とするラスク走査によ
って1肉素ずつ読み取ることによって、レジスタ413
に記憶される注目画素の画素値を中心として5X511
!!l素の画素値がレジスタ401〜425に展開され
9乗算器501〜525によって、各レジスタ401〜
425の画素値と係数メモリ2に記憶する5×5の空間
フィルタの各要素の重み係数との積が得られ、これらの
積の和が加算器6によって得られ、その結果が各注目画
素毎に出力画像メモリ7に格納される。In the above configuration, the registers 401 to 425 are 5
By configuring an arithmetic processing window of ×5 and reading the grayscale image stored in the input image memory l one by one by rask scanning with the main scanning direction in the X direction, the register 413
5×511 centering around the pixel value of the pixel of interest stored in
! ! The pixel values of l pixels are developed into registers 401 to 425, and nine multipliers 501 to 525 expand the pixel values to each register 401 to 425.
The product of the 425 pixel values and the weighting coefficient of each element of the 5×5 spatial filter stored in the coefficient memory 2 is obtained, the sum of these products is obtained by the adder 6, and the result is added for each pixel of interest. The image is stored in the output image memory 7.
′ 〔発明が解決しようとする問題点J上記構成の画
像処理装置においては1例えば濃淡l1bl像の空間微
分を行う場合、コントラストの強い濃淡画像の場合でも
コントラストの弱い濃淡画像の場合でも、一様に同一の
重み係数で処理を行っている。[Problems to be Solved by the Invention J In the image processing device having the above configuration, 1. For example, when performing spatial differentiation of a gray scale image, the problem is uniformly differentiated whether it is a gray scale image with strong contrast or a gray scale image with weak contrast. Processing is performed using the same weighting coefficient.
ところで、空間微分値は9本来、3×3の画素領域で求
める方がよいが1例えばX方向とX方向との2方向の空
間微分値から各画素における最大濃度変化方向を求める
場合に3×3の画素領域で空間微分を求めると、コント
ラストの弱い濃淡画像からは最大濃度変化方向が正確す
なわち小刻みな値で得られない。By the way, the spatial differential value is originally better to be found in a 3x3 pixel area, but 1For example, when determining the direction of maximum density change in each pixel from the spatial differential value in two directions, the X direction and the When calculating the spatial differential in the pixel region No. 3, the direction of maximum density change cannot be obtained accurately, that is, in small steps, from a grayscale image with weak contrast.
従って、コントラストの弱い濃淡画像に対しては、これ
よりも広い例えば5×5の画素領域で空間微分を求める
必要があるが、上記従来例においては、このような要求
に対処出来ないという問題点がある。Therefore, for grayscale images with weak contrast, it is necessary to obtain spatial differentiation in a wider pixel area of, for example, 5 x 5, but the problem with the conventional example described above is that such a request cannot be met. There is.
本発明になる画像処理装置は、濃淡画像を行列状に配列
される画素毎の多値データとして記憶する入力画像メモ
リと、前記濃淡画像か−らその画質に関する特徴量を抽
出する特徴抽出回路と、前記抽出された特徴量に応じて
前記空間フィルタの重み係数を変更する手段とを備える
ことにって、前記問題点の解消を図ったものである。An image processing device according to the present invention includes an input image memory that stores a grayscale image as multivalued data for each pixel arranged in a matrix, and a feature extraction circuit that extracts feature quantities related to the image quality from the grayscale image. The above-mentioned problem is solved by including means for changing the weighting coefficient of the spatial filter according to the extracted feature amount.
(作用)
すなわち1画質に応じて重み係数の異なる空間フィルタ
リング処理ができるようにしたものであり、これにより
1例えば空間微分を求める画素領域の大きさを選択する
ことが可能であり、コントラストなど画質の異なる各種
の画像に対し良好な処理結果が得られる。(Function) In other words, it is possible to perform spatial filtering processing with different weighting coefficients depending on the image quality.This makes it possible to select, for example, the size of the pixel area for which spatial differentiation is to be obtained, and to adjust the image quality such as contrast. Good processing results can be obtained for various images with different values.
以下に本発明の要旨を実施例によって具体的に説明する
。The gist of the present invention will be specifically explained below using examples.
第1図は本発明一実施例の構成を示すブロック図であり
、第2図従来例と共通する符号は同一の対象を指す。そ
の他。FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, and the same reference numerals as in the conventional example in FIG. 2 refer to the same objects. others.
8は、入力画像メモリlに記憶される画像データから、
その画質に関する特徴量として2画素値の最大値を抽出
する特徴抽出回路。8 is from the image data stored in the input image memory l,
A feature extraction circuit that extracts the maximum value of two pixel values as a feature related to the image quality.
9と10は、特徴抽出回路8によって抽出された特徴量
に応じて空間フィルタの筺み係数を変更する手段の構成
要素であり、9は特徴抽出回路8によって検出された最
大値が9例えば0〜127であるか128〜255であ
るかに応じて、第4図に例示するように1重み係数の異
なる(a)および(blの何れの空間フィルタを用いる
べきかの対応を記憶する選択テーブル、10は第4図に
例示したような空間フィルタのそれぞれの重み係数を格
納する係数メモリである。9 and 10 are constituent elements of a means for changing the filtering coefficient of the spatial filter according to the feature quantity extracted by the feature extraction circuit 8, and 9 indicates that the maximum value detected by the feature extraction circuit 8 is 9, for example, 0. -127 or 128-255, as illustrated in FIG. 4, a selection table that stores the correspondence between spatial filters (a) and (bl) with different 1 weighting coefficients to be used. , 10 is a coefficient memory that stores weighting coefficients for each of the spatial filters as illustrated in FIG.
以上のような構成において、まず最初に特徴抽出回路8
によって入力画像メモリlに記憶される入力画像の画素
値の最大値が検出され9例えば最大値が100であった
とすると9選択テーブル9によって、係数メモリlOに
記憶する第4図(alおよびtblの2種類の重み係数
のうち+8)が選択される。In the above configuration, first, the feature extraction circuit 8
For example, if the maximum value is 100, the maximum pixel value of the input image stored in the input image memory l is detected by the selection table 9. Among the two types of weighting coefficients, +8) is selected.
以下従来例と同様にして、入力画像メモリ1に記憶され
る入力画像のうち注目画素を中心とする5×5画素がレ
ジスタ401〜425に展開され、各画素値と選択テー
ブル9によって選択された第4図(alに例ボする5×
5の空間フィルタの各要素の重み係数との積が得られ、
これらの積の和が加算器6によって得られ、その結果が
各注目画素毎に出力画像メモリ7に格納される。Thereafter, in the same way as in the conventional example, 5×5 pixels centered on the pixel of interest among the input image stored in the input image memory 1 are developed into registers 401 to 425, and selected based on each pixel value and the selection table 9. Figure 4 (Example 5×
The product of each element of the spatial filter of 5 with the weighting coefficient is obtained,
The sum of these products is obtained by the adder 6, and the result is stored in the output image memory 7 for each pixel of interest.
もし、入力画像のコントラストが強く例えば特徴抽出回
路8によって検出される最大値が200であったとする
と、レジスタ401〜425に展開された5×5の各画
素値と第4図(b)に例示する5×5の空間フィルタの
各要素の重み係数との積が得られ、これらの積の和が加
算器6によって得られ。If the contrast of the input image is strong and, for example, the maximum value detected by the feature extraction circuit 8 is 200, the 5×5 pixel values developed in the registers 401 to 425 and the example shown in FIG. The product of each element of the 5×5 spatial filter with the weighting coefficient is obtained, and the sum of these products is obtained by the adder 6.
その結果が各注目画素毎に出力画像メモリ7に格納され
、このように、入力画像のコントラストに応じて重み係
数の異なる(a)または(blの重み係数の空間フィル
タによる処理が行われる。The results are stored in the output image memory 7 for each pixel of interest, and processing is performed using a spatial filter with a weighting coefficient of (a) or (bl) that differs depending on the contrast of the input image.
以上説明したように2本発明によれば、入力画像の肉質
に応じた適切な空間フィルタリング処理を行うことがで
きる。As explained above, according to the two aspects of the present invention, it is possible to perform appropriate spatial filtering processing according to the meat quality of the input image.
【図面の簡単な説明】
第1図は本発明一実施例のブロック図。
第2図(a)〜(dlは利用分野に関する説明図。
第3図は従来例のブロック図。
第4図+a)・(b)は本発明一実施例の説明図である
。
図中。
lは入力画像メモリ、31〜32はシフトレジスタ。
401〜425はレジスタ、501〜525は乗算器。
6は加算器、 7は出力画像メモリ。
8は特徴抽出回路、 9は選択テーブル。
(αン
(C)C)
(d)
峯2fJ
(α】
事
C#)
I2IBRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of an embodiment of the present invention. FIGS. 2(a) to (dl) are explanatory diagrams related to fields of application. FIG. 3 is a block diagram of a conventional example. FIGS. 4+a and (b) are explanatory diagrams of an embodiment of the present invention. In the figure. 1 is an input image memory, and 31 to 32 are shift registers. 401 to 425 are registers, and 501 to 525 are multipliers. 6 is an adder, 7 is an output image memory. 8 is a feature extraction circuit, and 9 is a selection table. (αn
(C)C) (d) Mine 2fJ (α] Thing C#) I2I
Claims (2)
像処理装置であって、前記濃淡画像を行列状に配列され
る画素毎の多値データとして記憶する入力画像メモリと
、前記濃淡画像からその画質に関する特徴量を抽出する
特徴抽出回路と、前記抽出された特徴量に応じて前記空
間フィルタの重み係数を変更する手段とを備えることを
特徴とする画像処理装置。(1) An image processing device that performs spatial filtering processing on a grayscale image, comprising an input image memory that stores the grayscale image as multivalued data for each pixel arranged in a matrix, and information on the image quality from the grayscale image. An image processing apparatus comprising: a feature extraction circuit that extracts a feature amount; and means for changing a weighting coefficient of the spatial filter according to the extracted feature amount.
値を検出するものであることを特徴とする特許請求の範
囲第(1)項記載の画像処理装置。(2) The image processing apparatus according to claim (1), wherein the feature extraction circuit detects a maximum value of pixel values of the grayscale image.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60016952A JPS61175862A (en) | 1985-01-31 | 1985-01-31 | Picture processing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60016952A JPS61175862A (en) | 1985-01-31 | 1985-01-31 | Picture processing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61175862A true JPS61175862A (en) | 1986-08-07 |
Family
ID=11930455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60016952A Pending JPS61175862A (en) | 1985-01-31 | 1985-01-31 | Picture processing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61175862A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61201372A (en) * | 1985-03-02 | 1986-09-06 | Toshiba Corp | Image processor |
JPS63126075A (en) * | 1986-11-17 | 1988-05-30 | Nachi Fujikoshi Corp | Image processor |
JPS63262778A (en) * | 1987-04-20 | 1988-10-31 | Hitachi Ltd | Method and device for pattern recognition from variable density picture |
US7690217B2 (en) | 2002-10-24 | 2010-04-06 | Showa Denko K.K. | Refrigeration system, compressing and heat-releasing apparatus and heat-releasing device |
-
1985
- 1985-01-31 JP JP60016952A patent/JPS61175862A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61201372A (en) * | 1985-03-02 | 1986-09-06 | Toshiba Corp | Image processor |
JPS63126075A (en) * | 1986-11-17 | 1988-05-30 | Nachi Fujikoshi Corp | Image processor |
JPS63262778A (en) * | 1987-04-20 | 1988-10-31 | Hitachi Ltd | Method and device for pattern recognition from variable density picture |
US7690217B2 (en) | 2002-10-24 | 2010-04-06 | Showa Denko K.K. | Refrigeration system, compressing and heat-releasing apparatus and heat-releasing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4991224A (en) | Apparatus and method for labeling connected component in a three-dimensional image | |
Bouman et al. | A multiscale random field model for Bayesian image segmentation | |
US6459822B1 (en) | Video image stabilization and registration | |
EP0279297B1 (en) | Pattern contours in image processing | |
KR101506060B1 (en) | Feature-based signatures for image identification | |
CN102779157B (en) | Method and device for searching images | |
CN107851327A (en) | Thickness searching method and image processing apparatus | |
JPH06348853A (en) | Sorting method of signal | |
US5058181A (en) | Hardware and software image processing system | |
US5687252A (en) | Image processing apparatus | |
CN107358638A (en) | Disparity map computational methods and device, electronic equipment, computer-readable storage medium | |
CN108347540B (en) | The production method of scanner, scanner program and scan data | |
CN109902751B (en) | Dial digital character recognition method integrating convolution neural network and half-word template matching | |
CN101882220A (en) | Bar code image correction method based on dynamic template and method for acquiring correction point | |
CN106683043A (en) | Parallel image stitching method and device for multi-channel optical detection system | |
CN100502489C (en) | Image processing apparatus and method | |
JPS61175862A (en) | Picture processing device | |
Shih et al. | A new single-pass algorithm for extracting the mid-crack codes of multiple regions | |
US6222938B1 (en) | Compensating pixel records of related images for detecting images disparity, apparatus and method | |
Wongthanavasu et al. | A 3D CA-based edge operator for 3D images | |
EP0447541B1 (en) | Image data processor system and method | |
CN201946014U (en) | Bar code image correction device and correction point acquisition device based on dynamic template | |
CN118379696B (en) | Ship target detection method and device and readable storage medium | |
CN109074626A (en) | Image processing apparatus, image processing method and program | |
KR20010043008A (en) | Filtering a collection of samples |