JPS61175517A - Optical fiber ring interferometer - Google Patents

Optical fiber ring interferometer

Info

Publication number
JPS61175517A
JPS61175517A JP60014269A JP1426985A JPS61175517A JP S61175517 A JPS61175517 A JP S61175517A JP 60014269 A JP60014269 A JP 60014269A JP 1426985 A JP1426985 A JP 1426985A JP S61175517 A JPS61175517 A JP S61175517A
Authority
JP
Japan
Prior art keywords
optical fiber
focusing
light
fiber loop
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60014269A
Other languages
Japanese (ja)
Inventor
Hisao Sonobe
久雄 園部
Teigo Okada
岡田 定五
Kazuhiro Kuwabara
桑原 和広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60014269A priority Critical patent/JPS61175517A/en
Publication of JPS61175517A publication Critical patent/JPS61175517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Gyroscopes (AREA)

Abstract

PURPOSE:To obtain a clear interference fringe, by arranging an interferable luminous flux, a plurality of focusing rod lenses, a beam splitter and an optical fiber loop to be integrated optically. CONSTITUTION:A luminous flux leaving an interferring light source 8 enters an light isolator 10 via a focusing rod lens 9. Then, the luminous flux enters focusing rod lenses 11A and 11B to be converted to two focusing luminous fluxes passing through two focuses and then, enters a beam splitter 3 to be equally divided into a transmission light and a reflected light with a halfmirror 3R. The two focusing luminous fluxes transmitted through the halfmirror 3R reach end faces A and B of an optical fiber loop 6. The focusing luminous flux leaving the lens 11A and is made incident efficiently into the end face A of the optical fiber loop 6 and emitted at the end face B as dispersing flux passing around the loop 6 and then, after entering the splitter 3, the dispersing luminous flux is bent at the right angle with the halfmirror 3 to reach an interfering surface 7 passing through an optical spacer 13. Thus, a stable and clear interference fringe can be detected.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は主に角速度の検出器などに使われる光ファイバ
を用いたリング干渉計の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an improvement in a ring interferometer using an optical fiber, which is mainly used as an angular velocity detector.

〔発明の背景〕[Background of the invention]

従来、例えば、日経メカニカル、1983,9゜26.
113P、”CODを応用した精度1°/S以下の光フ
アイバジャイロシステム″に述べであるような光ファイ
バリング干渉計の一例を第1図によって説明する。まず
、可干渉性光源1は干渉性のある光束、例えば、レーザ
を出す半導体装置よりなり、そこから出た光束は補正レ
ンズによって適度な平行性光束に補正されてビームスプ
リッタ3に入る。このビームスプリッタ3は半透鏡3R
が主体であり、入射した光束の半分(パワー的に半分)
を直進させ、残りの半分を直角方向に反射させる。ビー
ムスプリッタ3から出た光束は集束レンズ4,5により
、平行性光束は集束性光束に、あるいは、発散性光束は
適度な平行性光束に変更される。光ファイバループ6は
、例えば、単一モード偏波面保存光ファイバ数百メート
ルをコ冑ル状に巻いたものであり、A端面から入射した
光束をB端面へ、B端面から入射した光束をA端面へ少
ない損失で導くものである。干渉面7は光束が当たると
適度に乱反射する単なる平面、又は、光検出器などの入
射面である。
Previously, for example, Nikkei Mechanical, 1983, 9°26.
An example of an optical fiber ring interferometer as described in 113P, "Optical fiber gyro system with accuracy of 1°/S or less applying COD" will be explained with reference to FIG. First, the coherent light source 1 is composed of a semiconductor device that emits a coherent light beam, for example, a laser, and the light beam emitted from it is corrected by a correction lens into a suitably parallel light beam and enters the beam splitter 3. This beam splitter 3 is a semi-transparent mirror 3R
is the main component, and half of the incident light flux (half in terms of power)
travels straight and the other half is reflected at right angles. The light beams emitted from the beam splitter 3 are changed from parallel light beams to convergent light beams, or from divergent light beams to appropriately parallel light beams, by focusing lenses 4 and 5. The optical fiber loop 6 is, for example, several hundred meters of single-mode polarization-maintaining optical fiber wound into a coil shape, and the light flux incident from the A end face is directed to the B end face, and the light flux incident from the B end face is directed to the A end face. It leads to the end face with little loss. The interference surface 7 is a mere flat surface that causes moderate diffuse reflection when a light beam hits it, or an incident surface of a photodetector or the like.

このような構成では、まず、可干渉性光源1を出た光束
は、前述のように、各部品の作用によって集束レンズ4
の焦点と集束レンズ5の焦点とに分かれて集束する。こ
れらの焦点の位置と光ファイバルーブ6のA、B端面(
光束の入出射端面)の位置を光軸(光束の中心線)の傾
きも考慮して完全に一致させたとき、最も効率よく光束
が光ファイバループ6に入射し、入射効率を数十%にす
ることも可能である。この場合、光ファイバループ6の
A端面に入射した集束性光束はB端面から破線で示した
ように発散性光束で出射し、集束レンズ5で平行性光束
に変更され、さらに、ビームスプリッタ3で直角方向に
反射して平行性光束の状態で干渉面7に到達する。同様
に、光ファイバループ6のB端面に入射した集束性光束
もA端面から発散性光束で出射し、集束レンズ4で平行
性光束に変更され、ビームスプリッタ3を直進して平行
性光束の状態で干渉面7に到達する。従って、光軸が等
しく光束の広がり角(この場合は平行)が等しいため、
両光束の電界振動の位相差が干渉面7全体にわてった一
様であり、明るさが一様になって干渉縞7Aは縞模様に
ならない、この場合、干渉縞7A全体の明るさは両光束
の位相差の余弦に比例し、位相差がゼロ、または、πの
偶数倍のとき最も明るく、位相差がπの奇数倍のとき最
も暗くなる。従って、変化が余弦的であることから考え
ても明らかなように、位相差がπの整数倍付近では位相
差はが変化しても明るさが変化しないため、干渉縞7A
の明るさの変化から光ファイバループ6に加わっている
微小な角速度などを求められない不具合が生じる。
In such a configuration, first, the light beam exiting the coherent light source 1 is focused on the focusing lens 4 by the action of each component, as described above.
and the focus of the focusing lens 5. The positions of these focal points and the A and B end faces of the optical fiber lube 6 (
When the positions of the input and output end faces of the light beam are perfectly aligned, taking into account the inclination of the optical axis (center line of the light beam), the light beam enters the optical fiber loop 6 most efficiently, increasing the incidence efficiency to several tens of percent. It is also possible to do so. In this case, the convergent light beam incident on the A end face of the optical fiber loop 6 is emitted from the B end face as a diverging light flux as shown by the broken line, is changed into a parallel light flux by the converging lens 5, and is further changed to a parallel light flux by the beam splitter 3. The light is reflected in the right angle direction and reaches the interference surface 7 in the form of a parallel light beam. Similarly, the convergent light beam incident on the B end face of the optical fiber loop 6 also exits from the A end face as a divergent light flux, is changed into a parallel light flux by the converging lens 4, and then passes straight through the beam splitter 3 to become a parallel light flux. reaches the interference surface 7. Therefore, since the optical axes are equal and the spread angles of the light beams (parallel in this case) are equal,
The phase difference between the electric field oscillations of both luminous fluxes is uniform over the entire interference surface 7, and the brightness is uniform and the interference fringes 7A do not have a striped pattern.In this case, the brightness of the entire interference fringes 7A is proportional to the cosine of the phase difference between the two luminous fluxes, and is brightest when the phase difference is zero or an even multiple of π, and darkest when the phase difference is an odd multiple of π. Therefore, as is clear from the fact that the change is cosine-like, when the phase difference is around an integer multiple of π, the brightness does not change even if the phase difference changes.
A problem arises in that minute angular velocities applied to the optical fiber loop 6 cannot be determined due to changes in brightness.

この不具合を解消する最も簡単な手段が本発明の対象で
ある縞模様を出し、その移動量を観測する方法である。
The simplest means to solve this problem is to produce a striped pattern, which is the object of the present invention, and to observe the amount of movement of the striped pattern.

縞模様のある干渉縞7Aは図示したように光ファイバル
ープ6の両端面から出射するそれぞれの発散性光束の見
かけ上の出発点を故意に違えると生じ、その見かけ上の
出発点が光軸に平行な直線上にあるときの干渉縞7Aは
、図示したような同心円の縞模様になる。一方、見かけ
上の出発点が光軸に直交した直線上にあるときの干渉縞
7Aは、複数の等間隔の縞模様になる。これらの干渉縞
7Aは光ファイバループ6を互いに逆方向に一巡して干
渉面7に到達する両光束の電界振動の位相差に比例して
移動するため、その移動量を光検出器などで検出するこ
とによって、その値から位相差を求めることができ、さ
らに。
As shown in the figure, the interference fringes 7A with a striped pattern occur when the apparent starting points of the respective diverging light beams emitted from both end faces of the optical fiber loop 6 are intentionally different, and the apparent starting points are aligned with the optical axis. When the interference fringes 7A are on parallel straight lines, the interference fringes 7A have a concentric striped pattern as shown in the figure. On the other hand, when the apparent starting point is on a straight line perpendicular to the optical axis, the interference fringes 7A have a plurality of equally spaced stripes. These interference fringes 7A move around the optical fiber loop 6 in opposite directions and move in proportion to the phase difference between the electric field oscillations of the two light beams that reach the interference surface 7, so the amount of movement is detected by a photodetector or the like. By doing this, you can find the phase difference from that value, and further.

位相差の値から、例えば、角速度などを求めることがで
きる。しかし、このように干渉縞7Aが生じる状態では
集束レンズ4,5の焦点と光ファイバループ6のA、B
端面の位置が一致しないため、集束レンズ4,5を出た
集束性光束の約0.1%程度が光ファイバループ6に入
射するに過ぎない。
For example, angular velocity can be determined from the value of the phase difference. However, in such a state where interference fringes 7A are generated, the focus of the focusing lenses 4 and 5 and the points A and B of the optical fiber loop 6 are
Since the positions of the end faces do not match, only about 0.1% of the convergent light flux exiting the converging lenses 4 and 5 enters the optical fiber loop 6.

一方、光ファイバループ6のA、B端面における反射は
A、B端面に当たる光束の約数%に達し、このA、B端
面で反射した光束も集束レンズ4゜5とビームスプリッ
タ3を通過して干渉面7に達し1反射の光束の間で干渉
が生じ、干渉面7に様様な模様が生じ、また、その模様
が反射条件の変化などによって大幅に変り、光学的な雑
音になっている。その雑音の強度は正規の信号(光ファ
イバループ6のA、B両端から出射した光束が干渉して
できる干渉縞)の約数十倍に達する。すなわち、従来干
渉縞7Aを発生させることと光ファイバループ6に光束
を効率よく入射することの両方を同時に満足することが
困難であり、明瞭な干渉縞7Aを得られないという問題
があった。
On the other hand, the reflection at the A and B end faces of the optical fiber loop 6 reaches several percent of the light flux that hits the A and B end faces, and the light flux reflected at the A and B end faces also passes through the focusing lens 4°5 and the beam splitter 3. Interference occurs between the light beams that reach the interference surface 7 and are reflected once, resulting in various patterns on the interference surface 7, and these patterns change significantly due to changes in reflection conditions, resulting in optical noise. The intensity of the noise reaches about several tens of times that of the normal signal (interference fringes formed by the interference of the light beams emitted from both ends A and B of the optical fiber loop 6). That is, conventionally, it has been difficult to simultaneously generate the interference fringes 7A and efficiently input the light beam into the optical fiber loop 6, and there has been a problem that clear interference fringes 7A cannot be obtained.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高性能な光ファイバリング干渉計を提
供することにある。
An object of the present invention is to provide a high-performance optical fiber ring interferometer.

〔発明の概要〕[Summary of the invention]

本発明の一本の光束を特殊な集束手段によって焦点の位
置が異なる二本の集束性光束に分割し。
According to the present invention, a single beam of light is divided into two convergent beams with different focus positions by a special focusing means.

それぞれの焦点の位置と光ファイバループの端面の位置
を一致させて集束性光束を光ファイバループに好条件で
入射させ、同時に、光ファイバループから出射する発散
性光束の出発点の位置を違えて明瞭な干渉縞を得るもの
である。
By matching the position of each focal point with the position of the end face of the optical fiber loop, the converging light flux is made to enter the optical fiber loop under favorable conditions, and at the same time, by changing the starting point position of the diverging light flux exiting from the optical fiber loop. This provides clear interference fringes.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の実施例を第2図によって詳細に説明する
。可干渉性光源8は他の光学部品と直接に結合(光学的
接着などによる結合)しても本来の特性が変らないもの
、例えば、臂開面を必要としない分布帰還形のレーザダ
イオードのようなもの、集束性ロッドレンズ9は屈折率
が中心軸がら外周面に向って、例えば、放物線状に分布
している円柱状の光学ガラス体であり、可干渉性光源8
から出た光束を平行に補正するものである。光アイソレ
ータ10は、例えば、ファラデイ回転子や偏光子などか
ら成るものであり、可干渉性光源8への戻り光を阻止し
、この可干渉性光源8の動作が戻り光によって不安定に
なる現象を防止するもの、集束性ロッドレンズIIA、
IIBは集束性ロッドレンズ9とほぼ同じものを中心軸
に沿って切断して二分割し、その二個を光軸と直角方向
にずらし、スペーサ12を介して固定したものであり、
光軸と直交する同一線上に二つの焦点をもつものである
。ここで、焦点の間隔は集束性ロッドレンズ11Aと同
11Bをずらした間隔(切りしろをゼロとするとスペー
サ12の厚さ)と一致する。スペーサ12は集束性ロッ
ドレンズ11Aと11Bの間隔を保持する役目とこの部
分の空間を光束が通過して光ファイバループ6のA、B
端面に達するのを防止するものである。光ファイバルー
プ6のA、B端面の位置は集束性ロッドレンズ11A、
IIBの焦点の位置に合わせてあり、集束性ロッドレン
ズIIAの焦:褪には光ファイバループ6のA端面の位
置が、集束性ロッドレンズ11Bの焦点には光ファイバ
ループ6のB端面の位置が光軸に対する角度も考慮して
一致させである。光学スペーサ13はビームスプリッタ
3と干渉面7の間を連結するものであり、光軸方向の長
さの大小に見合って干渉縞7Bの外形寸法が変る。
An embodiment of the present invention will be described in detail below with reference to FIG. The coherent light source 8 is one whose original characteristics do not change even if it is directly combined with other optical components (combined by optical adhesive, etc.), such as a distributed feedback laser diode that does not require an arm opening. The focusing rod lens 9 is a cylindrical optical glass body whose refractive index is distributed, for example, in a parabolic manner from the central axis toward the outer circumferential surface, and the coherent light source 8
This corrects the luminous flux emitted from the lens to make it parallel. The optical isolator 10 is composed of, for example, a Faraday rotator or a polarizer, and prevents light from returning to the coherent light source 8, thereby preventing the operation of the coherent light source 8 from becoming unstable due to the returning light. What prevents this, focusing rod lens IIA,
IIB is a lens that is almost the same as the focusing rod lens 9, cut along the central axis, divided into two parts, shifted in a direction perpendicular to the optical axis, and fixed via a spacer 12.
It has two focal points on the same line perpendicular to the optical axis. Here, the distance between the focal points coincides with the distance between the focusing rod lenses 11A and 11B (the thickness of the spacer 12, assuming that the cutting margin is zero). The spacer 12 serves to maintain the distance between the converging rod lenses 11A and 11B, and allows the light beam to pass through this space to form the optical fiber loops A and B of the optical fiber loop 6.
This prevents it from reaching the end face. The positions of the A and B end faces of the optical fiber loop 6 are the focusing rod lens 11A,
The focal point of the converging rod lens IIA is aligned with the focal point of the optical fiber loop 6, and the focal point of the converging rod lens IIA is the position of the A end surface of the optical fiber loop 6, and the focal point of the converging rod lens 11B is the position of the B end surface of the optical fiber loop 6. However, the angle with respect to the optical axis is also taken into account to match the angle. The optical spacer 13 connects the beam splitter 3 and the interference surface 7, and the outer dimensions of the interference fringes 7B change depending on the length in the optical axis direction.

なお、これらの部品は光学的に接合(接着剤を使用しな
い接着法が最適)され、一体化されている。
Note that these parts are optically joined (adhesive methods that do not use adhesives are optimal) and integrated.

さて、可干渉性光W8を出た光束は集束性ロッドレンズ
9で平行性光束に補正されて光アイソレータ10に入る
。光アイソレータ10を出た光束は集束性ロッドレンズ
IIA、IIBに入り、二個の焦点を通る二本の集束性
光束に変更されてビームスプリッタ3に入る。ビームス
プリッタ3に入った二本の集束性光束は半透鏡3Rによ
って透過光と反射光に等分割され、反射光は利用されず
にC端面から出射して消失する。一方、半透鏡3Rを透
過した二本の集束性光束は光ファイバループ6のA、B
端面に達する。光ファイバループ6のA端面には集束性
ロッドレンズIIAから出た集束性光束が効率よく入射
し、光ファイバループ6を一巡してB端面から破線のよ
うに発散性光束の状態で出射して、再び、ビームスプリ
ッタ3に入る。ビームスプリッタ3に入った発散性光束
は半透鏡3Rによって直角方向に曲げられて、光学スペ
ーサ13を通って干渉面7に到達する。また、光ファイ
バループ6のB端面には集束性ロッドレンズIIBから
出た集束性光束が効率よく入射し、前述のように、この
集束性光束は光ファイバループ6を一巡し、ビームスプ
リッタ3を通り。
Now, the light beam that has exited the coherent light W8 is corrected into a parallel light beam by the converging rod lens 9 and enters the optical isolator 10. The light beam exiting the optical isolator 10 enters the convergent rod lenses IIA and IIB, is changed into two convergent light beams passing through two focal points, and enters the beam splitter 3. The two convergent beams entering the beam splitter 3 are equally divided into transmitted light and reflected light by the semi-transparent mirror 3R, and the reflected light is not utilized and exits from the C end face and disappears. On the other hand, the two convergent beams transmitted through the semi-transparent mirror 3R are A and B of the optical fiber loop 6.
Reach the end face. The convergent light beam emitted from the convergent rod lens IIA efficiently enters the A end face of the optical fiber loop 6, goes around the optical fiber loop 6, and exits from the B end face in the form of a diverging light flux as shown by the broken line. , enters the beam splitter 3 again. The diverging light beam entering the beam splitter 3 is bent in the right angle direction by the semi-transparent mirror 3R, passes through the optical spacer 13, and reaches the interference surface 7. In addition, the convergent light flux emitted from the convergent rod lens IIB efficiently enters the B end face of the optical fiber loop 6, and as described above, this convergent light flux goes around the optical fiber loop 6 and passes through the beam splitter 3. street.

さらに、光学スペーサ13を通って干渉面7に到達する
。なお、半透鏡3Rを透過した発散性光束は、集束性ロ
ッドレンズIIA、IIBによって平行性光束に変更さ
れて光アイソレータ10に入るが、この光アイソレータ
10の作用によって消失する。また、ビームスプリッタ
3と光ファイバループ5の境界面は光学的に接合しであ
るため、この部分には屈折率の値の段差がほとんどなく
Furthermore, it passes through the optical spacer 13 and reaches the interference surface 7 . Note that the diverging light beam that has passed through the semi-transparent mirror 3R is changed into a parallel light beam by the converging rod lenses IIA and IIB and enters the optical isolator 10, but disappears due to the action of the optical isolator 10. Furthermore, since the interface between the beam splitter 3 and the optical fiber loop 5 is optically joined, there is almost no step in the refractive index value at this portion.

屈折率の値の段差によって反射が生じることはない、従
って、このとき発生する干渉縞7Bは信号光が大きく、
かつ、反射光がないため、極めて明瞭な直線状で等間隔
の縞模様になる。また、各部品は光学的に接合されてい
るために屈折率の値の段差による反射がほとんどなく1
反射条件の変化などの影響を受けない安定した縞模様に
なる。また、干渉縞7Bの移動量を光検出器で検出する
場合、特殊な光検出器などを使用する必要がなく、例え
ば、一般のホトダイオードアレイ等を使用して干渉縞7
B全体の平均的な移動を容易に検出することができる。
Reflection does not occur due to the difference in the refractive index value, so the interference fringes 7B generated at this time have a large signal light;
In addition, since there is no reflected light, an extremely clear linear pattern with equally spaced stripes is formed. In addition, since each component is optically bonded, there is almost no reflection due to differences in refractive index values.
A stable striped pattern is created that is not affected by changes in reflection conditions. Furthermore, when detecting the amount of movement of the interference fringes 7B with a photodetector, there is no need to use a special photodetector, and for example, a general photodiode array or the like can be used to detect the interference fringes 7B.
The average movement of the entire B can be easily detected.

また、全部品の線膨張係数が小さいガラス、または、ガ
ラス状物質から成るため、温度変化によって変形し、そ
の結果、干渉縞7Bの状態が変化するようなことはない
、また、従来装置のように各部品毎にその部品を固定す
る金具等がないため、光ファイバループ6を除き、小形
化することができる。
In addition, since all the parts are made of glass or glass-like material with a small coefficient of linear expansion, they do not deform due to temperature changes and, as a result, do not change the state of the interference fringes 7B, unlike conventional devices. Since there are no metal fittings or the like for fixing each component, the optical fiber loop 6 can be removed and the device can be made smaller.

このように1本実施例によると、極めて簡単な構成で従
来にない安定した明瞭な干渉縞7Bが得られるのみなら
ず、干渉縞7Bの移動量の検出を容易にすることができ
る。
As described above, according to this embodiment, not only the stable and clear interference fringes 7B can be obtained with an extremely simple configuration, but also the amount of movement of the interference fringes 7B can be easily detected.

なお、実施例において、可干渉性光源8から出た光束が
平行性光束の場合は集束性ロッドレンズ9を省略しても
よく、それによって実施例の効果が失なわれることはな
い。
In the embodiment, if the light beam emitted from the coherent light source 8 is a parallel light beam, the converging rod lens 9 may be omitted, and the effect of the embodiment is not lost thereby.

また、実施例において、スペーサ12を設けているが、
説明を容易にするために設けたものであり、省略しても
よい。ただし、その場合、集束性ロッドレンズIIAと
11Bの間隙を通過して平行性光束が光ファイバループ
6のA、B端面に到達するが、この端面から入射する量
はわずかであり、干渉縞7Bに対する影響はない。
Furthermore, although the spacer 12 is provided in the embodiment,
This is provided for ease of explanation and may be omitted. However, in that case, although the parallel light flux passes through the gap between the convergent rod lenses IIA and 11B and reaches the end faces A and B of the optical fiber loop 6, the amount of light incident from this end face is small, and the interference fringes 7B There is no impact on

また、実施例において、光ファイバループ6のA、B端
面をビームスプリッタ3の透過側の面に接合しているが
、ビームスプリッタ3の反射側(C端面側)に接合して
も実施例の効果は変らない。
In addition, in the embodiment, the A and B end faces of the optical fiber loop 6 are joined to the transmission side surface of the beam splitter 3, but even if they are joined to the reflection side (C end face side) of the beam splitter 3, the embodiment The effect remains the same.

また、実施例において、光学スペーサ13を集束性ロン
ドレンズにしてもよく、その場合、干渉縞7Bの外形寸
法を容易に拡大縮小することができる。また、干渉縞7
Bの外形寸法を大きくする必要がない場合は光学スペー
サ13を省略してもよい、また、干渉縞7Bが多少不安
定であってもよい場合は光アイソレータ10を省略して
もよい。
Further, in the embodiment, the optical spacer 13 may be a focusing Rondo lens, and in that case, the external dimensions of the interference fringes 7B can be easily enlarged or reduced. In addition, interference fringe 7
If there is no need to increase the external dimensions of B, the optical spacer 13 may be omitted, and if the interference fringes 7B may be somewhat unstable, the optical isolator 10 may be omitted.

なお、実施例において、光ファイバループ6の光ファイ
バが単一モード偏波面保存光ファイバの場合、集束性ロ
ッドレンズIIA、IIBを出た集束性光束の偏光の方
位と単一モード偏波面保存光ファイバの偏光軸を一致さ
せることにより、最も明瞭な干渉縞7Bが得られる。
In the embodiment, when the optical fiber of the optical fiber loop 6 is a single mode polarization maintaining optical fiber, the direction of polarization of the convergent light beams exiting the focusing rod lenses IIA and IIB and the single mode polarization maintaining light By matching the polarization axes of the fibers, the clearest interference fringes 7B can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高性能な光ファイバリング干渉計を提
供することができる。
According to the present invention, a high-performance optical fiber ring interferometer can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光ファイバリング干渉計の概略図、第2
図は本発明の光ファイバリング干渉計の一実施例の概略
図である。 8・・・可干渉性光源、3・・・ビームスプリッタ、I
IA。
Figure 1 is a schematic diagram of a conventional optical fiber ring interferometer, Figure 2 is a schematic diagram of a conventional optical fiber ring interferometer.
The figure is a schematic diagram of an embodiment of the optical fiber ring interferometer of the present invention. 8...Coherent light source, 3...Beam splitter, I
I.A.

Claims (1)

【特許請求の範囲】[Claims] 1、可干渉性光束と、この可干渉性光源を出た光束を複
数個の焦点の集束性光束にする複数個の集束性ロッドレ
ンズと、この集束性光束を分配するビームスプリッタと
、前記集束性光束の所定の焦点に両端面が位置する光フ
ァイバループとを備え、これらを光学的に接合して一体
化したことを特徴とする光ファイバリング干渉計。
1. A coherent light beam, a plurality of convergent rod lenses that convert the light beam emitted from the coherent light source into convergent light beams at a plurality of focal points, a beam splitter that distributes this convergent light beam, and the above-mentioned focusing 1. An optical fiber ring interferometer comprising: an optical fiber loop having both end surfaces located at a predetermined focal point of an optical beam; and an optical fiber ring which is optically joined and integrated.
JP60014269A 1985-01-30 1985-01-30 Optical fiber ring interferometer Pending JPS61175517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60014269A JPS61175517A (en) 1985-01-30 1985-01-30 Optical fiber ring interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60014269A JPS61175517A (en) 1985-01-30 1985-01-30 Optical fiber ring interferometer

Publications (1)

Publication Number Publication Date
JPS61175517A true JPS61175517A (en) 1986-08-07

Family

ID=11856366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60014269A Pending JPS61175517A (en) 1985-01-30 1985-01-30 Optical fiber ring interferometer

Country Status (1)

Country Link
JP (1) JPS61175517A (en)

Similar Documents

Publication Publication Date Title
US5712704A (en) Appliance for measuring polarization mode dispersion and corresponding measuring process
US4259016A (en) Interferometer with a single-mode waveguide coil
US7746476B2 (en) Fiber optic gyroscope
CN108955857B (en) Heterodyne interference light path structure and laser vibration meter based on optical fiber
US7190462B2 (en) Fiber optic gyroscope having optical integrated circuit, depolarizer and fiber optic coil
US4302107A (en) Interferometer with a coil composed of a single mode waveguide
CN114322976A (en) Optical fiber gyroscope and relative intensity noise optical suppression method thereof
WO2016185618A1 (en) Interference fringe projection optical system and shape measurement device
GB2058398A (en) Ring interferometers
JPS61175517A (en) Optical fiber ring interferometer
JPH0222503A (en) Laser interference measuring instrument
JPS61187611A (en) Optical fiber ring interferometer
JPS6355035B2 (en)
JPH03118477A (en) Laser doppler vibrometer using beam branching optical system
JPH0340804B2 (en)
JPS6177713A (en) Interferometer using optical fiber ring
KR20030061643A (en) Phase shifting point diffraction interferometer using angled end-face optical fiber source
JP4915583B2 (en) Faraday rotating mirror
JPS61116613A (en) Ring interferometer for optical fiber
SU1670413A1 (en) Device for alignment control of transmission channels of optoelectronic systems
JPS58203412A (en) Branching device of polarization plane preserving optical fiber type
JPS58213211A (en) Noise eliminating system of optical fiber gyro
JPS6250071B2 (en)
JPH01100403A (en) Light source apparatus for interferometer
JPS61284986A (en) Coupler of semiconductor laser with optical fiber