JPS6117371A - Gas shielded arc welding - Google Patents
Gas shielded arc weldingInfo
- Publication number
- JPS6117371A JPS6117371A JP13650484A JP13650484A JPS6117371A JP S6117371 A JPS6117371 A JP S6117371A JP 13650484 A JP13650484 A JP 13650484A JP 13650484 A JP13650484 A JP 13650484A JP S6117371 A JPS6117371 A JP S6117371A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- welding
- arc
- molten metal
- deoxidizer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/08—Arrangements or circuits for magnetic control of the arc
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Arc Welding In General (AREA)
- Arc Welding Control (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、例えば、エチレン、LPG、LNGプラント
、LPG、LNG船、LPG、LNGタンク等の低温容
器や活性金属を用いる溶接構造物に適用するガスシール
ドアーク溶接法に関する。また、本発明は、主として五
5係Mi鋼や996M1鋼等の低温靭性が要求される低
温用鋼のガスシールドアーク溶接法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas-shielded arc welding method that is applied to low-temperature containers such as ethylene, LPG, and LNG plants, LPG and LNG ships, and LPG and LNG tanks, as well as welded structures that use active metals. . The present invention also relates to a gas-shielded arc welding method for low-temperature steels that require low-temperature toughness, such as mainly 55th grade Mi steel and 996M1 steel.
低温靭性の要求されるA 5 S Ni鋼や99611
1鋼等の低温用鋼共重溶接としては、T工G溶接、MX
G溶接、プラズマ溶接等のガスシールドアーク溶接法が
従来よシ用いられている。A5S Ni steel and 99611 that require low-temperature toughness
For low-temperature steel co-heavy welding such as 1 steel, T-work G welding, MX
Gas shielded arc welding methods such as G welding and plasma welding are conventionally used.
この内、従来のT工G溶接法金第5図に示す。Among these, the conventional T welding method and G welding method are shown in FIG.
この図において、1が母材鋼板、2が溶接金属、3が給
電チップ、4がタングステン電極、5がシールドノズル
、6がシールドガス(Ar等の不活性ガス)、7が溶加
ワイヤ、8が溶融金属である。In this figure, 1 is the base steel plate, 2 is the weld metal, 3 is the power supply tip, 4 is the tungsten electrode, 5 is the shield nozzle, 6 is the shield gas (inert gas such as Ar), 7 is the filler wire, 8 is the molten metal.
また、従来のM工G溶接法を第6図に示す。Furthermore, the conventional M-G welding method is shown in FIG.
この図において、1が母材鋼板、2が溶接金属、3が給
電チップ、7′が溶接ワイヤ、5がシールドノズル、6
がシールドガス(Ar等不活性ガス)、8が溶融金属で
ある。In this figure, 1 is the base steel plate, 2 is the welding metal, 3 is the power supply tip, 7' is the welding wire, 5 is the shield nozzle, and 6
is a shielding gas (inert gas such as Ar), and 8 is a molten metal.
上記の従来め’L’lG溶接法及びMiG溶接法などの
ガスシールドアーク溶接法では、溶接時に風等によシ−
ルドガスが生じ、大気中の酸素を巻き込み溶接金属中の
酸素量が増加し、その結果、溶接金属の靭性低下の原因
となる欠点を有している。In gas-shielded arc welding methods such as the conventional L'lG welding method and MiG welding method described above, there is no need for shielding from wind etc. during welding.
This method has the drawback that it generates hydrogen gas, entrains oxygen from the atmosphere, and increases the amount of oxygen in the weld metal, resulting in a decrease in the toughness of the weld metal.
そこで、要求性能の厳しい溶接構造物では、酸素混入に
よる影響が少ない高1ti合金等の溶接材料を使用して
おシ、その結果、材料費の大巾な上昇itねいている。Therefore, in welded structures with strict performance requirements, welding materials such as high 1ti alloys, which are less affected by oxygen contamination, are used, resulting in a significant increase in material costs.
ところで、今日、xru、a、Lla、エチレン等を取
扱うプラント、船舶、タンク等の低温靭性が要求される
溶接構造物の需要が多く、低コストで高靭性が安定して
得られる高品質溶接法が現在強く要求されている。By the way, today there is a great demand for welded structures that require low-temperature toughness, such as plants, ships, and tanks that handle XRU, A, LLA, ethylene, etc., and high-quality welding methods that can stably obtain high toughness at low cost are needed. is currently in strong demand.
本発明は、上記要求にこたえる低温用鋼等のガスシール
ドアーク溶接方法を提供することを目的とする。詳細に
は、本発明は、溶融金属中に酸素の吸収を防止すると共
に、溶接ワイヤや母材鋼板中の酸素に起因する溶接金属
中の酸素を強制的に除去することが可能なガスシールド
アーク溶接方法t−徒供することを目的上する。An object of the present invention is to provide a gas-shielded arc welding method for low-temperature steel, etc. that meets the above requirements. Specifically, the present invention provides a gas-shielded arc that can prevent the absorption of oxygen into the molten metal and forcibly remove oxygen in the weld metal caused by oxygen in the welding wire and base steel plate. Welding method t - For the purpose of practicing.
さらに、本発明は、低温靭性が要求される低温用鋼など
のガスシールドアーク溶接法において、風等によシ−ル
ド不良が生じた時、これをセンサーで検知し、シールド
ガス流量、脱酸剤の添加量などを自動制御するガスシー
ルドアーク溶接法を提供すること金目的とする。Furthermore, in the gas-shielded arc welding method for low-temperature steel, etc., which requires low-temperature toughness, when a shield failure occurs due to wind etc., this invention is detected by a sensor, and the shielding gas flow rate and deoxidation The objective is to provide a gas-shielded arc welding method that automatically controls the amount of additive added.
そして、本発明は、上記目的を達成する手段として、二
重シールドガス方式を採用し、脱酸剤粉末を添加すると
共に溶融金属を磁気攪拌しながら溶接し、この溶接部の
アーク光の分光分析結果に基づいて、上記シールドガス
流量、脱酸剤粉末添加量及び磁気攪拌を自動制御する点
にある。すなわち、本発明は、不活性ガスからなる一次
シールドガスの外側に還元性ガスからなる二次シールド
ガスを供給し、脱酸剤粉末を添加すると共に溶融金属を
磁気攪拌しな、がら溶接し、この溶接部のアーク光を分
光分析し、この分光分析結果に基づいて上記一次及び二
次シールドガス流量の制御、脱酸剤粉末添加量の制御及
び磁気攪拌制御を行うことを特徴とするガスシールドア
ーク溶接法である。As a means to achieve the above object, the present invention adopts a double shielding gas method, adds deoxidizer powder and welds the molten metal while magnetically stirring it, and spectroscopically analyzes the arc light of this welded part. Based on the results, the flow rate of the shielding gas, the amount of deoxidizer powder added, and the magnetic stirring are automatically controlled. That is, the present invention supplies a secondary shielding gas consisting of a reducing gas to the outside of the primary shielding gas consisting of an inert gas, adds a deoxidizer powder, and performs welding while magnetically stirring the molten metal. A gas shield characterized in that the arc light of this welding part is spectroscopically analyzed, and the flow rate of the primary and secondary shielding gases, the amount of deoxidizer powder added, and the magnetic stirring are controlled based on the spectroscopic analysis results. This is an arc welding method.
本発明において、−次シールドガスとして使用する不活
性ガスとしては、ArやHe等であり、また、二次シー
ルドガスとして使用する還元性ガスとしては、水素(H
2”)が好適である。また、脱酸剤粉末とシテは、AL
、Ti、’ Zr、B、V。In the present invention, the inert gas used as the secondary shielding gas is Ar, He, etc., and the reducing gas used as the secondary shielding gas is hydrogen (H
2”) is suitable.Also, the deoxidizer powder and shite are
, Ti,' Zr, B, V.
Si、Mn等を使用するものである。It uses Si, Mn, etc.
また、本発明では、溶融金属を磁気翫拌しながら溶接す
るものであるが、これは、溶融金属中の脱酸反応を促進
するためであり、具体的には、トーチ先端に設けた励磁
コイルに低周波交流電流を流して、その磁場と溶接電流
によって生じるローレンツ力によシ溶融金属を1〜20
Tlz で攪拌するものである口
さらに、本発明では、風等によりシールド不良が生じた
時、これをアーク光センサーで検知し、シールドガス流
量の増大、脱酸剤粉末の添加量の増加及び溶融金属の磁
気攪拌の増進を自動的に行わせしめるものである。In addition, in the present invention, molten metal is welded while being magnetically stirred, but this is to promote the deoxidation reaction in the molten metal, and specifically, the excitation coil provided at the tip of the torch A low-frequency alternating current is passed through the molten metal, and the molten metal is heated by the Lorentz force generated by the magnetic field and welding current.
In addition, in the present invention, when a shield failure occurs due to wind, etc., this is detected by an arc light sensor, and the shielding gas flow rate is increased, the amount of deoxidizer powder added is increased, and melting is performed. This automatically increases the magnetic stirring of metal.
以下本発明の実施例を第1図に基づいて説明する。第1
図は本発明をMIG溶接に適用した場合を説明するため
の図であるが、第1図中の符号1〜B、5,6,8fi
第6図に基づ゛いて説明した前記従来のM工G溶接法と
同一部分を示し、同一作用をするものであるから、ここ
では、この共通部分の説明を省略し、異なるところのみ
を説明する。Embodiments of the present invention will be described below with reference to FIG. 1st
The figure is a diagram for explaining the case where the present invention is applied to MIG welding.
Since this method shows the same parts and has the same function as the conventional M-G welding method explained based on FIG. do.
第1図Ki?いて、9は導磁体、10は二次シールドノ
ズル、11[二次シールドガス(還元性ガスH2又は不
活性ガス)、12は励磁コイル、13#i低周波交流励
磁電源、14ij集光レンズ、15ij光フアイバー、
16は分光分析式シールド状況そニタ・制御装置、17
は弁駆動装置、18Fi粉末添加量制御弁、19は弁駆
動装置、20は二次シールドガス流量制御弁、21は脱
酸剤粉末、22はアーク、23はアーク光、24は溶接
電源、Pは脱酸剤粉末21の輸送ノ(イブであって、こ
の輸送バイブ21の先端は、溶加ワイヤ7の先端部に対
向して開口しているものである。Figure 1 Ki? 9 is a magnetic conductor, 10 is a secondary shield nozzle, 11 is a secondary shielding gas (reducing gas H2 or inert gas), 12 is an excitation coil, 13#i low frequency AC excitation power supply, 14ij condenser lens, 15ij optical fiber,
16 is a spectroscopic shield status monitor/control device, 17
is a valve drive device, 18Fi powder addition amount control valve, 19 is a valve drive device, 20 is a secondary shield gas flow rate control valve, 21 is a deoxidizer powder, 22 is an arc, 23 is an arc light, 24 is a welding power source, P is a conveyor tube for transporting the deoxidizer powder 21, and the tip of the conveyor vibrator 21 is open to face the tip of the filler wire 7.
第1図による溶接法の作用を説明すると、風等の外乱に
よシ大気中の酸素がシールドガス中に入るとアーク光2
3中には酸素や空気中の窒素に起因した特有の波長の光
が増加する。これをアーク22の近傍に設けた集光レン
ズ14によシ集め、光ファイバー15を通して分光分析
式シールド状況モニター制御装置16に導く。To explain the action of the welding method shown in Figure 1, when oxygen in the atmosphere enters the shielding gas due to disturbances such as wind, arc light 2
3, light with a unique wavelength caused by oxygen and nitrogen in the air increases. This is collected by a condensing lens 14 provided near the arc 22 and guided to a spectroscopic shield condition monitor control device 16 through an optical fiber 15.
第2図にアーク光の分光分析結果の一例を示す。これよ
)第3図に示す溶接金属2中の酸素量と特有波長のスペ
クトル強度の関係よシ溶接金属2中の酸素量を推定する
。Figure 2 shows an example of the results of spectroscopic analysis of arc light. The amount of oxygen in the weld metal 2 is estimated based on the relationship between the amount of oxygen in the weld metal 2 and the spectral intensity of the specific wavelength shown in FIG.
次に前もって入力しておいた酸素量低減対策、二次シー
ルドガス流量の増大や脱酸剤粉末の添加信号が出力され
、各弁駆動装置17.19を通じて粉末添加量制御弁1
8や二次シールドガス流量制御弁20が開かれ、励磁コ
イル124通じて磁気攪拌も行われる。Next, the oxygen amount reduction measures input in advance, the increase in the secondary shielding gas flow rate, and the addition signal of deoxidizer powder are outputted, and the powder addition amount control valve 1 is outputted through each valve drive device 17.19.
8 and the secondary shield gas flow rate control valve 20 are opened, and magnetic stirring is also performed through the excitation coil 124.
これによシ酸素のシールドガス中への混入防止と溶融金
属中へ吸収した酸素の脱酸が効率的に自動的に行われる
。このように、本発明はアーク光によりシールド状況を
モニターし、シールド不良を生じた時、−次シールドノ
ズルの外側に設けた二次シールドノズルより還元性ガス
H3や不活性ガスを増量し、酸素の混入を防止すると共
に溶融金属中に脱酸剤を添加、攪拌し、吸収した酸素を
除去することを自動的に行うことができるものである。This effectively and automatically prevents oxygen from entering the shielding gas and deoxidizes the oxygen absorbed into the molten metal. In this way, the present invention monitors the shielding status using arc light, and when a shielding failure occurs, increases the amount of reducing gas H3 and inert gas from the secondary shielding nozzle provided outside the secondary shielding nozzle, and removes oxygen. It is possible to automatically add a deoxidizing agent to the molten metal, stir it, and remove the absorbed oxygen.
溶融金属8中に酸素が混入してくると、この溶接金属の
靭性が低下すること、l!:なるが、この関係を第4図
に示す。この図から明らかなように、溶接金属中の酸素
量の低減と共罠吸収エネルギーが増大し、靭性が向上す
る。When oxygen gets mixed into the molten metal 8, the toughness of this weld metal decreases, l! : This relationship is shown in Figure 4. As is clear from this figure, the amount of oxygen in the weld metal is reduced and the co-trap absorption energy is increased, resulting in improved toughness.
以上本発明の詳細な説明したが、さらに、本発明の具体
例をあげて、本発明をより詳細に説明する。Although the present invention has been described in detail above, the present invention will be explained in more detail by giving specific examples of the present invention.
9%N1鋼の共金M工G溶接に本発明を適用した具体例
を、従来法、比較例1.2と対比させて、次の表に示す
。A specific example in which the present invention is applied to 9%N1 steel alloy M/G welding is shown in the following table in comparison with the conventional method and Comparative Example 1.2.
上記表から明らかなように、従来法では、溶接金属中の
酸素量が500 ppmで、靭性は規格値(vlc−1
96℃≧xskgf−m)?下まわる2kB−mである
が、本発明方法でl′i30 ppm、 20kl/f
−mと良好な結果が得られている。なお、二次シールド
を行うけれども、脱酸剤を添加せず、かつ、磁気攪拌も
しない溶接法(比較例1)では、溶接金属中の酸素量が
50 ppmで、靭−性は15kl?f−mであシ、ま
た、脱酸剤を添加すると共に磁気攪拌を行うけれども二
次シールドを行わない場合(比較例2)も、50ppm
、15に9 f −mでらつfco
〔本発明の効果〕
本発明は、以上詳記したように、二重シールドガス方式
を採用し、脱酸剤粉末を添加すると共に溶融金属を磁気
攪拌しながら溶接し、この溶接部のアーク光の分光分析
結果に基づいて、上記シールドガス流量、脱酸剤粉末添
加量及び磁気攪拌を自動制御するものであるから、溶接
時に於ける大気中の酸素の混入を自動的に防止でき、か
つ、溶融金属中の酸素も自動的に強制除去できる顕著な
効果が生ずるものである。As is clear from the table above, in the conventional method, the oxygen content in the weld metal is 500 ppm, and the toughness is below the standard value (vlc-1
96℃≧xskgf-m)? However, with the method of the present invention, l'i is 30 ppm, 20 kl/f.
-m, good results were obtained. In addition, in the welding method (Comparative Example 1) in which secondary shielding is performed but no deoxidizing agent is added and no magnetic stirring is performed, the amount of oxygen in the weld metal is 50 ppm and the toughness is 15 kl? In addition, when a deoxidizing agent is added and magnetic stirring is performed but no secondary shielding is performed (Comparative Example 2), 50 ppm
, 15 to 9 f-m fco [Effects of the present invention] As detailed above, the present invention adopts a double shield gas system, adds deoxidizer powder, and magnetically stirs the molten metal. The method automatically controls the above-mentioned shielding gas flow rate, amount of deoxidizing agent powder added, and magnetic stirring based on the spectroscopic analysis results of the arc light in the welding area, so that the oxygen in the atmosphere during welding can be controlled automatically. This has the remarkable effect of automatically preventing the contamination of molten metal and automatically forcibly removing oxygen from the molten metal.
第1図は本発明をM工G溶接に適用した場合を説明する
ための図である。第2図は本発明によるアーク光の分光
分析結果の一例を示し、第3図は溶接金属中の酸素量と
特有波長のスペクトル強度の関係図であシ、第4図は溶
接金属中の酸素量と吸収エネルギー(靭性)との関係図
である。第5図は従来のT工G溶接、法を、第6図は従
来のM工G溶接法を夫々説明するための図である。
1・・・・母材鋼板
2・・・・溶接金属
511@・嗜給電チップ
4・elI拳タングステン電極
511−・・シールドノズル
6@中・・シールドガス
7・−・・溶加ワイヤ
7′壽90溶接ワイヤ
8・・・・溶融金属
9参・・・導磁体
10iIII*lに次シールドノズル
11110111+二次シールドカス
12−・1111励磁コイル
15・・令・低周波交流励磁電源
14・116・集光レンズ
15−#・・光7アイパー
16・拳番書分光分析式シールド状況モニタ・制御装置
17・・−9弁駆動装置
180e・粉末添加量制御弁
19・−・・弁駆動装置
20・・・・二次シールドガス流量制御弁21−・・・
脱酸剤粉末
22 e@II@アーク
25mammアーク光
24・・・・溶接電源
p e* ea輸送パイプ
復代理人 内 1) 明
復代理人 萩 原 亮 −
第2図
第3図
あるシ皮!(nm)のスXクト」し5気度第4図
溶接金属中の02量(PPm)FIG. 1 is a diagram for explaining the case where the present invention is applied to M/G welding. Figure 2 shows an example of the results of spectroscopic analysis of arc light according to the present invention, Figure 3 shows the relationship between the amount of oxygen in the weld metal and the spectral intensity of a specific wavelength, and Figure 4 shows the relationship between the amount of oxygen in the weld metal and the spectral intensity of a specific wavelength. FIG. 3 is a diagram showing the relationship between the amount and absorbed energy (toughness). FIG. 5 is a diagram for explaining a conventional T-type G welding method, and FIG. 6 is a diagram for explaining a conventional M-type G welding method. 1...Base material steel plate 2...Weld metal 511@-Feeding tip 4-ElI fist tungsten electrode 511--Shield nozzle 6@Medium...Shield gas 7--Filler wire 7' 90 Welding wire 8... Molten metal 9... Magnetic conductor 10iIII*l Next shield nozzle 11110111 + Secondary shield dregs 12-・1111 Excitation coil 15... Age・Low frequency AC excitation power source 14・116・Condensing lens 15-#... Light 7 Eyeper 16, Hand number spectroscopic analysis type shield status monitor/control device 17...-9 Valve drive device 180e, Powder addition amount control valve 19... Valve drive device 20. ...Secondary shield gas flow control valve 21-...
Deoxidizing agent powder 22 e @ II @ arc 25 mamm arc light 24... Welding power source p e * ea Transport pipe sub-agent 1) Meifuku agent Ryo Hagiwara - Figure 2 Figure 3 Some skin! 02 amount in weld metal (PPm)
Claims (1)
スからなる二次シールドガスを供給し、脱酸剤粉末を添
加すると共に溶融金属を磁気撹拌しながら溶接し、この
溶接部のアーク光を分光分析し、この分光分析結果に基
づいて上記一次及び二次シールドガス流量の制御、脱酸
剤粉末添加量の制御及び磁気攪拌制御を行うことを特徴
とするガスシールドアーク溶接法。A secondary shielding gas consisting of a reducing gas is supplied to the outside of the primary shielding gas consisting of an inert gas, deoxidizer powder is added, and the molten metal is welded while being magnetically stirred, and the arc light from this welded part is analyzed by spectroscopy. A gas-shielded arc welding method characterized in that the flow rates of the primary and secondary shielding gases, the amount of deoxidizer powder added, and the magnetic stirring are controlled based on the spectroscopic analysis results.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13650484A JPS6117371A (en) | 1984-07-03 | 1984-07-03 | Gas shielded arc welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13650484A JPS6117371A (en) | 1984-07-03 | 1984-07-03 | Gas shielded arc welding |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6117371A true JPS6117371A (en) | 1986-01-25 |
Family
ID=15176706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13650484A Pending JPS6117371A (en) | 1984-07-03 | 1984-07-03 | Gas shielded arc welding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6117371A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1459830A1 (en) * | 2003-03-19 | 2004-09-22 | Nippon Sanso Corporation | Tig welding equipment and tig welding method |
EP1847828A1 (en) * | 2006-04-20 | 2007-10-24 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Use of tunable diode lasers for controlling a brazing process |
US7915560B2 (en) | 2003-03-19 | 2011-03-29 | Taiyo Nippon Sanso Corporation | TIG welding equipment and TIG welding methods |
WO2024194409A1 (en) * | 2023-03-22 | 2024-09-26 | Cranfield University | A welding sensing system, and a welding sensing method |
-
1984
- 1984-07-03 JP JP13650484A patent/JPS6117371A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1459830A1 (en) * | 2003-03-19 | 2004-09-22 | Nippon Sanso Corporation | Tig welding equipment and tig welding method |
US7915560B2 (en) | 2003-03-19 | 2011-03-29 | Taiyo Nippon Sanso Corporation | TIG welding equipment and TIG welding methods |
EP1847828A1 (en) * | 2006-04-20 | 2007-10-24 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Use of tunable diode lasers for controlling a brazing process |
WO2024194409A1 (en) * | 2023-03-22 | 2024-09-26 | Cranfield University | A welding sensing system, and a welding sensing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8704135B2 (en) | Synergistic welding system | |
US5473139A (en) | Pulsed arc welding apparatus having a consumable electrode wire | |
US9821401B2 (en) | High toughness weld metals with superior ductile tearing resistance | |
CA2535145C (en) | Method of ac welding | |
RU2353483C2 (en) | Gasless method and system for circular seam welding for high-strength applications | |
RU2600466C2 (en) | Root pass welding solution | |
JPH04220175A (en) | Gasmetal-arc welding and shielding gas therefore | |
CN105189026B (en) | System and method for low manganese welding alloy | |
WO2008150274A1 (en) | Gas less process and system including liquefied gas storage tanks | |
JPH11188483A (en) | Method and device for modularized spray mig welding | |
JPH03166000A (en) | Metal core electrode | |
EP3444063A2 (en) | Electrodes for forming austenitic and duplex steel weld metal | |
EP1779957B1 (en) | Synergistic welding system | |
Prajapati et al. | Investigation on three different weldments on performance of SA516 Gr70 steel material | |
JPS6117371A (en) | Gas shielded arc welding | |
KR101910216B1 (en) | Flux-cored wire for welding steel having a high nickel content | |
US2988627A (en) | Metal arc welding | |
US6884963B1 (en) | Apparatus and method for welding duplex stainless steel | |
JPS60170580A (en) | Deoxidation welding method | |
JPS6117370A (en) | Gas shielded arc welding | |
JPH03234368A (en) | Root running method for narrow groove welding | |
CA2595087C (en) | An improved method of welding austenitic steel pipes | |
RU2797319C1 (en) | Method for smelting corrosion-resistant steel in dc electric arc steelmaking furnace with hollow graphite electrode | |
White | Investigation of Low Oxygen HSLA Steel Weld Metal | |
JPH11197884A (en) | Dual electrode electrogas arc welding method |