JPS61172836A - Production of halogenated unsaturated alkylbenzene - Google Patents

Production of halogenated unsaturated alkylbenzene

Info

Publication number
JPS61172836A
JPS61172836A JP1521585A JP1521585A JPS61172836A JP S61172836 A JPS61172836 A JP S61172836A JP 1521585 A JP1521585 A JP 1521585A JP 1521585 A JP1521585 A JP 1521585A JP S61172836 A JPS61172836 A JP S61172836A
Authority
JP
Japan
Prior art keywords
alkylbenzene
formula
group
mol
energy radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1521585A
Other languages
Japanese (ja)
Other versions
JPH0133089B2 (en
Inventor
Takaari Yumoto
湯本 高在
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1521585A priority Critical patent/JPS61172836A/en
Publication of JPS61172836A publication Critical patent/JPS61172836A/en
Publication of JPH0133089B2 publication Critical patent/JPH0133089B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/081Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing particle radiation or gamma-radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the titled substance useful as a monomer for high polymers, etc., containing a vinyl group with three halogen atoms, by reacting an alkylbenzene with a halogenated ethylene under irradiation of high-energy radiation. CONSTITUTION:An alkylbenzene shown by the formula I (R1 is phenyl, or alkylphenyl; R2-R4 are H, or alkyl) is reacted with a halogenated ethylene shown by the formula II (X1-X4 are halogen) in a molar ratio of 2-5:1 under high-energy radiation, to give the titled substance containing a vinyl group with three halogen atmos shown by the formula III at the alpha-position or beta-position of benzene ring or alkyl group. A radioactive isotope such as Co 60, Ce 124, etc., as a radiation source is used as the high-energy radiation, and the irradiation temperature is effectively 10-200 deg.C. EFFECT:The aimed substance which has been hitherto extremely difficult to synthesize is easily produced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はハロゲン化不飽和アルキルベンゼンの新規な製
法に関するものである。さらに詳しくいえば、本発明は
、それ自体高分子単量体としてM用であり、また高分子
材料や有機半導体などの原料として有用な他のビニル系
単量体やアセチレン系単量体に容易に導くことのできる
、ハロゲン原子3個を有するビニル基をもつ不飽和アル
キルベンゼンを効率よく容易に製造する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a novel method for producing halogenated unsaturated alkylbenzenes. More specifically, the present invention can be used as a polymer monomer itself, and can also be easily used for other vinyl monomers and acetylene monomers useful as raw materials for polymer materials and organic semiconductors. The present invention relates to a method for efficiently and easily producing unsaturated alkylbenzene having a vinyl group having three halogen atoms, which can lead to the following.

従来の技術 従来、エチレン性不飽和結合又はアセチレン性不飽和結
合を有する不飽和アルキルベンゼンは、高分子材料の原
料として用いられており、また、近年有機高分子半導体
の原料などとしても注目されている。
Conventional technologyUnsaturated alkylbenzenes having ethylenically unsaturated bonds or acetylenically unsaturated bonds have been used as raw materials for polymer materials, and have recently attracted attention as raw materials for organic polymer semiconductors. .

これらの不飽和アルキルベンゼンは、これまで、相当す
る1個のハロゲン原子又は2個のハロゲン原子を有する
化合物の脱ハロゲン化水素や脱ハロゲンによって得られ
ている( 「Bull、 Soc、 Chin。
These unsaturated alkylbenzenes have so far been obtained by dehydrohalogenation or dehalogenation of corresponding compounds having one or two halogen atoms (Bull, Soc, Chin.

Fr、J 1966年、第1293ページ、 「有機合
成化生協会誌」第31巻、第777ページ(1973年
)」。
Fr, J 1966, p. 1293, Journal of the Society for Organic Synthesis, Vol. 31, p. 777 (1973).

ところで、ハロゲン原子3個ft有するビニル基をもつ
不飽和アルキルベンゼンは、該ハロケン原子を水素原子
や他のハロゲン原子などの原子又は基と置換することに
よシ、あるいは脱ハロゲン化などによって、高分子材料
や有機半導体などの原料として有用な他のビニル系単量
体やアセチレン系単量体に容易に導くことができるし、
また、それ自体高分子単量体として有用である。
By the way, unsaturated alkylbenzene having a vinyl group having 3 halogen atoms can be made into a polymer by replacing the halogen atom with an atom or group such as a hydrogen atom or another halogen atom, or by dehalogenation. It can be easily led to other vinyl monomers and acetylene monomers that are useful as materials and raw materials for organic semiconductors, etc.
Moreover, it is itself useful as a polymeric monomer.

しかしながら、このようなハロゲン原子3個を有スルヒ
ニル基をもつ不飽和アルキルベンゼンは。
However, such an unsaturated alkylbenzene having a sulfinyl group with three halogen atoms.

従来合成が極めて困難であったため、このものを実用的
に前記の用途に用いた例はほとんど見当らない。
Conventionally, synthesis has been extremely difficult, so there are almost no examples of practical use of this product for the above-mentioned purposes.

発明が解決しようとする問題点 本発明の目的は、このような事情のもとで、従来合成が
極めて困難であった、高分子材料や有機半導体などの原
料として有用なハロゲン原子3個を有するビニル基をも
つ不飽和アルキルベンゼンを、効率よく容易て製造する
方法を提供することにある。
Problems to be Solved by the Invention Under these circumstances, the purpose of the present invention is to solve a problem that is difficult to synthesize in the past, and which has three halogen atoms and is useful as a raw material for polymeric materials and organic semiconductors. An object of the present invention is to provide a method for efficiently and easily producing unsaturated alkylbenzene having a vinyl group.

問題点を解決するための手段 本発明者らは鋭意研究を重ねた結果、高エネルギー放射
線を照射して、アルキルベンゼンとパーハロゲノエチレ
ンとを反応させることによシ、前記目的を達成しうろこ
とを見出し、この知見に基づいて本発明を完成するに至
った。
Means for Solving the Problems As a result of extensive research, the present inventors have discovered that the above object can be achieved by irradiating high-energy radiation to cause the alkylbenzene and perhalogenoethylene to react. Based on this finding, we have completed the present invention.

すなわち、本発明は、一般式 %式%(1) (式中のR1はフェニル基又はアルキルフェニル基、R
2、R3及びR4はそれぞれ水素原子又はアルキル基で
あり、それらは同一であっても異なってもよい) で示されるアミルベンゼン類、一般式 (式中のXl、X2、x3及びX4はそれぞれハロゲン
原子でア9、それらは同一であっても異なってもよい) で示されるハロゲン化エチレンとを、高エネルギー放射
線を照射して反応させることによシ、一般式 (式中のXl、X2及びx3は前記と同じ意味をもつ) で示される不飽和基を、該アルキルベンゼンのベンゼン
環又はアルキル基のα−位若しくはβ−位に導入するこ
とを特徴とするハロゲン化不飽和アルキルベンゼンの製
法を提供するものである。
That is, the present invention is based on the general formula % formula % (1) (wherein R1 is a phenyl group or an alkylphenyl group, R
2, R3 and R4 are each a hydrogen atom or an alkyl group, and they may be the same or different. By irradiating high-energy radiation and reacting halogenated ethylene represented by atoms A9, which may be the same or different, the general formula (Xl, X2 and x3 has the same meaning as above) is introduced into the α-position or β-position of the benzene ring or alkyl group of the alkylbenzene. It is something to do.

本発明方法において用いる前記一般式(1)で示される
アルキルベンゼンは、アルキル基の炭素数が1〜10の
範囲にあるものが望ましく、このようなものとしては、
例えばトルエン、エチルベンゼン、フロビルベンゼン類
、フチルベンゼン類、アミルベンゼン類、クメン、サイ
メン類、メチルエチルベンゼン類、ジエチルベンゼン類
などが好ましく用いられる。
The alkylbenzene represented by the general formula (1) used in the method of the present invention is preferably one in which the number of carbon atoms in the alkyl group is in the range of 1 to 10.
For example, toluene, ethylbenzene, flobylbenzenes, phthylbenzenes, amylbenzenes, cumene, cymenes, methylethylbenzenes, diethylbenzenes, and the like are preferably used.

また、前記一般式(El)で示されるノ・ロゲン化エチ
レンは、ハロゲン原子としてフッ素、塩素、臭素を含む
ものが望ましく、また4個のノ・ロゲン原子は同一であ
っても異なっていてもよい0このようなものとしては、
例えばテトラフルオロエチレン、テトラクロロエチレン
、テトラブロモエチレン、トリフルオロモノクロロエチ
レン、トリフルオロモノブロモエチレン、トリクロロモ
ノブロモエチレンなどが好ましく用いられる。
Further, the halogenated ethylene represented by the general formula (El) preferably contains fluorine, chlorine, or bromine as a halogen atom, and the four halogen atoms may be the same or different. Good 0 Something like this:
For example, tetrafluoroethylene, tetrachlorethylene, tetrabromoethylene, trifluoromonochloroethylene, trifluoromonobromoethylene, trichloromonobromoethylene, etc. are preferably used.

本発明においては、前記の7・ロゲン化エチレンとアル
キルベンゼンとの最適使用割合は原料の種類によって異
なるが、通常モル比でi : o、oiないし1:10
の範囲、好ましくは1:2ないし15の範囲で選ばれる
In the present invention, the optimum ratio of the above-mentioned 7-logogenated ethylene and alkylbenzene varies depending on the type of raw materials, but is usually in a molar ratio of i:o, oi to 1:10.
, preferably in the range of 1:2 to 15.

また、照射用の高エネルギー放射線としては、60CO
1124Ce などの放射性同位元素を線源とするもの
や、加速器などからのものが用いられ、照射温度として
は、10〜200℃の範囲が有効であるO このようにして、前記の一般式(I)で示されるアルキ
ルベンゼンと、一般式(■)で示されるノ・ロゲン化エ
チレンとを、高エネルギー放射線を照射して反応させる
ことによシ、前記の一般式@)で示されるハロゲン原子
3個tVするビニル基が該アルキルベンゼンのベンゼン
環又はアルキル基のα−位若しくはβ−位に導入される
In addition, as high-energy radiation for irradiation, 60CO
A radiation source using a radioactive isotope such as 1124Ce or one from an accelerator is used, and the effective irradiation temperature is in the range of 10 to 200°C. ) by reacting an alkylbenzene represented by the general formula (■) with a halogenated ethylene represented by the general formula (■) by irradiating it with high-energy radiation, three halogen atoms represented by the general formula @) are produced. A vinyl group that reacts with tV is introduced into the benzene ring of the alkylbenzene or the α-position or β-position of the alkyl group.

反応終了液は常法に従い処理して未反応物を回収したの
ち、減圧蒸留などを施すことによシ、目的のハロゲン化
不飽和アルキルベンゼンが得られる。回収された未反応
物は反応に再使用することができる。
The reaction-completed liquid is treated according to a conventional method to recover unreacted substances, and then subjected to vacuum distillation or the like to obtain the desired halogenated unsaturated alkylbenzene. The recovered unreacted materials can be reused for the reaction.

発明の効果 本発明方法は、高エネルギー放射線を照射して、アルキ
ルベンゼンとパー710ゲノエチレンと全反応させ、従
来合成が極めて困難であった、ノ・ロゲン原子3個を有
するビニル基をもつ不飽和アルキルベンゼンを、効率よ
く容易に製造する方法であって、得られたハロゲン化不
飽和アルキルベンゼンは、それ自体高分子単量体として
有用で1、また高分子材料や有機半導体などの原料とし
て有用な他のビニル系単量体やアセチレン系単量体に容
易に導くことができる。
Effects of the Invention The method of the present invention irradiates high-energy radiation to cause a total reaction between alkylbenzene and par-710 genoethylene, thereby producing an unsaturated alkylbenzene having a vinyl group having three nitrogen atoms, which has been extremely difficult to synthesize in the past. The obtained halogenated unsaturated alkylbenzene is itself useful as a polymeric monomer (1), and is also useful as a raw material for polymeric materials, organic semiconductors, etc. It can be easily converted into vinyl monomers and acetylene monomers.

実施例 次に実施例によって本発明をさらに詳細に説明する。Example Next, the present invention will be explained in more detail with reference to Examples.

実施例1 トルエン92.20 r (1,0モル)とテトラクロ
ロエチレン41.48 y (0,25モル)の混合液
を減圧下に封じたのち、60Co よシのγ線を線量率
2X105R/hrで200.17時間室温で照射した
。照射後未反応原料を回収して粗油6.06 fを得た
。この粗油を減圧蒸留してbp99.5〜108.4℃
/7uHgの留分2.36fを得た。
Example 1 After sealing a mixed solution of 92.20 r (1.0 mol) of toluene and 41.48 y (0.25 mol) of tetrachlorethylene under reduced pressure, γ-rays of 60Co were applied at a dose rate of 2 x 105 R/hr. Irradiated for 200.17 hours at room temperature. After irradiation, unreacted raw materials were collected to obtain 6.06 f of crude oil. This crude oil was distilled under reduced pressure to a bp of 99.5 to 108.4℃.
A fraction 2.36f of /7uHg was obtained.

得られた留分をガスクロマトグラフ法で分析したところ
、反応生成物として、トルエンのメチルされた側鎖置換
物0.90 f [0,0040モル 、収率21.4
%、bp 82.0〜82.3℃/ 3 mal HP
、d41.3324、n、)1.5627.  Ct4
8.10ii(量%(計算値48.01重量%)〕、ト
ルエンのベンゼン@にトリクロロビニル基が導入された
核置換物1.26F(0,0057モル、収率29.8
憾、o−、m−、p一体温合物)、及びトルエンの二量
化物0.08F(0,0006モル、収率2.4%、b
p104.0〜105.3’C/ 81mHg%a4 
1.2859、nDl、5656 )が得られた。
When the obtained fraction was analyzed by gas chromatography, it was found that the reaction product was 0.90 f [0,0040 mol] of methylated side chain substituted product of toluene, yield 21.4.
%, bp 82.0-82.3℃/3mal HP
, d41.3324, n, ) 1.5627. Ct4
8.10ii (amount % (calculated value 48.01 weight %)), 1.26F (0,0057 mol, yield 29.8
0.08F (0,0006 mol, yield 2.4%, b
p104.0~105.3'C/81mHg%a4
1.2859, nDl, 5656) was obtained.

なお、収率は次式で示すように、反応に実際に消費され
たテトラクロロエチレン当りの値である。
Note that the yield is a value per tetrachlorethylene actually consumed in the reaction, as shown in the following formula.

また、比較のために、トルエンとテトラクロロエチレン
とを触媒を用いて反応させたところ、側鎖置換物と二量
化物が得られた。この側鎖置換物のNMRスペクトルで
は、ベンジル基中のメチレン基は3.82ppmに、フ
ェニル基は7.16ppmにシグナルを示し、γ線法に
よる側鎖置換物と一致した。しかし、γ線法では、この
ほかにも、元のトルエンの2.33ppmのメチル基の
シグナルが存在しておシ、トルエンのメチル基が残って
いることを示す。これは、工Rスペクトルでも確認され
、トルエンノベンゼン核ニトリクロロビニル基が置換さ
れていることが証明された。前記の側鎖置換物と核置換
物は質量分析計によって、それらの分子量が一致してい
ることが確められた。
For comparison, when toluene and tetrachloroethylene were reacted using a catalyst, a side chain substituted product and a dimerized product were obtained. In the NMR spectrum of this side chain substituted product, the methylene group in the benzyl group showed a signal at 3.82 ppm, and the phenyl group showed a signal at 7.16 ppm, which coincided with the side chain substituted product determined by the γ-ray method. However, in the gamma ray method, there was also a signal from the methyl group at 2.33 ppm of the original toluene, indicating that the methyl group of toluene remained. This was also confirmed in the engineering R spectrum, proving that the nitrichlorovinyl group in the toluenobenzene nucleus was substituted. It was confirmed by mass spectrometry that the side chain substituted product and the nuclear substituted product had the same molecular weight.

実施例2 エチルベンゼン120゜09 t (1,13モル)と
テ、トラクロロエチレン41.45 t (0,25モ
ル)との混合液を減圧下に封じたのち 60COよシの
γ線を線量率2X105R/hrで297.88時間室
温で照射した。照射後未反応原料を回収して粗油4.7
1tを得た。この粗油を減圧蒸留してbp93.5℃/
80Hg〜119.0℃/7fiHgの留分2.24 
fを得た。
Example 2 A mixed solution of 120°09 t (1.13 mol) of ethylbenzene and 41.45 t (0.25 mol) of ethylbenzene was sealed under reduced pressure, and then the gamma rays of 60 CO were applied at a dose rate. Irradiation was performed at 2×105 R/hr for 297.88 hours at room temperature. After irradiation, unreacted raw materials are recovered and crude oil 4.7
Obtained 1t. This crude oil was distilled under reduced pressure to a bp of 93.5°C/
80Hg~119.0℃/7fiHg fraction 2.24
I got f.

との留分をガスクロマトグラフ法で分析し、生成物とし
て、エチルベンゼンのエチル基にトリクロロビニル基が
導入された側鎖置換物1.061F(0,0046モル
、収率19.4%、bp76.6〜77.3℃/ 21
01Hg%d4 1.2555、nDl、5580. 
 C145,56重量%(引算値45.15重量%)〕
、ベンゼン環にトリクロロビニル基が導入された核置換
物0.99 F [0,0043モル、収率18.1%
、bpl、5575 ]、及び二量化物0.11 ? 
(0,0005モル、収率2.1%)を得た。
The fraction was analyzed by gas chromatography, and the product was 1.061F (0,0046 mol, yield 19.4%, bp 76. 6-77.3℃/21
01Hg%d4 1.2555, nDl, 5580.
C145.56% by weight (subtraction value 45.15% by weight)]
, a nuclear substituted product with a trichlorovinyl group introduced into the benzene ring 0.99 F [0,0043 mol, yield 18.1%
, bpl, 5575 ], and dimer 0.11 ?
(0,0005 mol, yield 2.1%) was obtained.

実施例3 n−プロピルベンゼン120.09 t (1,0モル
)とテトラクロロエチレン41.45 F (0,25
モル)の混合液を減圧下に封じたのち、60cOよシの
γ線を線量率2X105R/hrで205.49時間室
温で照射した。照射後未反応原料を回収して粗油7.9
0tを得た。との粗油を減圧蒸留してbpH4,0〜1
35.0℃/ 8 u Hgの留分2.17 fを得た
Example 3 120.09 t (1.0 mol) of n-propylbenzene and 41.45 F (0.25 mol) of tetrachloroethylene
After sealing the mixture under reduced pressure, the mixture was irradiated with 60 cO gamma rays at a dose rate of 2 x 105 R/hr for 205.49 hours at room temperature. After irradiation, unreacted raw materials are recovered and crude oil 7.9
Obtained 0t. Distill the crude oil under reduced pressure to bpH 4.0 to 1.
A fraction of 2.17 f at 35.0° C./8 u Hg was obtained.

この留分をガスクロマトグラフ法で分析し、生成物とし
て、ベンゼン環にトリクロロビニル基が導入された核置
換物0.52 y (0,0020モル、収率9.9%
、bp125;3〜129.0℃/70)(g、d41
.1871、nDl、5508 )、 n−プロピルベ
ンゼンのプロピル基のα−又はβ−位にトリクロロビニ
ル基が導入された側鎖置換物0.54 f [0,00
22モル、認率10.39に、  bp88.1〜89
.2℃/1.5111Hg、 d41.2281、nD
l、5475、Ct43.60重量% 、(tl算値4
2.62重量係)〕、及び二量化物0.59 f (0
,0025%ル、収率12.0% )を得た。
This fraction was analyzed by gas chromatography, and the product was 0.52 y (0,0020 mol, yield 9.9%) of a nuclear substituted product in which a trichlorovinyl group was introduced into the benzene ring.
, bp125; 3-129.0°C/70) (g, d41
.. 1871, nDl, 5508), a side chain substituted product in which a trichlorovinyl group is introduced at the α- or β-position of the propyl group of n-propylbenzene 0.54 f [0,00
22 mol, recognition rate 10.39, bp88.1-89
.. 2℃/1.5111Hg, d41.2281, nD
l, 5475, Ct43.60% by weight, (tl calculated value 4
2.62 f (0
,0025%, yield 12.0%).

実施例4 クメ7120.20 ? (1,0モル)とテトラクロ
ロエチレン41.47 t (0,25モル)との混合
液を減圧下に封じたのち 60COよシのγ線を線量率
2XIOR/hrで200.17時間室温で照射した。
Example 4 Kume7120.20? After sealing a mixture of (1.0 mol) and 41.47 t (0.25 mol) of tetrachlorethylene under reduced pressure, it was irradiated with gamma rays of 60CO at a dose rate of 2XIOR/hr for 200.17 hours at room temperature. .

照射後未反応原料を回収して粗油5.31 fを得た。After the irradiation, unreacted raw materials were recovered to obtain 5.31 f of crude oil.

との粗油を減圧蒸留してbp116.2〜120.2℃
/7襲Hgの留分2.14 tを得た。
Distill the crude oil under reduced pressure to bp116.2-120.2℃
2.14 t of Hg/7% fraction was obtained.

との留分をガスクロマトグラフ法で分析し、生成物とし
て、ベンゼン環にトリクロロビニル基カ導入された核置
換物1.47 F (0,0058モル、収率23.4
%%bpH3,0〜116.0℃/7mHg、  d4
1.2377、  nDl、5596 )及び二量化物
0.28?(0,0014モル、収率5.6%)を得た
The fraction was analyzed by gas chromatography and the product was 1.47 F (0,0058 mol, yield 23.4), a nuclear substituted product in which a trichlorovinyl group was introduced into the benzene ring.
%%bpH3.0-116.0℃/7mHg, d4
1.2377, nDl, 5596) and dimer 0.28? (0,0014 mol, yield 5.6%) was obtained.

実施例5 1)−?イメン134.23 f(1,0−E:k)j
−fトラクロロエチレン41.48 f (0,25モ
ル)の混合液を減圧下に封じたのち、60co よシの
γ線を線量率2 X 105R/ hr テ200 、
17時間室温テ照射した。
Example 5 1)-? Imen 134.23 f(1,0-E:k)j
- After sealing a mixed solution of 41.48 f (0.25 mol) of trachloroethylene under reduced pressure, 60 co of gamma rays were applied at a dose rate of 2 x 105 R/hr te 200,
It was irradiated at room temperature for 17 hours.

照射後未反応原料を回収して粗油8.16Fを得た。After irradiation, unreacted raw materials were collected to obtain crude oil 8.16F.

この粗油を減圧蒸留してbp119.5〜136.2℃
/8nHgの留分4.29 Fを得た。
This crude oil was distilled under reduced pressure to a bp of 119.5 to 136.2℃.
A fraction of 4.29 F with /8 nHg was obtained.

との留分をガスクロマトグラフ法で分析して、トリクロ
ロビニル基がベンゼン環に導入された核置換物1.85
 f (0,0070%ル、収率20.5%bp 12
3.0〜123.4℃790I(g%d4 1.178
01nDl、5444 )及び二量化物0.84 f 
(0,0031%ル、収率9,3%)を得た。
The fraction was analyzed by gas chromatography, and a nuclear substitution product in which a trichlorovinyl group was introduced into the benzene ring was found to be 1.85
f (0,0070%l, yield 20.5%bp 12
3.0-123.4℃ 790I (g%d4 1.178
01nDl, 5444) and dimer 0.84f
(0,0031% l, yield 9.3%) was obtained.

Claims (1)

【特許請求の範囲】 1、一般式 ▲数式、化学式、表等があります▼ (式中のR_1はフェニル基又はアルキルフェニル基、
R_2、R_3及びR_4はそれぞれ水素原子又はアル
キル基であり、それらは同一であっても異なってもよい
) で示されるアルキルベンゼンと、一般式 ▲数式、化学式、表等があります▼ (式中のX_1、X_2、X_3及びX_4はそれぞれ
ハロゲン原子であり、それらは同一であっても異なって
もよい) で示されるハロゲン化エチレンとを、高エネルギー放射
線を照射して反応させることにより、一般式 ▲数式、化学式、表等があります▼ (式中のX_1、X_2及びX_3は前記と同じ意味を
もつ) で示される不飽和基を、該アルキルベンゼンのベンゼン
環又はアルキル基のα−位若しくはβ−位に導入するこ
とを特徴とするハロゲン化不飽和アルキルベンゼンの製
法。
[Claims] 1. General formula ▲ Numerical formula, chemical formula, table, etc. ▼ (R_1 in the formula is a phenyl group or an alkylphenyl group,
R_2, R_3 and R_4 are each a hydrogen atom or an alkyl group, and they may be the same or different. , X_2, X_3 and X_4 are each halogen atoms, and they may be the same or different. , chemical formulas, tables, etc. ▼ (X_1, X_2, and X_3 in the formula have the same meanings as above) A method for producing halogenated unsaturated alkylbenzene, which is characterized by introducing halogenated unsaturated alkylbenzene.
JP1521585A 1985-01-29 1985-01-29 Production of halogenated unsaturated alkylbenzene Granted JPS61172836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1521585A JPS61172836A (en) 1985-01-29 1985-01-29 Production of halogenated unsaturated alkylbenzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1521585A JPS61172836A (en) 1985-01-29 1985-01-29 Production of halogenated unsaturated alkylbenzene

Publications (2)

Publication Number Publication Date
JPS61172836A true JPS61172836A (en) 1986-08-04
JPH0133089B2 JPH0133089B2 (en) 1989-07-11

Family

ID=11882648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1521585A Granted JPS61172836A (en) 1985-01-29 1985-01-29 Production of halogenated unsaturated alkylbenzene

Country Status (1)

Country Link
JP (1) JPS61172836A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172305A1 (en) * 2020-02-28 2021-09-02 ダイキン工業株式会社 Manufacturing method for hydrofluoroolefin or fluoroolefin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172305A1 (en) * 2020-02-28 2021-09-02 ダイキン工業株式会社 Manufacturing method for hydrofluoroolefin or fluoroolefin
JP2021134190A (en) * 2020-02-28 2021-09-13 ダイキン工業株式会社 Production method of hydrofluoro olefin or fluoro olefin
CN115151521A (en) * 2020-02-28 2022-10-04 大金工业株式会社 Process for producing hydrofluoroolefin or fluoroolefin

Also Published As

Publication number Publication date
JPH0133089B2 (en) 1989-07-11

Similar Documents

Publication Publication Date Title
Brown et al. Making mercury-photosensitized dehydrodimerization into an organic synthetic method. Vapor-pressure selectivity and the behavior of functionalized substrates
Grumbine et al. Transition metal complexes containing donor-stabilized silylyne ligands. Reductive dimerization to a silylene complex
Wieting et al. Reactions of alkali ions with organic molecules in the gas phase. Low energy pathways for carbonium ion formation and novel methods for generating alkali ion complexes with. pi.-and n-donor bases
Hudrlik et al. Silicon-directed Baeyer-Villiger reactions. Stereospecific synthesis of olefinic acids and esters
US2381000A (en) Halogenated organosilicon compounds
Todd et al. Novel synthetic routes to carbon nitride
Barton et al. The invention of radical reactions. Part XXIX. Radical mono-and dideoxygenations with silanes
Stein Thermochemical kinetics of anthracene pyrolysis
US3842113A (en) Catalyst for reducing carbon dioxide
US3190825A (en) Bromination of aromatic compounds
Abell et al. Low Temperature Epr Studies of Free Radicals in the Ultraviolet Catalyzed Addition of Hydrogen Bromide to Olefins
JPS61172836A (en) Production of halogenated unsaturated alkylbenzene
US3818041A (en) Process for preparing aromatic cyclic thiones
AU616682B2 (en) New perfluoroalkanes and fluorination products thereof
Whitaker et al. An elusive fulvene 1, 7, 11, 24-C 60 (CF 3) 4 and its unusual reactivity
JPS5655405A (en) Polymerization of ethylene
US3562324A (en) Chlorocarboranes and a method for the production thereof
US3853726A (en) Method of producing organochlorosilanes
Pritzkow et al. Inversely coordinating silanide ions in an oligomeric sodium alcoholate
US2628238A (en) (dimethoxymethyl)succinic anhydride and telomeric products
US2940913A (en) Process for preparing carboxylic acids by irradiation
Brown et al. Organoboranes for synthesis. 12. The reaction of organoboranes with nitrogen trichloride. A convenient procedure for the conversion of alkenes into alkyl chloridesvia hydroborationi
Hoshi et al. The Hydroboration of 3-Chloro-1-trimethylsilyl-1-propyne with Dialkylboranes and Its Application to the Syntheses of (E)-3-Trimethylsilyl-2-alkenes and 3-Trimethylsilyl-1-alkenes.
US3783054A (en) High energy beryllium rocket fuel compositions and processes therefor
US3228864A (en) Photochemical process for preparing fluorinated three membered rings

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term