JPS6117443B2 - - Google Patents

Info

Publication number
JPS6117443B2
JPS6117443B2 JP3984678A JP3984678A JPS6117443B2 JP S6117443 B2 JPS6117443 B2 JP S6117443B2 JP 3984678 A JP3984678 A JP 3984678A JP 3984678 A JP3984678 A JP 3984678A JP S6117443 B2 JPS6117443 B2 JP S6117443B2
Authority
JP
Japan
Prior art keywords
path
stem culm
stem
detection
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3984678A
Other languages
Japanese (ja)
Other versions
JPS54135117A (en
Inventor
Akira Irie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP3984678A priority Critical patent/JPS54135117A/en
Publication of JPS54135117A publication Critical patent/JPS54135117A/en
Publication of JPS6117443B2 publication Critical patent/JPS6117443B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Guiding Agricultural Machines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、条刈り時には最も未刈り側の茎稈導
入径路の株列に対する自動追従を行つて所定条数
の茎稈を確実に刈取り、又、横刈り時には最も既
刈り側の茎稈導入径路の株に対する自動追従を行
つて刈残しのない刈取りを行うよう構成した刈取
収穫機の自動操向制御機構の改良に関するもので
ある。 上記条刈り用の自動操向制御形態と横刈り用の
自動操向制御形態とを自動的に切換えるために本
発明者は先に次のような手段を提案した。つま
り、一般に稲麦の作付形態は条間に比して株間は
小さいために、横刈り時には1つの茎稈導入径路
内に複数条の株が導入されるものであり、このこ
とを利用して所定の径路に複数の茎稈が存在する
ことを検出し、これに基づいて操向制御形態を条
刈り用から横刈り用に自動的に切換えることによ
つて所期の目的を達し得たのである。そして、そ
の具体構成としては第3図に示すように、最も未
刈り側の径路Lに左右一対の茎稈接触センサー
S1,S2を設け、条刈り時(第4図イ参照)には径
路Lの茎稈の中央の不感領域bに導く条刈り用の
操向制御を行うとともに、両センサーS1,S2が共
に茎稈に接触したときに、最も既刈り側の径路R
に設けたセンサーS3に基づく横刈り用の操向制御
形態に自動的に切換えるものであつた。 しかし、上記構成においては条刈り時の制御の
安定化を計るために不感領域b′を大きくとると、
横刈り時にこの不感領域b′と一方のセンサーS1
はS2の検出領域a′,c′に茎稈が入ると制御形態が
横刈り用に切換わらず不安定な制御形態となるこ
とが判明した。 本発明は上記制御形態切換えの問題を解消する
ためになされたものである。 以下、本発明の実施例を図面に基づいて説明す
る。 第1図は4条刈りコンバインの走行部及び引起
し刈取部の概略構成を示す平面図であつて、図中
1はミツシヨンケース、2L,2Rはクローラ、
3L,3Rは操向クラツチ、4L,4Rは操向用
油圧シリンダ、5は油圧シリンダ操作用の3位置
電磁弁であり、又6……はデバイダである。そし
て最も刈り側の径路L及び最も既刈り側の径路R
には、各径路L・Rに導入された植立茎稈に接触
して茎稈位置を検出する第1検出機構A及び第2
検出機構Bが夫々設けられ、これら両検出機構
A,Bの検出結果に基づいて前記電磁弁5の励磁
部5L,5Rが作動制御される。 前記第1検出機構Aは、径路Lの両脇に設けら
れて茎稈との接触によつて後退揺動する第1及び
第2センサーS1及びS2の後退揺動角の大きさが
夫々二つのスイツチSW1,SW2及びSW3,SW4
2段に検出され、径路Lに導入された茎稈が径路
巾を五分した領域a,b,c,d,eのいづれに
属しているかを検出できるよう構成されている。
又、前記第2検出機構Bは、径路Rの一側に設け
られた第3センサーS3の後退揺動角の大きさが二
つのスイツチSW5,SW6によつて2段に検出さ
れ、径路Rに導入された茎稈が植立茎稈巾を三分
した領域f,g,hのいづれに属しているかを検
出できるよう構成されている。そして、前記スイ
ツチSW1……SW6と電磁弁5の励磁部5L,5R
が第2図に示すように接続されている。尚、前記
各スイツチSW1・・は総て常閉型が用いられる。
又、図中7はノツト回路、8a,8b,8c,8
dはアンド回路、9a,9bはオア回路、10は
メインスイツチである。 次に、上記構成による自動操向制御作動を説明
する。 (イ) 条刈り時(第4図イ参照) 径路Lに導入された1株の茎稈が領域aに属
すると、第1センサーS1のスイツチSW1が開成
されスイツチSW2が閉成されるとともに、第2
センサーS2のスイツチSW3が開成維持されスイ
ツチSW4が閉成維持されるため、アンド回路8
a及びオア回路9aの作動条件が成立して励磁
部5Lが通電され、左旋回用の操向クラツチ3
Lが油圧操作される。尚、この場合アンド回路
8b,8c,8dの作動条件は総て否定されて
いるので第2検出機構Bにおける第3センサー
S3のスイツチSW5,SW6は制御に無関係とな
る。 径路Lの1株の茎稈が領域eに属すると、第
2センサーS2のスイツチSW3が閉成されスイツ
チSW4が開成されるとともに、第1センサーS1
のスイツチSW1が閉成維持されスイツチSW2
開成維持されるために、アンド回路8c及びオ
ア回路9bの作動条件が成立して励磁部5Rが
通電され、右旋回用の操向クラツチ3Rが油圧
操作される。尚、この場合にも第2検出機構B
は制御と無関係となる。 径路Lの1株の茎稈が領域bに属している
と、第1センサーS1のみが1段目揺動範囲にあ
るため、スイツチSW1及びSW2が共に閉成さ
れ、且つ第2センサーS2のスイツチSW3が開成
維持、スイツチSW4が閉成維持されることにな
り、全アンド回路8a・・の作動条件が否定さ
れ直進が維持される。 経路Lに導入された1株の茎稈が中間領域c
に属するか、径路Lが茎稈が存在しないときに
は、スイツチSW2,SW3が開成され、スイツチ
SW1,SW4が閉成維持されるために、この場合
もアンド回路8a・・の作動条件が否定されて
直進維持される。 径路Lに導入された1株の茎稈が領域dに属
するときには、第2センサーS2のみが1段目揺
動範囲にあるために、スイツチSW3,SW4が共
に閉成されるとともに、スイツチSW1が閉成さ
れスイツチSW2が開成され、このときも全アン
ド回路8a・・の作動条件が否定されて直進維
持される。 (ロ) 横刈り時(第4図ロ参照) 径路Lに複数株の茎稈が導入され領域a,bの
少くともいづれかと、領域d,eの少くともいづ
れかに属する場合(例えばa−d,a−e,b−
d,b−e)には、スイツチSW2及びSW3が共に
閉成維持されるために、アンド回路8b,8dの
作動は夫々第2検出機構BのスイツチSW5,SW6
にのみ関係する。以下この状態を横刈り検出状態
と呼称する。 上記横刈り検出状態において、最も既刈り側
径路Rの導入茎稈が領域fに属するか、又は径
路Rに茎稈が存在しないと、スイツチSW5が開
成されスイツチSW6が閉成されるためにアンド
回路8b及びオア回路9aが作動して励磁部5
Lが通電され、左に操向される。 上記横刈り検出状態において、径路Rの茎稈
が領域gに属すると、第3センサーS3が1段目
操作されるために両スイツチSW5,SW6が共に
閉成され、アンド回路8b,8dは共に作動せ
ず、直進が維持される。 上記横刈り検出状態において、径路Rの茎稈
が領域hに属すると第3センサーS3が2段目操
作されるために、スイツチSW5が閉成されると
ともにスイツチSW6が開成され、アンド回路8
dの作動条件が成立して右操向が行われる。 以上〜の作動を図表に示すと下記のように
なる。但し、スイツチSW1……SW6の開成を1、
閉成を0、励磁部5L,5Rの通電作動を1、非
作動を0とする。
The present invention automatically follows the plant row of the stem culm introduction path on the most uncut side during row mowing to reliably reap a predetermined number of stem culms, and when horizontal mowing, the stem culm introduction path on the most already cut side The present invention relates to an improvement in an automatic steering control mechanism for a reaping/harvesting machine, which is configured to automatically follow the plants in the field and perform reaping without leaving any uncut leaves. In order to automatically switch between the automatic steering control mode for row mowing and the automatic steering control mode for horizontal mowing, the present inventor previously proposed the following means. In other words, in general, in the cropping pattern of rice and wheat, the distance between plants is small compared to the distance between rows, so when horizontally cutting, multiple rows of plants are introduced into one stem culm introduction route, and this fact can be used to The desired objective was achieved by detecting the presence of multiple stem culms in a predetermined path and automatically switching the steering control mode from row mowing to horizontal mowing based on this detection. be. As shown in Fig. 3, its specific configuration is as follows: A pair of left and right stem culm contact sensors are installed on the path L on the most uncut side.
S 1 and S 2 are provided, and during row cutting (see Fig. 4 A), steering control is performed to guide the row cutting to the dead area b at the center of the stem culm on path L, and both sensors S 1 and S 2 contact the stem culm, the route R on the most cut side
The system automatically switches to a steering control mode for horizontal mowing based on sensor S3 installed at the front. However, in the above configuration, if the dead area b' is made large in order to stabilize the control during row cutting,
During horizontal mowing, if a stem culm enters this dead area b' and the detection areas a', c' of one sensor S 1 or S 2 , the control mode may not switch to horizontal mowing, resulting in an unstable control mode. found. The present invention has been made in order to solve the above-mentioned problem of control mode switching. Embodiments of the present invention will be described below based on the drawings. Fig. 1 is a plan view showing the schematic structure of the running section and the pulling reaping section of a 4-row reaping combine, in which 1 is a transmission case, 2L and 2R are crawlers,
3L and 3R are steering clutches, 4L and 4R are steering hydraulic cylinders, 5 is a three-position solenoid valve for operating the hydraulic cylinders, and 6... are dividers. The route L closest to the mowing side and the route R closest to the already mowed side
includes a first detection mechanism A and a second detection mechanism A that detects the position of the planted stem culm by contacting the planted stem culm introduced into each path L and R.
A detection mechanism B is provided, and the excitation parts 5L and 5R of the electromagnetic valve 5 are operated and controlled based on the detection results of both the detection mechanisms A and B. The first detection mechanism A is provided on both sides of the path L, and the magnitude of the backward swing angle of the first and second sensors S1 and S2 , which swing backward by contact with the stem culm, is determined respectively. The stem culm detected in two stages by the two switches SW 1 , SW 2 and SW 3 , SW 4 and introduced into the path L belongs to which region a, b, c, d, or e, which divides the path width into five. It is configured to detect whether the
Further, the second detection mechanism B detects the magnitude of the backward swing angle of the third sensor S3 provided on one side of the path R in two stages by two switches SW5 and SW6 , It is configured so that it can be detected whether the stem culm introduced into the path R belongs to one of the regions f, g, and h obtained by dividing the width of the planted stem culm into three. Then, the switches SW1 ... SW6 and the excitation parts 5L, 5R of the solenoid valve 5
are connected as shown in FIG. Incidentally, each of the above-mentioned switches SW1 ... is of a normally closed type.
In addition, 7 in the figure is a knot circuit, 8a, 8b, 8c, 8
d is an AND circuit, 9a and 9b are OR circuits, and 10 is a main switch. Next, automatic steering control operation with the above configuration will be explained. (B) During row cutting (see Figure 4 A) When the stem culm of one plant introduced into path L belongs to area a, switch SW 1 of the first sensor S 1 is opened and switch SW 2 is closed. along with the second
Since switch SW 3 of sensor S 2 is kept open and switch SW 4 is kept closed, AND circuit 8
a and the OR circuit 9a are satisfied, the excitation part 5L is energized, and the steering clutch 3 for left turning is activated.
L is hydraulically operated. In this case, since the operating conditions of the AND circuits 8b, 8c, and 8d are all negated, the third sensor in the second detection mechanism B
Switches SW 5 and SW 6 of S 3 are unrelated to control. When the stem culm of one plant in the path L belongs to the area e, the switch SW 3 of the second sensor S 2 is closed and the switch SW 4 is opened, and the first sensor S 1
Since the switch SW 1 is kept closed and the switch SW 2 is kept open, the operating conditions of the AND circuit 8c and the OR circuit 9b are established, the excitation part 5R is energized, and the steering clutch 3R for right turning is activated. is hydraulically operated. In this case as well, the second detection mechanism B
becomes unrelated to control. When the stem culm of one plant in path L belongs to region b, only the first sensor S 1 is in the first stage swing range, so both switches SW 1 and SW 2 are closed, and the second sensor S 1 is closed. The switch SW 3 of S2 is kept open and the switch SW 4 is kept closed, and the operating conditions of the all AND circuits 8a are negated, and straight forward movement is maintained. The stem culm of one plant introduced in route L is in the middle area c
or when there is no stem culm in the path L, switches SW 2 and SW 3 are opened, and the switch
Since SW 1 and SW 4 are kept closed, the operating conditions of the AND circuits 8a are denied in this case as well, and the vehicle continues to travel straight. When the stem culm of one plant introduced into the path L belongs to the region d, only the second sensor S 2 is in the first stage swing range, so both the switches SW 3 and SW 4 are closed, and Switch SW 1 is closed and switch SW 2 is opened, and at this time as well, the operating conditions of all AND circuits 8a are negated and the vehicle continues to travel straight. (b) During horizontal cutting (see Figure 4 b) When multiple stem culms are introduced into route L and belong to at least one of areas a and b and at least one of areas d and e (for example, a-d , a-e, b-
d, b-e), since the switches SW 2 and SW 3 are both kept closed, the AND circuits 8b and 8d are operated by the switches SW 5 and SW 6 of the second detection mechanism B, respectively.
pertains only to Hereinafter, this state will be referred to as a horizontal cutting detection state. In the above horizontal cutting detection state, if the introduced stem culm of the route R on the most mowed side belongs to the area f, or if there is no stem culm in the route R, the switch SW 5 is opened and the switch SW 6 is closed. Then, the AND circuit 8b and the OR circuit 9a operate, and the excitation section 5
L is energized and steered to the left. In the horizontal cutting detection state, when the stem culm of path R belongs to region g, both switches SW 5 and SW 6 are closed because the third sensor S 3 is operated in the first stage, and AND circuits 8b and 8b are closed. 8d does not operate and the vehicle continues to travel straight. In the above-mentioned horizontal cutting detection state, when the stem culm of the path R belongs to the area h, the third sensor S3 is operated to the second stage, so the switch SW5 is closed and the switch SW6 is opened. circuit 8
The operating condition d is satisfied and right steering is performed. The above-mentioned operations are shown in the diagram below. However, the opening of switch SW 1 ...SW 6 is 1,
0 indicates closed, 1 indicates energization of the excitation portions 5L and 5R, and 0 indicates non-operation.

【表】 左旋回5L=SW1・SW3+SW2・SW3・SW5 右旋回5R=SW2・SW4+S ・S
SW6 つまり、第1検出機構Aは第2検出機構Bに対
して優先作動する。 以上実施例で詳述したように、本発明によれ
ば、最も未刈り側の径路に設けた第1検出機構を
用いて条刈り時の自動操向制御を行う場合の中立
不感帯を充分とつて安定した制御を行いながら、
この径路へ複数株の茎稈が同時に導入された横刈
り条件の判別を確実に行うことが可能となり、横
刈り中に制御形態が条刈り用に切換わつたり、条
刈りから横刈りに移つたときに制御形態の自動切
換えが遅れたりするような問題を減少できるに至
つた。
[Table] Left turn 5L = SW 1・SW 3 +SW 2・SW 3・SW 5 Right turn 5R=SW 2・SW 4 + SW 2SW 3
SW 6 That is, the first detection mechanism A operates preferentially over the second detection mechanism B. As described in detail in the embodiments above, according to the present invention, a sufficient neutral dead zone is provided when performing automatic steering control during row mowing using the first detection mechanism provided on the path closest to the uncut side. While performing stable control,
It is now possible to reliably identify horizontal cutting conditions when multiple stem culms are simultaneously introduced into this route, and the control mode can be switched to row cutting during horizontal cutting, or the control mode can be changed from row cutting to horizontal cutting. This has made it possible to reduce problems such as delays in automatic switching of control modes when

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る自動操向制御機構の実施の
態様を例示し、第1図はコンバインの引起し刈取
部及び走行部の概略を示す平面図、第2図は制御
回路図、第3図は従来構造の概略を示す刈取部の
平面図、第4図イ,ロは条刈り及び横刈り状態を
示す刈取部の平面図である。
The drawings illustrate embodiments of the automatic steering control mechanism according to the present invention, and FIG. 1 is a plan view schematically showing the pulling and reaping section and traveling section of the combine, FIG. 2 is a control circuit diagram, and FIG. 3 4A and 4B are plan views of the reaping section showing the outline of the conventional structure, and FIGS. 4A and 4B are plan views of the reaping section showing row mowing and horizontal mowing states.

Claims (1)

【特許請求の範囲】[Claims] 1 機体前部に並置形成された複数の植立茎稈導
入径路のうち、最も未刈り側の径路Lの両横側
に、導入茎稈との接触によつて揺動する第1、第
2センサーS1,S2を対向配置し、導入茎稈の径路
横側方への偏位を両センサーS1,S2にて夫々2段
に検出する第1検出機構Aを構成するとともに、
最も既刈り側の径路Rには導入茎稈がこの径路巾
内を三分した領域f,g,hのいづれに属するか
を検出する第2検出機構Bを設け、第1検出機構
Aにおける未刈り側第1センサーS1のみの2段目
検出にて未刈り側への操向制御を行うとともに、
既刈り側第2センサーS2のみの2段目検出にて既
刈り側への操向制御を行い、且つ第1、第2両セ
ンサーS1,S2によつて複数株の茎稈存在が検出さ
れると、第2検出機構Bの検出結果に基づいて、
径路Rの茎稈を中間領域gに導く操向制御形態に
自動的に切換わるよう構成してあることを特徴と
する刈取収穫機の自動操向制御機構。
1 Among the plurality of planted stem culm introduction paths formed side by side in the front part of the machine, first and second stems that swing due to contact with the introduced stem culms are placed on both sides of the most uncut side path L. The sensors S 1 and S 2 are arranged opposite to each other, and the first detection mechanism A is configured to detect the deviation of the introduced stem culm to the side of the path in two stages with both the sensors S 1 and S 2 , respectively.
A second detection mechanism B is provided in the path R on the most cut side to detect whether the introduced stem culm belongs to one of the areas f, g, and h obtained by dividing the width of this path into three. The second stage detection of only the first sensor S1 on the mowing side controls the steering toward the non-mowing side, and
The steering control toward the already cut side is performed by the second stage detection of only the second sensor S 2 on the already cut side, and the presence of multiple stem culms is detected by both the first and second sensors S 1 and S 2 . When detected, based on the detection result of the second detection mechanism B,
An automatic steering control mechanism for a reaping harvester, characterized in that it is configured to automatically switch to a steering control mode that guides the stem culm of a path R to an intermediate region g.
JP3984678A 1978-04-04 1978-04-04 Automatic steering control mechnism of reaper and harvester Granted JPS54135117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3984678A JPS54135117A (en) 1978-04-04 1978-04-04 Automatic steering control mechnism of reaper and harvester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3984678A JPS54135117A (en) 1978-04-04 1978-04-04 Automatic steering control mechnism of reaper and harvester

Publications (2)

Publication Number Publication Date
JPS54135117A JPS54135117A (en) 1979-10-20
JPS6117443B2 true JPS6117443B2 (en) 1986-05-07

Family

ID=12564318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3984678A Granted JPS54135117A (en) 1978-04-04 1978-04-04 Automatic steering control mechnism of reaper and harvester

Country Status (1)

Country Link
JP (1) JPS54135117A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155902A (en) * 1981-03-24 1982-09-27 Kubota Ltd Automatic steering control type crop harvester
JPS58194612U (en) * 1982-12-01 1983-12-24 株式会社クボタ Machine direction device for reaping harvester
JPS60102108A (en) * 1984-05-14 1985-06-06 三菱農機株式会社 Direction controller of reamer

Also Published As

Publication number Publication date
JPS54135117A (en) 1979-10-20

Similar Documents

Publication Publication Date Title
JPS6117443B2 (en)
JP3084171B2 (en) Steering control of reaper
JP3097087B2 (en) Mobile farm machine direction control device
JP2854501B2 (en) Steering control of reaper
JPS642564Y2 (en)
JPS6016255Y2 (en) combine
JPS63309103A (en) Automatic direction controller of mobile harvester
JPS5943122B2 (en) reaping harvester
JP2854499B2 (en) Steering control of reaper
JPH0119612Y2 (en)
JPS6018011Y2 (en) Reaping harvester with automatic steering control mechanism
JPH036761B2 (en)
JP2696324B2 (en) Automatic harvester steering system
JPS6245529Y2 (en)
JPS6245526Y2 (en)
JP2949006B2 (en) Steering control of reaper
JP2573079B2 (en) Medium cutting control device in harvester
JP3046691B2 (en) Steering control of reaper
JPH08814Y2 (en) Automatic direction control device for mobile harvester
JPS5851721B2 (en) reaping harvester
JPH0530572Y2 (en)
JPS5832565Y2 (en) reaping harvester
JPS60745Y2 (en) Automatic steering control type reaping machine
JPH06169607A (en) Steering controller of reaping harvester
JPH02312502A (en) Reaping and orientation controller in combine