JPS61173313A - System of presuming cause of trouble of plant - Google Patents

System of presuming cause of trouble of plant

Info

Publication number
JPS61173313A
JPS61173313A JP60012393A JP1239385A JPS61173313A JP S61173313 A JPS61173313 A JP S61173313A JP 60012393 A JP60012393 A JP 60012393A JP 1239385 A JP1239385 A JP 1239385A JP S61173313 A JPS61173313 A JP S61173313A
Authority
JP
Japan
Prior art keywords
abnormality
signal
failure
time
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60012393A
Other languages
Japanese (ja)
Inventor
Satoshi Miyazaki
聡 宮崎
Masazumi Furukawa
古河 雅澄
Hiroyuki Yagi
郭之 八木
Fumio Murata
村田 扶美男
Shigeo Hashimoto
茂男 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60012393A priority Critical patent/JPS61173313A/en
Publication of JPS61173313A publication Critical patent/JPS61173313A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0275Fault isolation and identification, e.g. classify fault; estimate cause or root of failure
    • G05B23/0278Qualitative, e.g. if-then rules; Fuzzy logic; Lookup tables; Symptomatic search; FMEA

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

PURPOSE:To presume the cause of troubles of machines simply by comparing an abnormality pattern of a sensor indicated actually with a presumed abnormality pattern by using the causal relation between time lapsed from the first detection of abnormality and the troubles. CONSTITUTION:An abnormality detecting device 107 compares a reference signal stored to judge the normalcy and abnormality of a signal with a detection signal, and outputs a signal of normalcy or abnormality of the detection signal 105 to causes of trouble presuming device 109. The device 109 checks the signal 108 at a fixed time interval, and when the signal changed from normalcy to abnormality, stores the time. Further, the device 109 finds out the time required from the first detection of abnormality in other sensors for each machine based on the signal 113, and stores in the inside. When an operation command signal 111 is inputted from an operator's console 110, the device 109 presumes the causes of troubles based on time of operation command responding to the operation command signal 111 and the time required from the signal 108 to the detection of abnormality and displays 115 a signal 114.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子カプラント、化学プラントなど複数個の
機器から構成される系において、単一故障(故障原因が
1個)が発生した場合、故障原因となっている機器を、
限られた数のセンサの情報から推定するプラントの故障
原因推定方式に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention provides a method for detecting a failure when a single failure (one cause of failure) occurs in a system consisting of a plurality of devices such as an atomic couplant or a chemical plant. The device causing the problem,
This paper relates to a method for estimating plant failure causes based on information from a limited number of sensors.

〔発明の背景〕[Background of the invention]

従来の故障原因推定方式には、観測されたセンサの異常
パターンがどの故障原因による異常パターンであるかを
前もって作成された異常パターンと故障原因を対応させ
た決定表から捜し出す「リスト処理による方法」と異常
の伝搬経路をたどるr因果関係にもとづく方法」があっ
た(たとえば、大島栄次:シミュレーションと異常診断
、電気学会雑誌、99巻3号(昭54 3)PP、19
5〜199を参照のこと)、リスト処理による方法は、
演算が簡単のため高速処理が可能であるが、「同じ異常
原因でもそれを発見する時間の差違によって全く異なる
パターンを観察することになるので、非常に多数のパタ
ーンを用意しなければならないj (上記文献より引用
)という問題があったため、適用対象の大きさに限界が
あった。一方、因果関係にもとづく方法は、事前にすべ
てのパターンを用意する必要はないが、演算が複雑にな
るため処理時間が長くなるという問題があった。
Conventional failure cause estimation methods include a ``list processing method'' in which the observed abnormality pattern of a sensor is determined by which failure cause it is based on a decision table created in advance that associates abnormality patterns with failure causes. There was a method based on causality that traces the propagation path of anomalies (for example, Eiji Oshima: Simulation and Anomaly Diagnosis, Journal of the Institute of Electrical Engineers of Japan, Vol. 99, No. 3 (1973), PP, 19
5 to 199), the list processing method is
Although high-speed processing is possible because the calculations are simple, ``even if the cause of an abnormality is the same, completely different patterns will be observed depending on the time it takes to discover it, so a very large number of patterns must be prepared ( (quoted from the above literature), which limited the scope of application.On the other hand, methods based on causal relationships do not require all patterns to be prepared in advance, but the calculations become complicated. There was a problem that the processing time became long.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来技術の問題点を解決するため
に、演算が因果関係にもとづく方法より簡単であり、か
つリスト処理による方法のように事前にすべての異常パ
ターンを用意する必要がないため、従来方法より大きな
対象に適用可能なプラントの故障原因推定方式を提供す
ることにある。
An object of the present invention is to solve the above-mentioned problems of the prior art, in which calculations are simpler than methods based on causal relationships, and there is no need to prepare all abnormal patterns in advance as in methods based on list processing. Therefore, it is an object of the present invention to provide a plant failure cause estimation method that can be applied to a larger target than conventional methods.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明は、異常が検出され
ると、最初の異常検出からの経過時間と故障の因果関係
を用いて、各機器について故障原因であると仮定した場
合に現在示すであろうと予想されるセンサの異常パター
ンを求める0次に現在実際に示されているセンサの異常
パターンと予想した異常パターンとを照合し、一致すれ
ばその機器を故障原因と推定する点に特徴がある。
In order to achieve the above object, the present invention, when an abnormality is detected, uses the elapsed time since the first abnormality detection and the causal relationship of the failure, and currently indicates the cause of the failure for each device. Find the predicted abnormality pattern of the sensor Next, compare the abnormality pattern of the sensor currently displayed with the predicted abnormality pattern, and if they match, the device is assumed to be the cause of the failure. There is.

本方式では異常検出後に、経過時間に対応した異常パタ
ーンを生成するため従来のリスト処理による方法のよう
に事前にすべての異常パターンを用意しなくともよい。
In this method, after an abnormality is detected, an abnormal pattern corresponding to the elapsed time is generated, so there is no need to prepare all abnormal patterns in advance, unlike the conventional list processing method.

また、生成した異常パターンと現在示されている異常パ
ターンを照合するという演算処理は従来の因果関係にも
とづく方法の演算処理より簡単になる。
Further, the calculation process of comparing the generated abnormal pattern with the currently displayed abnormal pattern is simpler than the calculation process of conventional methods based on causal relationships.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図から第11図により詳
細に説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to FIGS. 1 to 11.

第1図は本発明によるプラントの故障原因推定方式を実
現するプラント系の一実施例の構成を示すものである。
FIG. 1 shows the configuration of an embodiment of a plant system that implements the plant failure cause estimation method according to the present invention.

第1図において、プラント101は、複数個の構成機器
102と、その中のいくつかの機器の状態を検出するた
めのセンサ103とからなる。これらのセンサ103は
各構成機器102の動作状態、たとえば、流量、温度2
周波数などの信号104を検出し、検出信号105を各
センサ103に対応した異常検出器106からなる異常
検出装置107に出力する。異常検出装置107には、
あらかじめ、各信号が正常か異常かを判定する基準信号
が記憶されており、基準信号と検出信号105を比較し
、各検出信号105が正常か異常かの信号108を故障
原因推定装置109に出力する。故障原因推定装置10
9では、一定の時間毎に信号108をチェックし、正常
信号から異常信号に変化した場合にはその時刻を記憶す
る。また、あらかじめ初期データ入力装置112から2
機器間の故障波及関係(波及方向、最大波及時間。
In FIG. 1, a plant 101 includes a plurality of component devices 102 and sensors 103 for detecting the status of some of the components. These sensors 103 monitor the operating status of each component 102, such as flow rate and temperature 2.
A signal 104 such as a frequency is detected, and a detection signal 105 is output to an abnormality detection device 107 comprising an abnormality detector 106 corresponding to each sensor 103. The abnormality detection device 107 includes
A reference signal for determining whether each signal is normal or abnormal is stored in advance, the reference signal is compared with the detection signal 105, and a signal 108 indicating whether each detection signal 105 is normal or abnormal is output to the failure cause estimation device 109. do. Failure cause estimation device 10
9, the signal 108 is checked at regular intervals, and if the signal changes from a normal signal to an abnormal signal, the time is stored. In addition, from the initial data input device 112 to the 2
Failure propagation relationship between devices (spread direction, maximum propagation time).

最小波及時間)に対応した信号113を故障原因推定装
置109に入力しておき、故障原因推定袋[109で、
信号113にもとづき、各機器について真の故障原因で
ある場合の最初の異常検出から他のセンサでの異常検出
までの所要時間を求め、内部に記憶しておく。オペレー
タコンソール110から演算指示信号111が入力され
ると、故障原因推定装置109では、演算指示信号11
1に応じた演算指示時刻と、信号108と異常を最初に
検出した時刻と、あらかじめ内部に記憶した異常検出ま
での所要時間とにもとづいて、故障原因の推定を行って
その信号114を表示装置115に出力表示する。
The signal 113 corresponding to the minimum propagation time) is input into the failure cause estimation device 109, and the failure cause estimation bag [109,
Based on the signal 113, the time required for each device from the first abnormality detection in the case of the true cause of failure to the abnormality detection by other sensors is determined and stored internally. When the calculation instruction signal 111 is input from the operator console 110, the failure cause estimation device 109 inputs the calculation instruction signal 11.
1, the time when the signal 108 and the abnormality were first detected, and the time required to detect the abnormality stored internally in advance, the cause of the failure is estimated and the signal 114 is displayed on the display device. The output is displayed on 115.

なお、初期データは一度入力しておけば、データの変更
を行わない限り、再入力の必要はない。
Note that once the initial data is entered, there is no need to re-enter it unless the data is changed.

第2図は、第1図の故障原因推定装置[1109での処
理手順の一例を示すフローチャートである。
FIG. 2 is a flowchart showing an example of the processing procedure in the failure cause estimation device [1109 of FIG. 1.

以下1本発明の実施例を、プラント構成機器の故障波及
関係が第3図のネットワークで表わされるプラントへの
適用例を用いて説明する。
An embodiment of the present invention will be described below using an example of application to a plant in which failure propagation relationships among plant component equipment are represented by a network in FIG.

第3図のネットワークで節点はプラント構成機器を表わ
し、矢印の向きは故障の影響が直接波及する方向を表お
す、また、四角で囲んだ節点はセンサによって、その機
器が異常かどうかを判定できる機器を表わす。
In the network shown in Figure 3, the nodes represent plant component equipment, and the direction of the arrow represents the direction in which the effects of a failure will directly spread, and the nodes surrounded by squares can be used to determine whether or not the equipment is abnormal. Represents equipment.

このような複数個(第3図では19個)の機器において
、2機器間で故障の影響が直接波及する場合には、波及
方向と最大波及時間、最小波及時間を与え、この関係′
を第4図、第5図に示すように行列表現する。たとえば
、行列Aの1行2列目の100は1機器1から機器2へ
故障の影響が直接波及し、そのときに最大100秒経過
することを示す。行列Bの1行2列目の90は、少なく
とも90秒経過することを示す。したがって、機器1か
ら機器2への故障影響の直接波及時間は90秒から10
0秒の間であることを意味する。空白部分は直接波及が
ないことを意味し、演算上ψとして扱う。
When the influence of a failure directly spreads between two devices in such a plurality of devices (19 in Fig. 3), the direction of the spread, the maximum propagation time, and the minimum propagation time are given, and this relationship '
is expressed in a matrix as shown in FIGS. 4 and 5. For example, 100 in the first row and second column of matrix A indicates that the influence of a failure directly spreads from device 1 to device 2, and a maximum of 100 seconds elapses at that time. 90 in the first row and second column of matrix B indicates that at least 90 seconds have elapsed. Therefore, the direct propagation time of the failure effect from device 1 to device 2 is from 90 seconds to 10 seconds.
It means that it is for 0 seconds. A blank space means that there is no direct influence, and is treated as ψ in calculations.

第1図の初期データ入力装置112から故障原因推定装
M109へ入力する最大故障波及時間は第4図の行列A
の形で、最小故障波及時間は第5図の行列Bの形で入力
する。
The maximum failure propagation time input from the initial data input device 112 in FIG. 1 to the failure cause estimation device M109 is the matrix A in FIG.
The minimum failure propagation time is input in the form of matrix B in FIG.

まず、第2図のステップ116により、最大故障波及時
間行列を計算する。第4図の最大隣接故障波及時間行列
Aを用いて、すべての機器からセンサまでの最短故障波
及時間を求める。これは、既知の最短距離と最短路を求
める解法(伊理正夫・古体 隆:ネットワーク理論2日
科技連出版社(1976) 、 p p 、 34−3
7 、を参照のこと)により求めることができる。得ら
れた波及時間を行列で表わすと第6図のようになる。た
とえば、行列Cの1行1列目の100は、機器1から機
器2へ故障の影響が波及するのに要する時間は高々10
0秒であることを示す。空白部分は波及しない可能性が
あることを意味し、演算上はωとして扱う。
First, in step 116 of FIG. 2, the maximum fault propagation time matrix is calculated. Using the maximum adjacent fault propagation time matrix A in FIG. 4, find the shortest fault propagation time from all devices to the sensor. This is a solution method for finding the known shortest distance and shortest path (Masao Iri, Takashi Furuta: Network Theory 2nd Science and Technology Union Publishing (1976), pp, 34-3
7). The obtained propagation time is expressed in a matrix as shown in Fig. 6. For example, 100 in the first row and first column of matrix C means that the time required for the influence of a failure to spread from device 1 to device 2 is at most 10.
Indicates that it is 0 seconds. A blank part means that there is a possibility that there will be no ripple effect, and it is treated as ω in calculations.

次に、第2図のステップ117により最小故障波及時間
行列を計算する。第5図の最小隣接故障波及時間行列B
を用いて、すべての機器からセンサまでの最短故障波及
時間をステップ116と同様に求める。得られた波及時
間を行列で表わすと第7図のようになる。たとえば、行
列りの1行1列目の90は、機器1から機器2へ故障の
影響が波及する場合には少なくとも90秒かかることを
示す。空白部分は波及しないことを意味し、演算上はω
として扱う。
Next, a minimum failure propagation time matrix is calculated in step 117 of FIG. Minimum adjacent fault propagation time matrix B in Figure 5
Similarly to step 116, find the shortest failure propagation time from all devices to the sensor using . The obtained propagation time is expressed in a matrix as shown in Fig. 7. For example, 90 in the first row and first column of the matrix indicates that it takes at least 90 seconds for the influence of a failure to spread from device 1 to device 2. The blank part means that there is no ripple effect, and in calculation, ω
treated as

次に、第2図のステップ118により、最大異常検出時
間行列を計算する。第7図の行列りの各行の要素につい
て最小値を求める6たとえば、1行目については最小値
は90となり、これは機器1で異常が発生した場合に最
初に異常が検出されるまでの最小遅延時間を意味する0
次に、第6図の行列Cの各行の要素から行列りの対応ず
条行の最小値を減する。得られた結果を行列で表わすと
第8図のようにな4.たとえば、1行1列目etaにツ
いては−e12==C,、1lin (diJ) =1
00−90=10となり、機器1で異常が発生し、最初
に異常検出されてから、センサ2で異常検出されるまで
高々10秒であることを意味する。空和部分は、異常が
発生しても異常検出できない可能性があることを意味し
、演算上はωとして扱う。
Next, in step 118 of FIG. 2, a maximum abnormality detection time matrix is calculated. Find the minimum value for each row element of the matrix in Figure 7.6 For example, the minimum value for the first row is 90, which is the minimum value until the first abnormality is detected when an abnormality occurs in device 1. 0 meaning delay time
Next, the minimum value of the uncorresponding rows of the matrix is subtracted from the elements of each row of matrix C in FIG. The obtained results are expressed in a matrix as shown in Figure 8.4. For example, for eta in the 1st row and 1st column, -e12==C,, 1lin (diJ) = 1
00-90=10, which means that it takes at most 10 seconds from when an abnormality occurs in the device 1 and is first detected until the sensor 2 detects the abnormality. The empty sum part means that even if an abnormality occurs, there is a possibility that the abnormality cannot be detected, and is treated as ω in calculations.

次に、第2図のステップ119により、最小異常検出時
間行列を計算する。第6図の行列Cの各行の要素につい
て最小値を求める。たとえば、1行目については最小値
は100となり、これは機器1で異常が発生した場合に
最初に異常が検出されるまでの最大遅延時間を意味する
1次に第7図の行列りの各行の要素から行列Cの対応す
る行の最小値を減する。得られた結果を行列で表わすと
第9図のようになる。たとえば、1行2列目のf if
fについては、fxa=dti  1lin (C1J
) =180−100=80となり、機器1で異常が発
生し、i&初に異常検出されてから、センサ3で異常検
出されるまでに少なくとも必要な時間が80秒であるこ
とを意味する。負値は、最初に異常検出される可能性が
あることを意味する。また、空白部分は、異常が発生し
ても、異常検出できないことを意味する。
Next, in step 119 of FIG. 2, a minimum abnormality detection time matrix is calculated. The minimum value is found for the elements in each row of matrix C in FIG. For example, for the first row, the minimum value is 100, which means the maximum delay time until the first abnormality is detected when an abnormality occurs in device 1. Subtract the minimum value of the corresponding row of matrix C from the elements of . The obtained results are expressed in a matrix as shown in FIG. 9. For example, f if in the 1st row and 2nd column
For f, fxa=dti 1lin (C1J
)=180-100=80, which means that the time required from when an abnormality occurs in the device 1 and the abnormality is detected for the first time to when the abnormality is detected by the sensor 3 is at least 80 seconds. A negative value means that there is a possibility that an abnormality will be detected first. Furthermore, a blank section means that even if an abnormality occurs, it cannot be detected.

以上、第2図のステップ116〜119は、第1図の初
期データ入力装置112から第4図の行列A、第5図の
行列Bが入力された場合に実行し。
As described above, steps 116 to 119 in FIG. 2 are executed when matrix A in FIG. 4 and matrix B in FIG. 5 are input from the initial data input device 112 in FIG. 1.

第8図の行列E、第9図の行列Fを故障原因推定装置1
109の内部に記憶しておく。
The failure cause estimation device 1 uses matrix E in FIG. 8 and matrix F in FIG.
109.

いは、第3図のネットワークで、異常信号を出している
機器を2,3,9,18,19、正常信号を出している
機器を7.10,11,15゜17とする。また、最初
の異常検出からオペレータコンソール110から演算開
始の指示信号が故障原因推定装置109に入力されるま
での経過時間をTm2O3秒とする。
In other words, in the network shown in FIG. 3, the devices that are emitting abnormal signals are 2, 3, 9, 18, and 19, and the devices that are emitting normal signals are 7, 10, 11, and 15°17. Further, it is assumed that the elapsed time from the first detection of an abnormality until the instruction signal for starting calculation is input from the operator console 110 to the failure cause estimating device 109 is Tm2O3 seconds.

まず、第2図のステップ120により、最小異常パター
ンを求める。第8図の行列Eの要素で経過時間T以下の
ものは1、Tより大きいものはOとする。その結果、第
10図の行列Gを得る。たとえば、1行目の異常パター
ンは、機器1が故障原因である場合に、最初の異常検出
から300秒後に確実に異常を示すセンサ2,3,9,
10゜11.17に対応する列が1となっている。Oで
ある列に対応するセンサは異常を示すか正常を示すかは
わからない。
First, in step 120 of FIG. 2, the minimum abnormality pattern is determined. Elements of the matrix E in FIG. 8 whose elapsed time is less than or equal to T are set to 1, and those whose elapsed time is greater than T are set to O. As a result, matrix G shown in FIG. 10 is obtained. For example, the abnormality pattern in the first row indicates that if equipment 1 is the cause of the failure, sensors 2, 3, 9, and
The column corresponding to 10°11.17 is 1. It is unknown whether the sensor corresponding to the column O indicates abnormality or normality.

次に、第2図のステップ121により、直火異常パター
ンを求める。第9図の行列Fの要素で経過時間T以下の
ものは1、Tより大きいものはOとする。その結果、第
11図の行列Hを得る。たとえば、2行目の異常パター
ンは、機器2が故障原因である場合に、最初の異常検出
から300秒経過時点では決して異常を示さないセンサ
10゜11.15.17に対応する列がOとなっている
Next, in step 121 of FIG. 2, an open fire abnormality pattern is determined. Elements of the matrix F in FIG. 9 that are less than or equal to the elapsed time T are set as 1, and those that are larger than T are set as O. As a result, matrix H shown in FIG. 11 is obtained. For example, in the abnormality pattern in the second row, if equipment 2 is the cause of the failure, the column corresponding to sensor 10°11.15.17 that never shows an abnormality after 300 seconds has passed since the first abnormality detection is O. It has become.

次に、第2図のステップ122により、異常パターンの
照合を行う、現在示している異常パターンが、第2図の
ステップ120,121で求めた最小異常パターンと最
大異常パターンの間にある機器をすべて求め、それを故
障原因とする。すなわち、現在センサjが異常を示して
いる場合にはz、=l、正常の場合にはxJ=oとする
と、すべてのセンサjについて次式が成立する機器iを
故障原因とする。
Next, in step 122 of FIG. 2, the abnormality pattern is compared. If the currently displayed abnormality pattern is between the minimum abnormality pattern and the maximum abnormality pattern obtained in steps 120 and 121 of FIG. Find all of them and consider them as the cause of the failure. That is, if sensor j currently indicates an abnormality, z = l, and if it is normal, xJ = o, then equipment i for which the following equation holds true for all sensors j is considered to be the cause of the failure.

g、J≦xJ≦hlJ 本実施例では、(X、、 !、、 X、、 xst x
、。。
g, J≦xJ≦hlJ In this example, (X,, !,, X,, xst x
,. .

x1□、xl、、Xl、、x1@、xl、)= (1,
1,0゜1、O,O,O,0,1,1)であるから、第
10図の行列Gと第11図の行列Hから機器2が故障原
因とわかる。
x1□,xl,,Xl,,x1@,xl,)=(1,
1,0°1, O, O, O, 0, 1, 1), it can be seen from matrix G in FIG. 10 and matrix H in FIG. 11 that equipment 2 is the cause of the failure.

上述した実施例によれば、 (1)複数個の機器から構成されるプラン1−を対象と
し、設置できるセンサの数が限られていても故障原因の
推定が可能 (2)故障波及時間の最大値と最小値を利用するため、
正確な故障原因の推定が可能 (3)異常検出後に、経過時間に応じた異常パターンを
生成するため、あらかじめ記憶するデータが少なくて済
む (4)異常検出後の演算は、異常パターンの生成と異常
パターンの照合だけであるので高速に実行できる という効果がある。
According to the above-mentioned embodiment, (1) The cause of failure can be estimated even if the number of sensors that can be installed is limited for Plan 1-, which consists of multiple devices. (2) The cause of failure can be estimated even if the number of sensors that can be installed is limited. To use the maximum and minimum values,
Accurate failure cause estimation is possible. (3) After an abnormality is detected, an abnormality pattern is generated according to the elapsed time, so less data is required to be stored in advance. Since only abnormal patterns are compared, it has the effect of being able to be executed at high speed.

なお、本実施例の変形例として、本発明の適用対象を第
3図のようにモデル化できるシステム、たとえばコンピ
ュータネットワークシステムに拡げることもできる。
As a modification of this embodiment, the scope of application of the present invention can be extended to a system that can be modeled as shown in FIG. 3, for example, a computer network system.

〔発明の効果〕〔Effect of the invention〕

以上説明したごとく本発明によれば、 (a)異常検出後に、経過時間に応じた異常パターンを
生成するため、あらかじめ記憶するデータが少なくて済
む。
As explained above, according to the present invention, (a) After an abnormality is detected, an abnormality pattern is generated according to the elapsed time, so less data is required to be stored in advance.

(b)異常検出後の演算は、異常パターンの生成と異常
パターンの照合だけであるので高速に実行できる。
(b) Since the calculations after detecting an abnormality consist only of generating an abnormal pattern and comparing the abnormal patterns, it can be executed at high speed.

という効果がある。There is an effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の故障原因推定方式によるプラント系の
一実施例の構成図、第2図は第1図の故障原因推定装置
での処理手順を示すフローチャート、第3図はプラント
の故障波及関係と設置センサの位置を示す図、第4図は
最大隣接故障波及時間行列を示す図、第5図は最小隣接
故障波及時間行列を示す図、第6図は最大故障波及時間
行列を示す図、第7図は最小故障波及時間行列を示す図
、第8図は最大異常検出時間行列を示す図、第9図は最
小異常検出時間行列を示す図、第10図は最小異常パタ
ーン行列を示す図、第11図は最大異常パターン行列を
示す図である。      ・  1(、j
FIG. 1 is a block diagram of an embodiment of a plant system using the failure cause estimation method of the present invention, FIG. 2 is a flowchart showing the processing procedure of the failure cause estimation device of FIG. 1, and FIG. A diagram showing the relationship and the position of installed sensors, Figure 4 is a diagram showing the maximum adjacent fault propagation time matrix, Figure 5 is a diagram showing the minimum adjacent fault propagation time matrix, and Figure 6 is a diagram showing the maximum fault propagation time matrix. , Fig. 7 shows the minimum fault propagation time matrix, Fig. 8 shows the maximum anomaly detection time matrix, Fig. 9 shows the minimum anomaly detection time matrix, and Fig. 10 shows the minimum anomaly pattern matrix. 11 are diagrams showing the maximum abnormal pattern matrix.・ 1(,j

Claims (1)

【特許請求の範囲】[Claims] 複数個の機器からなる系における限られた機器に設置さ
れたセンサの情報により故障原因となる機器を推定する
プラントの故障原因推定方式において、初期入力である
2機器間の故障波及方向と波及時間にもとづき、上記セ
ンサによる最初の異常検出時刻からの経過時間に応じて
、各機器が故障原因である場合のセンサの異常を生成し
、生成した異常パターンとセンサからの入力である異常
、正常信号から求まる現在の異常パターンとの一致度に
より故障原因を推定することを特徴とするプラントの故
障原因推定方式。
In a plant failure cause estimation method that estimates the equipment that causes the failure based on information from sensors installed on limited equipment in a system consisting of multiple equipment, the initial input is the failure propagation direction and propagation time between two pieces of equipment. Based on the above, the sensor abnormality is generated when each device is the cause of the failure, according to the elapsed time from the time when the first abnormality was detected by the sensor, and the generated abnormality pattern and the abnormality and normal signals input from the sensor are generated. A plant failure cause estimation method characterized by estimating a failure cause based on the degree of matching with a current abnormality pattern determined from the above.
JP60012393A 1985-01-28 1985-01-28 System of presuming cause of trouble of plant Pending JPS61173313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60012393A JPS61173313A (en) 1985-01-28 1985-01-28 System of presuming cause of trouble of plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60012393A JPS61173313A (en) 1985-01-28 1985-01-28 System of presuming cause of trouble of plant

Publications (1)

Publication Number Publication Date
JPS61173313A true JPS61173313A (en) 1986-08-05

Family

ID=11804023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60012393A Pending JPS61173313A (en) 1985-01-28 1985-01-28 System of presuming cause of trouble of plant

Country Status (1)

Country Link
JP (1) JPS61173313A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009075692A (en) * 2007-09-19 2009-04-09 Toshiba Corp Plant alarm apparatus and method
JP2013182547A (en) * 2012-03-05 2013-09-12 Hitachi Ltd Plant monitoring control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009075692A (en) * 2007-09-19 2009-04-09 Toshiba Corp Plant alarm apparatus and method
JP2013182547A (en) * 2012-03-05 2013-09-12 Hitachi Ltd Plant monitoring control system

Similar Documents

Publication Publication Date Title
Clark et al. Detecting instrument malfunctions in control systems
Salahshoor et al. Centralized and decentralized process and sensor fault monitoring using data fusion based on adaptive extended Kalman filter algorithm
He et al. An incipient fault detection approach via detrending and denoising
US20190072942A1 (en) Method of generating plant normal state prediction data and apparatus using the same
JP3651693B2 (en) Plant monitoring diagnosis apparatus and method
Baghernezhad et al. Computationally intelligent strategies for robust fault detection, isolation, and identification of mobile robots
Jiang et al. Fault detection and identification for uncertain linear time-delay systems
Koscielny et al. Method of multiple fault isolation in large scale systems
Diedrich et al. Model-based diagnosis of hybrid systems using satisfiability modulo theory
Tarantino et al. Generalized Luenberger observer-based fault-detection filter design: an industrial application
Sztyber et al. Graph of a process—a new tool for finding model structures in a model-based diagnosis
Gruzlikov et al. Event monitoring of parallel computations
JPS61173313A (en) System of presuming cause of trouble of plant
Destro et al. Monitoring a segmented fluid bed dryer by hybrid data-driven/knowledge-driven modeling
Zhang et al. A methodology for optimum sensor localization/selection in fault diagnosis
Streif et al. Certifying robustness of separating inputs and outputs in active fault diagnosis for uncertain nonlinear systems
JPS60173612A (en) Fault source estimating system
JP4266965B2 (en) Method for estimating travel route specifications
Shibata et al. FAULT DIAGNOSIS OF THE CHEMICAL PROCESS UTILIZING SIGNED DIRECTED GRAPH; Improvement and Evaluation of the Diagnosis Accuracy
JPS60167007A (en) Estimation system for fault cause of plant
Ramkumar et al. Structured fault-detection and diagnosis using finite-state automaton
Horak et al. Failure detection and isolation methodology
Ruschmann et al. Probing the NASA generic transport aircraft in real-time for health monitoring
JPS61245210A (en) Estimating system for trouble factor of plant
JPS60167006A (en) Estimation and diagnosis system for fault influence of plant