JPS61173024A - Gas turbine combustor - Google Patents

Gas turbine combustor

Info

Publication number
JPS61173024A
JPS61173024A JP1269385A JP1269385A JPS61173024A JP S61173024 A JPS61173024 A JP S61173024A JP 1269385 A JP1269385 A JP 1269385A JP 1269385 A JP1269385 A JP 1269385A JP S61173024 A JPS61173024 A JP S61173024A
Authority
JP
Japan
Prior art keywords
combustor
inner cylinder
transition piece
leaf spring
plate spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1269385A
Other languages
Japanese (ja)
Inventor
Hisataka Momozaki
百崎 尚隆
Osamu Sakuta
作田 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Service Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Service Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Service Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Service Engineering Co Ltd
Priority to JP1269385A priority Critical patent/JPS61173024A/en
Publication of JPS61173024A publication Critical patent/JPS61173024A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/60Support structures; Attaching or mounting means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To improve durability and reliability of a combustor by installing a circumferential groove, into which a front end of a flat spring is allowed to enter to prevent erosion and cutting of the plate spring. CONSTITUTION:A gap g1 is kept between an inner cylinder 4 of a combustor and a transition piece 3. A plate spring 13 is assembled in a state with some initial load and is placed at the outerside of a groove 22 made on the inner cylinder 4 of the combustor. When the combustion gas flows in the inner cylinder of the combustor, the size of the gap becomes small as g2 due to the expansion of the cylinder by heat and then the plate spring 13 is compressed radically but a fulcrum moves in the direction of the arrow 23 as the spring is fixed at the rear end 11 of the inner cylinder 4 and the fulcrum drops into the circumferential groove 22. As a result, the fulcrum 21 of the plate spring 13 escapes from the direction of compressive load and the compressive load on the plate spring 13 becomes small.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガスタービンの燃焼器に係り、更に詳しくはト
ランジションピースと燃焼器内筒との取付部の構造に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a combustor for a gas turbine, and more particularly to the structure of a mounting portion between a transition piece and an inner cylinder of the combustor.

〔発明の背景〕[Background of the invention]

第1図は、ガスタービンの燃焼器及びその廻りの図であ
る。圧縮機lにより圧縮された空気2は。
FIG. 1 is a diagram of a gas turbine combustor and its surroundings. Air 2 is compressed by compressor l.

トランジションピース3及び、燃焼器内筒4のまわりを
通って流れ、その後燃焼器内筒4にあけられた空気穴か
ら内筒内に流入する。ここで燃料ノズル5より噴霧され
た燃料と混合拡散されて点火プラグ6により点火され燃
焼する。燃焼ガス7は。
The air flows around the transition piece 3 and the combustor inner cylinder 4, and then flows into the inner cylinder through an air hole formed in the combustor inner cylinder 4. Here, it is mixed and diffused with the fuel sprayed from the fuel nozzle 5, ignited by the spark plug 6, and combusted. Combustion gas 7.

燃焼器内筒4内及びトランジションピース3内を通って
タービン部8へ流入し、ロータ9を回し。
It flows into the turbine section 8 through the combustor inner cylinder 4 and the transition piece 3, and rotates the rotor 9.

排気ガス10となって大気へ放出される。燃焼器内筒4
とトランジションピース3とは、第5図に示す如く燃焼
ガス7がスムースに流れるように、上流側にある燃焼器
内筒4の端部11が、下流にあるトランジションピース
3の入口部12に内嵌された構造となっている。また、
との嵌合部においては、前述の圧縮空気2がトランジシ
ョンピース3に直接流入しないように、また、燃焼器内
筒4及びトランジションピース3の半径方向及び軸方向
の運転中における熱伸びをこの部分で吸収してやる為、
第6図に示すように、弓なりに湾曲せしめた板バネ13
が介装されている。該板バネ13は、燃焼器内筒4の後
端部11側にスポット溶接工4(第6図)で片側を固定
してあり、燃焼器組立時に、燃焼器内筒4とトランジシ
ョンピース3の中心が一致するように、また、燃焼器内
情4の自重および、燃焼によって発生する振動や、まわ
りを流れる空気に押されて、燃焼器内筒4とトランジシ
ョンピース3とが直接接触をしないように、ある程度の
初期荷重を受け、圧縮された状態で組込まれている。2
1は摺動可能な支点(以下、単に支点という)である、
この燃焼器内筒4とトランジションピース3とを組込ん
だ時の状態を第7図に示す。この場合、つまり運転前に
は、初期ギャップg115の状態にある。そして、運転
が始まり燃焼器内筒4とトランジションピース3の内部
を高温の燃焼ガスが通過し始めると、第8図に示すよう
に、燃焼器内筒4は、半径方向の熱伸び16と軸方向の
熱伸び17、トランジションピース3は、半径方向の熱
伸び18と軸方向の熱伸び19を生じる。ところがこれ
らの熱伸びは、一様に発生進行するわけではなく、燃焼
器内筒4は、トランジションピース3の板厚の3分の1
程度しかなくて質量が小さいため熱容量が小さく、燃焼
ガスにさらされ始めてから、熱伸びを開始するまでの時
間が非常に短い、更に、燃焼器内筒4に限っても、トラ
ンジションピース3と重なり合っている部分、すなわち
板バネ13が周囲を囲んでいる部分は、燃焼器内筒4の
周囲を流れている空気に直接さらされることがない為、
メタル温度が高くなり易く、その結果、板バネ13を取
りつけた燃焼器内筒後端部の半径方向熱伸び16の方が
、軸方向熱伸び17より先に始まり伸びる割合も大きく
なる。上述の作用に基づいて熱伸びの発生、進行の順序
を考察すると、まず初めに、燃焼器内筒の半径方向16
、次にその軸方向17、最後にトランジションピースの
軸方向19と半径方向18という順番になり、このこと
は、板バネ13にとっては、非常に苛酷な条件を生じる
The exhaust gas 10 is released into the atmosphere. Combustor inner cylinder 4
and transition piece 3, the end 11 of the combustor inner cylinder 4 on the upstream side is inserted into the inlet part 12 of the transition piece 3 on the downstream side so that the combustion gas 7 flows smoothly as shown in FIG. It has a fitted structure. Also,
In order to prevent the compressed air 2 mentioned above from directly flowing into the transition piece 3, this part is designed to prevent thermal expansion of the combustor inner cylinder 4 and the transition piece 3 during operation in the radial and axial directions. In order to absorb it with
As shown in FIG. 6, the leaf spring 13 is bent into an arch.
is interposed. One side of the leaf spring 13 is fixed to the rear end 11 side of the combustor inner cylinder 4 by a spot welder 4 (Fig. 6), and when the combustor is assembled, the combustor inner cylinder 4 and the transition piece 3 are connected. The centers should be aligned so that the combustor inner cylinder 4 and the transition piece 3 would not come into direct contact with each other due to the weight of the combustor inner cylinder 4, vibrations generated by combustion, and air flowing around them. , it is assembled in a compressed state under some initial load. 2
1 is a sliding fulcrum (hereinafter simply referred to as the fulcrum),
FIG. 7 shows a state in which the combustor inner cylinder 4 and the transition piece 3 are assembled. In this case, that is, before operation, the engine is in the initial gap g115 state. Then, when the operation begins and high temperature combustion gas begins to pass through the combustor inner cylinder 4 and the transition piece 3, the combustor inner cylinder 4 undergoes thermal expansion 16 in the radial direction and axial The thermal elongation 17 in the direction, the transition piece 3 results in a thermal elongation 18 in the radial direction and a thermal elongation 19 in the axial direction. However, these thermal elongations do not occur and progress uniformly, and the combustor inner cylinder 4 has a thickness of one-third of the plate thickness of the transition piece 3.
Since the heat capacity is small and the mass is small, the time from when it starts to be exposed to combustion gas until it starts to thermally expand is very short.Furthermore, even if it is limited to the combustor inner cylinder 4, it overlaps with the transition piece 3. The part surrounded by the leaf spring 13 is not directly exposed to the air flowing around the combustor inner cylinder 4.
The metal temperature tends to become high, and as a result, the radial thermal expansion 16 of the rear end of the combustor inner cylinder to which the leaf spring 13 is attached starts earlier than the axial thermal expansion 17, and the rate of expansion becomes larger. Considering the sequence of occurrence and progression of thermal elongation based on the above-mentioned effects, first of all, in the radial direction 16 of the combustor inner cylinder,
, then its axial direction 17, and finally the axial direction 19 and radial direction 18 of the transition piece, which creates very severe conditions for the leaf spring 13.

すなわち、燃焼器内筒4とトランジションピース3との
半径方向熱伸び差によって、両開のギャップg2 が非
常に小さくなり、板バネ13が、半径方向の強い圧縮力
を受けた状態で、次に軸方向熱伸びが起こることになる
。この現象が運転の開始、停止毎に発生し、前記板バネ
13は、繰り返して強い摩耗と、大きな変形を受けるこ
とにより。
That is, due to the difference in radial thermal expansion between the combustor inner cylinder 4 and the transition piece 3, the gap g2 between the two openings becomes extremely small, and the leaf spring 13 is subjected to a strong radial compressive force. Axial thermal elongation will occur. This phenomenon occurs every time the operation starts and stops, and the leaf spring 13 is repeatedly subjected to strong wear and large deformation.

ついには切損してタービン部に流入したり、圧縮空気の
大量流入による、タービン性能の低下をもたらす虞れが
ある。
Eventually, there is a risk that the compressed air will break and flow into the turbine section, or that a large amount of compressed air will flow in, resulting in a deterioration in turbine performance.

ガスタービン用燃焼器にこのような板バネを設ける技術
は公知であり、例えば米国文献(ASME81−GT−
32のFig、3.、および、 ASM11’70−P
vr−14のFig、1)  に示されている。上に述
べた板バネについては、前述の理由により、その信頼性
、耐久性の向上が急務となっている。
The technique of providing such a leaf spring in a gas turbine combustor is known, for example, as described in the US document (ASME81-GT-
32 Figs, 3. , and ASM11'70-P
It is shown in Fig. 1) of vr-14. For the above-mentioned leaf springs, there is an urgent need to improve their reliability and durability for the reasons mentioned above.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前述した、板バネの摩耗及び切損を防
止し、燃焼器の耐久性及び信頼性の向上を図ることにあ
る。
An object of the present invention is to prevent the above-mentioned abrasion and breakage of the leaf spring and to improve the durability and reliability of the combustor.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために創作した本発明の基本的な
原理について次に略述する。ガスタービンの運転が始ま
って燃焼器内筒の熱伸びが発生し、板バネに圧縮荷重が
作用した時、板バネの固定端と反対方向に他方の支点が
動く、その時その支点が内周方向に逃げることのできる
溝を、燃焼器内筒の外周上に設けたものである。そして
支点が内側に逃げることにより板バネの圧縮荷重を軽減
し、軸方向に板バネが滑る時の面圧を小さくして該板バ
ネの早期摩耗や折損を防止することを特徴とする。
The basic principle of the present invention created to achieve the above object will be briefly described below. When the gas turbine starts operating and thermal expansion occurs in the combustor inner cylinder, and a compressive load is applied to the leaf spring, the other fulcrum moves in the opposite direction to the fixed end of the leaf spring, and at that time, that fulcrum moves toward the inner circumference. A groove is provided on the outer periphery of the combustor inner cylinder to allow the combustor to escape. The fulcrum escapes inward to reduce the compressive load on the leaf spring, reducing the surface pressure when the leaf spring slides in the axial direction, thereby preventing early wear and breakage of the leaf spring.

〔発明の実施例〕[Embodiments of the invention]

第1図乃至第3図に本発明の一実施例を示す。 An embodiment of the present invention is shown in FIGS. 1 to 3.

第1図燃焼塁内筒4内を燃焼ガスが流れ始める以前の状
態を示し、燃焼器内筒4もトランジションピース3も熱
伸びを発生する前である。第2図はこの状態における斜
視図である。この時の燃焼器内筒4とトランジションピ
ース3の間は、ギャップgt  (第1図)であり、板
バネ13はある程度の初期荷重を受けた状態で組込まれ
ているが、該板バネ13の支点21は、燃焼器内筒4に
設けた溝22の外側に位置している。ところが、次の燃
焼器内筒を燃焼ガスが流れ、熱伸びが生じると、第3図
に示すように、燃焼器内筒4とトランジションピース3
との間のギャップは、g、と非常に小さくなる。すると
、板バ未13は、半径方向の圧縮を受けるが、燃焼器内
筒4の後端部11側を固定されている為、支点21は矢
印23の方向に移動する。そして矢印23の方向に動い
た、板バネ13の支点21は、燃焼器内情4の溝22に
、落ちることになる。この結果、板バネ13の支点21
が、圧縮荷重を受ける方向から逃げることになり、板バ
ネ13に受ける圧縮荷重は小さくなる。
FIG. 1 shows a state before combustion gas starts to flow inside the combustion base inner cylinder 4, and before both the combustor inner cylinder 4 and the transition piece 3 generate thermal elongation. FIG. 2 is a perspective view in this state. At this time, there is a gap gt (Fig. 1) between the combustor inner cylinder 4 and the transition piece 3, and the leaf spring 13 is assembled with some initial load. The fulcrum 21 is located outside the groove 22 provided in the combustor inner cylinder 4. However, when the combustion gas flows through the next combustor inner cylinder and thermal expansion occurs, the combustor inner cylinder 4 and transition piece 3
The gap between g and g becomes very small. Then, the plate bar 13 is compressed in the radial direction, but since the rear end 11 side of the combustor inner cylinder 4 is fixed, the fulcrum 21 moves in the direction of the arrow 23. The fulcrum 21 of the leaf spring 13, which has moved in the direction of the arrow 23, falls into the groove 22 of the combustor interior 4. As a result, the fulcrum 21 of the leaf spring 13
However, the compressive load will escape from the direction in which the compressive load is applied, and the compressive load applied to the leaf spring 13 will become smaller.

次に、燃焼器内筒4とトランジションピース3の軸方向
熱伸びが起こり、板バネ13と、トランジションピース
3との間に摩擦が生じるが、この時は、板バネ13に作
用する面圧が小さくなっている為、板バネ13の摩耗は
非常に軽減され、板バネの耐久性の向上が達せられる。
Next, thermal elongation in the axial direction of the combustor inner cylinder 4 and the transition piece 3 occurs, and friction occurs between the leaf spring 13 and the transition piece 3. At this time, the surface pressure acting on the leaf spring 13 is Since it is small, the wear of the leaf spring 13 is greatly reduced, and the durability of the leaf spring can be improved.

また、燃焼器内筒には、運転時、内筒の内外圧力差及び
、圧縮空気流れによる風圧の為、内情を押しつぶそうと
する力が作用するが1本実施例のように燃焼器内情4の
1部を絞った形状にして溝22を構成しておくと、この
絞り部分の構造力学的効果によって断面係数が増大し、
燃焼器内筒自体の強度向上もはかることができるという
副次的効果を奏する。
In addition, during operation, a force that tends to crush the internal state of the combustor acts on the combustor internal cylinder due to the pressure difference between the inside and outside of the internal cylinder and the wind pressure caused by the flow of compressed air. If the groove 22 is formed by constricting a part of the groove 22, the section modulus will increase due to the structural mechanical effect of this constricted part.
This has the secondary effect of improving the strength of the combustor inner cylinder itself.

以上に説明したように、板バネの先端の進入を許容する
円筒溝を設けるという構成は、従来の燃焼器(板バネを
含む)の主要諸元を殆んど変更することなく適用し得る
As explained above, the configuration of providing a cylindrical groove that allows the tip of the leaf spring to enter can be applied to a conventional combustor (including the leaf spring) without changing the main specifications thereof.

〔発明の効果〕〔Effect of the invention〕

上述の実施例によって明らかにしたように、本発明を適
用すると、燃焼器の接続部を設けられる板バネの摩耗お
よび切損を防止し、燃焼器の耐久性及び信頼性を向上せ
しめることができるという優れた実用的効果を奏する。
As clarified by the above-mentioned embodiments, when the present invention is applied, it is possible to prevent wear and breakage of the leaf spring provided at the connection part of the combustor, and improve the durability and reliability of the combustor. This has excellent practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明の一実施例を示し、第1図は
運転開始前の状態における断面図、第2図は同状態にお
ける板バネと燃焼器内筒とを描いた斜視図、第3図は運
転開始後に熱伸びを生じた状態の断面図である。 第4図はガスタービン燃焼器の全体的構成を示す断面図
、第5図は従来のガスタービン燃焼器の燃焼器内筒とト
ランジションピースとの接合部を示す断面図、第6図は
板バネを取り付けた従来形燃焼器内筒の斜視図である。 第7図及び第8図は板バネに掛かる熱応力の説明図であ
る6 1・1.圧縮機、2・・・圧縮空気、3・・・トランジ
ションピース、4・・・燃焼器内情、5・・・燃料ノズ
ル、6・・・点火プラグ、7・・・燃焼ガス、8・・・
タービン、9・・・タービンロータ、10・・・排気ガ
ス、11・・・燃焼器内筒後端、12・・・トランジシ
ョンピース入口部、13・・・板バネ、14・・・スポ
ット溶接部、16・・・燃焼器内筒の熱伸び半径方向、
17・・・燃焼器内筒の熱伸び軸方向、18・・・トラ
ンジションピースの熱伸び半径方向、19・・・トラン
ジションピースの熱 −伸び軸方向、22・・・燃焼器
内筒に設けた円周溝。 23・・・板バネの伸び方向。
1 to 3 show one embodiment of the present invention, FIG. 1 is a cross-sectional view in a state before the start of operation, and FIG. 2 is a perspective view depicting the leaf spring and the combustor inner cylinder in the same state. , FIG. 3 is a cross-sectional view of a state where thermal elongation has occurred after the start of operation. FIG. 4 is a cross-sectional view showing the overall configuration of a gas turbine combustor, FIG. 5 is a cross-sectional view showing the joint between the combustor inner cylinder and transition piece of a conventional gas turbine combustor, and FIG. FIG. 2 is a perspective view of a conventional combustor inner cylinder equipped with a combustor. FIGS. 7 and 8 are explanatory diagrams of thermal stress applied to a leaf spring6 1.1. Compressor, 2... Compressed air, 3... Transition piece, 4... Combustor internal information, 5... Fuel nozzle, 6... Spark plug, 7... Combustion gas, 8...
Turbine, 9... Turbine rotor, 10... Exhaust gas, 11... Rear end of combustor inner cylinder, 12... Transition piece inlet, 13... Leaf spring, 14... Spot welding part , 16... Thermal elongation radial direction of the combustor inner cylinder,
17...Thermal elongation in the axial direction of the combustor inner cylinder, 18...Thermal elongation in the radial direction of the transition piece, 19...Thermal elongation in the axial direction of the transition piece, 22...Provided in the combustor inner cylinder Circumferential groove. 23... Extension direction of the leaf spring.

Claims (1)

【特許請求の範囲】[Claims] トランジシヨンピースの一端に燃焼器内筒の一端を内嵌
し、上記の嵌合部にシール用板バネを介装したガスター
ビン燃焼器において、上記の板バネが圧縮荷重を受けた
とき該板バネの先端の進入を許容する円周溝を燃焼器内
筒の外周に設けたことを特徴とするガスタービン燃焼器
In a gas turbine combustor in which one end of the combustor inner cylinder is fitted into one end of the transition piece, and a sealing plate spring is interposed in the fitting part, when the plate spring receives a compressive load, the plate A gas turbine combustor characterized in that a circumferential groove that allows the tip of a spring to enter is provided on the outer periphery of an inner cylinder of the combustor.
JP1269385A 1985-01-28 1985-01-28 Gas turbine combustor Pending JPS61173024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1269385A JPS61173024A (en) 1985-01-28 1985-01-28 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1269385A JPS61173024A (en) 1985-01-28 1985-01-28 Gas turbine combustor

Publications (1)

Publication Number Publication Date
JPS61173024A true JPS61173024A (en) 1986-08-04

Family

ID=11812454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1269385A Pending JPS61173024A (en) 1985-01-28 1985-01-28 Gas turbine combustor

Country Status (1)

Country Link
JP (1) JPS61173024A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295733A (en) * 1988-09-30 1990-04-06 Hitachi Ltd Spring seal
WO1997026485A1 (en) * 1996-01-17 1997-07-24 Mitsubishi Jukogyo Kabushiki Kaisha Spring seal unit of combustor
WO2006118655A1 (en) * 2005-04-28 2006-11-09 Siemens Power Generation, Inc. Gas turbine combustor barrier structures for spring clips
FR2929373A1 (en) * 2008-03-27 2009-10-02 Gen Electric FLOATING COVER OF COMBUSTION DEVICE USING JOINT IN E

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295733A (en) * 1988-09-30 1990-04-06 Hitachi Ltd Spring seal
WO1997026485A1 (en) * 1996-01-17 1997-07-24 Mitsubishi Jukogyo Kabushiki Kaisha Spring seal unit of combustor
US5987879A (en) * 1996-01-17 1999-11-23 Mitsubishi Jukogyo Kabushiki Kaisha Spring seal device for combustor
WO2006118655A1 (en) * 2005-04-28 2006-11-09 Siemens Power Generation, Inc. Gas turbine combustor barrier structures for spring clips
US7377116B2 (en) 2005-04-28 2008-05-27 Siemens Power Generation, Inc. Gas turbine combustor barrier structures for spring clips
FR2929373A1 (en) * 2008-03-27 2009-10-02 Gen Electric FLOATING COVER OF COMBUSTION DEVICE USING JOINT IN E

Similar Documents

Publication Publication Date Title
US7246995B2 (en) Seal usable between a transition and a turbine vane assembly in a turbine engine
US7600970B2 (en) Ceramic matrix composite vane seals
US6494044B1 (en) Aerodynamic devices for enhancing sidepanel cooling on an impingement cooled transition duct and related method
US7762076B2 (en) Attachment of a ceramic combustor can
US20090053050A1 (en) Gas turbine shroud support apparatus
JP3600911B2 (en) Liner support structure for annular combustor
JP3984104B2 (en) Fixing the metal cap to the wall of the CMC combustion chamber in the turbomachine
US20070212214A1 (en) Segmented component seal
CA2465071C (en) Diametrically energized piston ring
JPH0423170B2 (en)
JPH04244513A (en) Fuel injection nozzle support
EP1132576B1 (en) Turbine shroud comprising an apparatus for minimizing thermal gradients and method for assembling a gas turbine engine including such a shroud
EP0893632A2 (en) Shingle damper brush seal
US4438626A (en) Apparatus for attaching a ceramic member to a metal structure
US7174719B2 (en) Gas turbine engine with seal assembly
JPH11132108A (en) Manufacture of rocket engine having transfer part structure between combustion chamber and injection device
JPS61173024A (en) Gas turbine combustor
JPS608449A (en) Heat strain resistant structure of engine
JPH07293276A (en) Spring clip structure of supercharger
JP2585751B2 (en) Gas turbine combustion equipment
JPH08226304A (en) Ceramic stator blade
JP2002013401A (en) Exhauster of gas turbine
JPS62106224A (en) Support device for gas turbine combustor
JPH07332113A (en) Gas turbine and gas turbine combustor
JPS6327522B2 (en)