JPS6117281B2 - - Google Patents

Info

Publication number
JPS6117281B2
JPS6117281B2 JP3816378A JP3816378A JPS6117281B2 JP S6117281 B2 JPS6117281 B2 JP S6117281B2 JP 3816378 A JP3816378 A JP 3816378A JP 3816378 A JP3816378 A JP 3816378A JP S6117281 B2 JPS6117281 B2 JP S6117281B2
Authority
JP
Japan
Prior art keywords
light
glossy surface
circularly polarized
glossy
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3816378A
Other languages
Japanese (ja)
Other versions
JPS54130976A (en
Inventor
Kazutada Koshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3816378A priority Critical patent/JPS54130976A/en
Publication of JPS54130976A publication Critical patent/JPS54130976A/en
Publication of JPS6117281B2 publication Critical patent/JPS6117281B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は、光沢度の高い、或いは鏡に近いよう
な面(以下、単に光沢面と記す)の面方向を法線
方向の形で検知し、例えば立体の形状認識等に利
用する、光沢面の法線方向検知方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention detects the surface direction of a highly glossy or mirror-like surface (hereinafter simply referred to as a glossy surface) in the form of a normal direction. This invention relates to a method for detecting the normal direction of a glossy surface, which is used in applications such as the following.

一般に、光沢面の作る起伏や立体の形状認識
は、輝度分布パタンが周囲や光源の像を含むもの
であるため、輝度分布パタンに基く通常の方法で
は、処理がきわめて困難である。
In general, it is extremely difficult to recognize the undulations and three-dimensional shapes created by a glossy surface using conventional methods based on brightness distribution patterns, since the brightness distribution pattern includes images of the surroundings and light source.

ひとつの解決方法として、シルエツトを利用す
る試みがある。しかし、当然のことながら、輪郭
線の内側の様子は知りえない。
One solution is to use silhouettes. However, as a matter of course, we cannot know what is happening inside the contour line.

本発明はこれ等に鑑てなされたもので、物体の
形状とか起伏を知るには構成各面の方向が有力な
手懸りとなることに着目した上で、種々の向きを
もつ光沢面の法線方向(結局は光沢面方向)を組
織的に容易に検知し得る方法を提供し、このよう
な対象の形状認織を可能とすることを主目的とし
たものである。
The present invention was made in view of the above, and it focuses on the fact that the direction of each constituent surface is a powerful clue in understanding the shape and undulation of an object, and it is based on the method of glossy surfaces with various orientations. The main purpose of this invention is to provide a method that can easily detect the line direction (ultimately, the direction of the glossy surface) in a systematic manner, and to enable shape-recognizing weaving of such objects.

先づ、本発明の原理から説明を始める。 First, the principle of the present invention will be explained.

われわれは反射光によつて面を見ている。反射
光は、正反射成分と拡散反射成分ととから成る。
このうち反正射成分は明確な性質をもつている。
すなわち、 (1) 反射の法則に従う。
We see surfaces through reflected light. The reflected light consists of a regular reflection component and a diffuse reflection component.
Of these, the reflection component has distinct properties.
That is, (1) It follows the law of reflection.

(2) 理論的に導ける偏光特性をもつ。これはフレ
ネルの公式として知られている。
(2) It has polarization characteristics that can be derived theoretically. This is known as Fresnel's formula.

光沢度の低い一般の面では拡散反射成分が大き
いため上記の性質がはつきり現れず、輝度は、光
源方向に対する面の傾きに関連して現れる。その
結果、輝度分布のパタンが形状把握に役立つてい
る。
Since the diffuse reflection component is large on ordinary surfaces with low glossiness, the above-mentioned properties do not appear clearly, and the brightness appears in relation to the inclination of the surface with respect to the direction of the light source. As a result, the brightness distribution pattern is useful for understanding the shape.

これに対して、光沢面では、正反射成分が顕著
であるため、反射の法則の関係にある方向の光源
の輝度が大きく寄与する。したがつて、輝度分布
のパタンの表わす内容は、非光沢面の場合と著し
〓〓〓
く異なる。
On the other hand, on a glossy surface, since the specular reflection component is significant, the brightness of the light source in the direction according to the law of reflection makes a large contribution. Therefore, the content expressed by the brightness distribution pattern is significantly different from that of the non-glossy surface.
very different.

このことから光沢面の方向を求めるには正反射
光の性質を利用するのが至当である。
From this, it is appropriate to use the properties of specularly reflected light to determine the direction of the glossy surface.

正反射光の性質のうち、利用がまず考えられる
のは、反射の法則であるが、反射面が鏡面に近く
ないと像がぼやけ、従つて精度が期待できない
上、光源の位置が既知でも、反射光からだけでは
面の方向を決定できない。これに対し、偏光を入
射したとき正反射光に含まれる偏光成分(完全な
鏡面でない場合には反射光の一部が拡散光に変り
偏光していない成分も生じる)は入射角に依存し
た変化を伴つて現れる。したがつて、偏光状態が
既知の光源で照明すれば、観測される正反射光の
偏光状態から、反射面の方向を知ることができる
はずである。
Among the properties of specularly reflected light, the law of reflection is the first to be considered for its use, but if the reflecting surface is not close to a mirror surface, the image will be blurry, and therefore accuracy cannot be expected, and even if the position of the light source is known, The direction of a surface cannot be determined from reflected light alone. On the other hand, when polarized light is incident, the polarized component included in the specularly reflected light (if the surface is not a perfect mirror, part of the reflected light changes to diffused light and some non-polarized components also occur) changes depending on the angle of incidence. Appears with. Therefore, by illuminating with a light source whose polarization state is known, it should be possible to determine the direction of the reflecting surface from the polarization state of the observed specularly reflected light.

しかし、反射偏光の性質をこのような目的に利
用した試みはなく、これを具体的に実現するには
いくつかの問題がある。まず、対象の面の方向が
そもそも不明なのであるから、光源を対象面の周
囲に多数配置しておく必要がある。次に、観測さ
れた反射光がどの光源によるものかを同定しなけ
ればならない。また、偏光光源として通常の偏光
測定で使用されるような直線偏光を用いると、光
源ごとに偏光面の方位を考慮しなければならない
ため処理が極めて複雑になつてしまう。更に、光
沢物体の形状認識のような場合には、多数の面に
ついて効率よく検知できることも重要である。
However, there has been no attempt to utilize the properties of reflected polarized light for such purposes, and there are several problems in concretely realizing this. First, since the direction of the target surface is unknown in the first place, it is necessary to arrange a large number of light sources around the target surface. Next, it is necessary to identify which light source is responsible for the observed reflected light. Furthermore, if linearly polarized light such as that used in normal polarization measurements is used as a polarized light source, the processing becomes extremely complicated because the orientation of the plane of polarization must be considered for each light source. Furthermore, in cases such as shape recognition of glossy objects, it is also important to be able to efficiently detect a large number of surfaces.

本発明は、光源として円偏光を用い、反射光の
ストークス・ベクトルを測定して解析することに
より、これらの問題を一挙に解決する。すなわ
ち、光源が円偏光であることが既知であれば、多
数の光源を用いても、光源の位置を同定する必要
がなく、光源自身の偏光面も考えなくてすむ。ま
た、観測されるストークス・ベクトルも簡単な形
になり、しかもこのストークス・ベクトルは、例
えばテレビカメラから入力した画像において、正
反射光が観測された部分ごとに計数すれば得られ
るから、組織的な処理が可能になる。
The present invention solves these problems at once by using circularly polarized light as a light source and measuring and analyzing the Stokes vector of reflected light. That is, if it is known that the light source is circularly polarized light, even if a large number of light sources are used, there is no need to identify the position of the light source, and there is no need to consider the polarization plane of the light source itself. Furthermore, the observed Stokes vector has a simple form, and this Stokes vector can be obtained by counting each part of an image where specularly reflected light is observed, for example in an image input from a television camera. processing becomes possible.

ここで、予じめ、求めるべき面方向乃至法線方
向の表し方を第1図に即して説明しておく。
Here, how to represent the surface direction or normal direction to be determined will be explained in advance with reference to FIG.

観測面3は、反射接平面(単に「反射面」と記
す)1上の入射点5における入射光4の正反射光
6に垂直にとる。
The observation surface 3 is perpendicular to the specularly reflected light 6 of the incident light 4 at the incident point 5 on the reflection tangent plane (simply referred to as "reflection surface") 1.

観測面3内に基準方位ξをとる。 A reference orientation ξ is taken within the observation plane 3.

入射面2は観測面3に垂直になるから、両者の
交線がξとなす角で傾きを表わすことができる。
ここでは、図示のように、90゜ずらした角αを採
用する。
Since the entrance plane 2 is perpendicular to the observation plane 3, the inclination can be expressed by the angle ξ formed by the intersection line between the two.
Here, as shown in the figure, an angle α shifted by 90° is adopted.

観測方向ζと面法線7とのなす角は反射角で
あり、これは入射角に等しい。
The angle formed by the observation direction ζ and the surface normal 7 is the reflection angle, which is equal to the incidence angle.

入射点5における法線の方向は、このα(−90
゜≦α≦90゜)と(0≦≦90゜)とで表わす
ことができる。
The direction of the normal at the point of incidence 5 is this α(-90
It can be expressed as (゜≦α≦90°) and (0≦≦90°).

次に、反射面の振幅反射率をρ⊥、ρ‖、位相
差をδ、複素屈折率をm^=n−iKとすると、フ
レネルの公式から、次の関係式を導ける。
Next, assuming that the amplitude reflectance of the reflecting surface is ρ⊥, ρ‖, the phase difference is δ, and the complex refractive index is m^=n−iK, the following relational expression can be derived from Fresnel's formula.

ここに、添字‖、⊥はそれぞれ入射面に平行、
垂直な成分であることを表わし、また、sin、
cosを、見やすくするため、S、Cと記し
た。この表記は以下でも用いる。
Here, the subscripts ‖ and ⊥ are parallel to the plane of incidence, respectively,
It represents a vertical component, and sin,
Cos is written as S and C to make it easier to see. This notation will also be used below.

一方、入射面がαだけ傾いている反射面の偏光
変化特性を表わすミユーラ行列は次のように表わ
せる。
On the other hand, the Mueller matrix representing the polarization change characteristics of a reflective surface whose incident surface is tilted by α can be expressed as follows.

〓〓〓
但し、r^*は、r^の共役複素数P、U、VはP2
+U2+V2=1の関係があり、に対する変化の
概略を第2図に示す。Uはの1価関数である。
〓〓〓
However, r^ * is the conjugate complex number P, U, and V of r^ are P 2
There is a relationship of +U 2 +V 2 =1, and the change in the relationship is shown in FIG. 2. U is a monovalent function of .

さて、入射光が円偏光であると、ストークス・
ベクトルは、 で表わせるから、これに反射面のミユーラ行列を
左から掛けると、次のような簡単な形で、反射光
のストークス・ベクトルが得られる。
Now, if the incident light is circularly polarized, the Stokes
The vector is Since it can be expressed as

実際の反射面では何らかの偏光解消を伴うの
で、観測されるストークス・ベクトルは、自然光
成分を加えた次の形で表わされる。
Since some kind of depolarization is involved in an actual reflective surface, the observed Stokes vector is expressed in the following form with the natural light component added.

〓〓〓
ここで、光源輝度や振幅反射率の絶対値の影響
を除くため、次のように正規化する。
〓〓〓
Here, in order to remove the influence of the absolute value of the light source brightness and amplitude reflectance, normalization is performed as follows.

この関係を利用すると、面方向を表わす角およ
びαは次の手順で求めることができる。
Using this relationship, the angle representing the plane direction and α can be determined by the following procedure.

(1) L′、X′、O′を測定する。(1) Measure L′, X′, and O′.

(2) Ip′を√′2+′2+′2として算出する。(2) Calculate Ip′ as √′ 2 +′ 2 +′ 2 .

(3) l、x、oを算出する。(3) Calculate l, x, and o.

(4) U=oを満たすを求める。(4) Find a condition that satisfies U=o.

(5) に対するP、Vを求める。Find P and V for (5).

(6) 次の関係式からαを算出する。(6) Calculate α from the following relational expression.

signα=sign(−Vl+Px) 次に、本発明を実施するための装置の構成の一
例を、第3図に示す。ここで、10は複数方向か
ら円偏光4、たとえば右回り円偏光を発生する光
源の群であり、測定対象たる方向が未知の光沢面
をもつ光沢物体12に対し、その周囲から投光す
るように複数の円偏光光源を配置する。この物体
12からの反射光6を偏光検知手段としての1/4
波長板13および直線偏光板14を介してテレビ
カメラなどの撮像装置17に導く。この反射光6
は撮像装置17の受光レンズ15により、観測面
3(第1図)に配置した受光素子としての光電素
子16に結像され、それにより光沢物体2の被測
定部たる光沢面を特定する。ここで、1/4波長板
13および直線偏光板14をパルスモータなどを
用いて回転させ、受光素子16に導く反射光の強
度の変化を自動的にサンプルできるようにするの
が好適である。本発明では、1/4波長板13を回
転させながら撮像した画像を計算機(図示せず)
に送る。計算機では、サンプルされた複数枚の画
像を解析して、正反射光が観測できた部分につい
て対応する物体面の法線方向、すなわち角およ
びαを上述したような手順で算出する。
signα=sign(-Vl+Px) Next, an example of the configuration of an apparatus for implementing the present invention is shown in FIG. Here, 10 is a group of light sources that generate circularly polarized light 4, for example, right-handed circularly polarized light, from multiple directions, and is designed to project light from around a shiny object 12 with a shiny surface whose direction is unknown. multiple circularly polarized light sources. 1/4 of the reflected light 6 from this object 12 as polarization detection means
The light is guided to an imaging device 17 such as a television camera via a wavelength plate 13 and a linear polarizing plate 14. This reflected light 6
is imaged by the light-receiving lens 15 of the imaging device 17 onto a photoelectric element 16 as a light-receiving element arranged on the observation surface 3 (FIG. 1), thereby identifying the glossy surface of the glossy object 2 as the part to be measured. Here, it is preferable to rotate the 1/4 wavelength plate 13 and the linear polarizing plate 14 using a pulse motor or the like so that changes in the intensity of the reflected light guided to the light receiving element 16 can be automatically sampled. In the present invention, an image taken while rotating the 1/4 wavelength plate 13 is sent to a computer (not shown).
send to The computer analyzes a plurality of sampled images and calculates the normal direction of the object surface, that is, the angle and α, for the portion where specularly reflected light can be observed, using the procedure described above.

なお、光源10は、電球のような点光源、蛍光
灯のような線光源、あるいは有限な面光源のいず
れでもよく、また、輝度に多少の差があつてもよ
いが、円偏光板(図示せず)を介して円偏光4と
し、しかもかかる円偏光4が光沢物体2に対して
十分多方向から入射できるように配置し、あるい
はこれら多方向から光沢物体2に円偏光4が入射
するよう走査する。これは、多方向の円偏向のう
ちいずれかの円偏光により方向が未知の光沢面か
ら正反射光を観測しうるようにするためである。
ただし、その光源の方向や輝度を知る必要はな
い。
The light source 10 may be a point light source such as a light bulb, a line light source such as a fluorescent lamp, or a finite surface light source.Although there may be some difference in brightness, the light source 10 may be a circularly polarizing plate (Fig. (not shown), and arranged so that the circularly polarized light 4 can enter the glossy object 2 from sufficiently many directions, or so that the circularly polarized light 4 can enter the glossy object 2 from many directions. scan. This is to enable specularly reflected light from a glossy surface whose direction is unknown to be observed using any one of circularly polarized lights out of multiple directions of circularly polarized light.
However, it is not necessary to know the direction or brightness of the light source.

観測面上にとる基準方位は、任意に選べるが、
水平方向を採るのが一般的であろう。
The reference orientation taken on the observation plane can be chosen arbitrarily, but
Generally, the horizontal direction is taken.

ストークス・ベクトルの測定方法は種々知られ
ているので、精度、装置など、目的や状況に応じ
て利用しやすいものを選ぶことができる。精度を
要しない場合は次の方法が簡便である。すなわ
ち、1/4波長板13、直線偏光板14の各方位を
β、γとして測定した受光強度をI〓、〓で表わ
すとたとえば、I0゜、0゜、I90゜、90゜、I45
゜、45゜、I0゜、45゜の4種の測定値を用いて、
次のように求めることができる。
Various methods of measuring Stokes vectors are known, and one can choose one that is easy to use depending on the purpose and situation, such as accuracy and equipment. If precision is not required, the following method is simple. That is, if the received light intensity measured with the directions of the 1/4 wavelength plate 13 and the linear polarizing plate 14 as β and γ is expressed as I〓 and 〓, for example, I 0゜, 0゜, I 90゜, 90゜, I 45
Using four types of measurement values: ゜, 45゜, I 0゜, 45゜,
It can be obtained as follows.

〓〓〓
に対するP、U、Vの値は、あらかじめ、反
射面の複素屈折率から算出するか別に測定するか
して求めたものを、適当に補間して記憶しておく
ことにより、演算処理の短縮を図ることができ
る。
〓〓〓
The values of P, U, and V can be calculated in advance from the complex refractive index of the reflecting surface or measured separately, and can be appropriately interpolated and stored to shorten the calculation process. can be achieved.

複数個あるいは連続的な面について同時に検知
する場合には、レンズ15、観測面3、受光素子
16を含む部分を図中、仮想線で示したTVカメ
ラなどの撮像装置17に置きかえ、像面各点につ
いて処理すればよい。ただし、レンズの開口や焦
点距離に比べて対象までの距離は十分大きいと
し、光軸上からはずれる一般の点については横方
向補正を行なう。
When simultaneously detecting multiple or continuous surfaces, replace the part including the lens 15, observation surface 3, and light receiving element 16 with an imaging device 17, such as a TV camera, indicated by phantom lines in the figure, and detect each image surface. All you have to do is process the points. However, it is assumed that the distance to the object is sufficiently large compared to the aperture and focal length of the lens, and lateral correction is performed for general points that are off the optical axis.

以上から明らかなように、本発明によれば光沢
面が単一平面だけでなく起伏や立体を形成する場
合に、各面の法線方向、ひいては面方向を組織的
に検知することができ、またそのための装置も簡
易な構成で提供し得るため、従来の方法では困難
であつた光沢面物体の形状認識が可能となり、こ
の種形状認識技術への貢献度は極めて高いものが
ある。
As is clear from the above, according to the present invention, when the glossy surfaces form not only a single plane but also undulations or three-dimensional shapes, the normal direction of each surface, and even the surface direction, can be systematically detected. Furthermore, since a device for this purpose can be provided with a simple configuration, it becomes possible to recognize the shape of objects with glossy surfaces, which has been difficult with conventional methods, and the degree of contribution to this type of shape recognition technology is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光沢面の面方向乃至法線方向の表わし
方の説明図、第2図は面方向を定義するに必要な
入、反射角に対する関係値P、U、Vの変化の
概略図、第3図は本方法を実施する際の装置例の
概略構成図、である。 図中、1は反射接平面、2は入射面、3は観測
面、4は入射光、5は入射点、6は反射光、7は
反射接平面の法線、10は円偏光光源群、12は
光沢面を有する測定対象としての光沢物体、13
は1/4波長板、14は直線偏光板、15は結像レ
ンズ、16は受光素子、17は全体としての撮像
装置、である。 〓〓〓
Figure 1 is an explanatory diagram of how to represent the surface direction or normal direction of a glossy surface, and Figure 2 is a schematic diagram of changes in relational values P, U, and V with respect to the angle of incidence and reflection necessary to define the surface direction. FIG. 3 is a schematic diagram of an example of an apparatus for carrying out this method. In the figure, 1 is a reflective tangent plane, 2 is an incident plane, 3 is an observation plane, 4 is incident light, 5 is an incident point, 6 is reflected light, 7 is a normal to the reflective tangent plane, 10 is a group of circularly polarized light sources, 12 is a glossy object as a measurement target having a glossy surface; 13
14 is a 1/4 wavelength plate, 14 is a linear polarizing plate, 15 is an imaging lens, 16 is a light receiving element, and 17 is the entire imaging device. 〓〓〓

Claims (1)

【特許請求の範囲】[Claims] 1 方向が未知の光沢面の周囲に円偏光を発生す
る円偏光光源を複数個配置し、前記光沢面に対し
て固定した観測方向に偏光検知手段を介して受光
手段を配置し、前記複数個の円偏光光源からの各
円偏光を前記光沢面に入射させ、当該光沢面から
の前記観測方向に至る反射光を前記偏光検知手段
に導き、その出力光を前記受光手段で受光し、そ
の受光手段の出力に基づいて、前記反射光の偏光
状態をストークス・ベクトルの形態で得、当該ス
トークス・ベクトルと前記光沢面についての偏光
変化特性を表わすミユーラ行列との演算により前
記光沢面についての法線方向を検知することを特
徴とする光沢面方向検知方法。
1. Arranging a plurality of circularly polarized light sources that generate circularly polarized light around a glossy surface whose direction is unknown, and disposing a light receiving means via a polarization detection means in a fixed observation direction with respect to the glossy surface, Each circularly polarized light from a circularly polarized light source is made incident on the glossy surface, the reflected light from the glossy surface reaching the observation direction is guided to the polarization detection means, the output light is received by the light receiving means, and the light is received by the light receiving means. Based on the output of the means, the polarization state of the reflected light is obtained in the form of a Stokes vector, and the normal to the glossy surface is calculated by calculating the Stokes vector and the Mueller matrix representing the polarization change characteristics for the glossy surface. A glossy surface direction detection method characterized by detecting direction.
JP3816378A 1978-04-03 1978-04-03 Direction detection of bright side Granted JPS54130976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3816378A JPS54130976A (en) 1978-04-03 1978-04-03 Direction detection of bright side

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3816378A JPS54130976A (en) 1978-04-03 1978-04-03 Direction detection of bright side

Publications (2)

Publication Number Publication Date
JPS54130976A JPS54130976A (en) 1979-10-11
JPS6117281B2 true JPS6117281B2 (en) 1986-05-07

Family

ID=12517726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3816378A Granted JPS54130976A (en) 1978-04-03 1978-04-03 Direction detection of bright side

Country Status (1)

Country Link
JP (1) JPS54130976A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021148A1 (en) * 2008-08-20 2010-02-25 国立大学法人東北大学 Optical device and method for shape and gradient detection and/or measurement and associated device
JP2011106920A (en) * 2009-11-16 2011-06-02 Tohoku Univ Rotation/inclination measuring device and method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300954B1 (en) 1997-09-12 2001-10-09 Meiryo Tekunika Kabushiki Kaisha Methods and apparatus for detecting liquid crystal display parameters using stokes parameters
CN101542232B (en) * 2007-08-07 2011-10-19 松下电器产业株式会社 Normal information generating device and normal information generating method
JP5681555B2 (en) * 2011-04-27 2015-03-11 パナソニックIpマネジメント株式会社 Glossy appearance inspection device, program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021148A1 (en) * 2008-08-20 2010-02-25 国立大学法人東北大学 Optical device and method for shape and gradient detection and/or measurement and associated device
JP5751470B2 (en) * 2008-08-20 2015-07-22 国立大学法人東北大学 Shape / tilt detection and / or measurement optical apparatus and method and related apparatus
JP2011106920A (en) * 2009-11-16 2011-06-02 Tohoku Univ Rotation/inclination measuring device and method thereof

Also Published As

Publication number Publication date
JPS54130976A (en) 1979-10-11

Similar Documents

Publication Publication Date Title
US10502556B2 (en) Systems and methods for 3D surface measurements
Saito et al. Measurement of surface orientations of transparent objects using polarization in highlight
EP0877914B1 (en) Scanning phase measuring method and system for an object at a vision station
US9752869B2 (en) Systems and methods for performing machine vision using diffuse structured light
JP3747471B2 (en) Polarization direction detection type two-dimensional light reception timing detection device and surface shape measurement device using the same
JP7228690B2 (en) 3D sensor with oppositely arranged channels
JPH03183904A (en) Detection of shape of object
US5963326A (en) Ellipsometer
US11573428B2 (en) Imaging method and apparatus using circularly polarized light
CN109470173A (en) A kind of binary channels simultaneous phase shifting interference microscopic system
Wolff Surface orientation from two camera stereo with polarizers
Wang et al. Rapid 3D measurement of high dynamic range surface based on multi-polarization fringe projection
JPS6117281B2 (en)
Li et al. Versatile four-axis gonioreflectometer for bidirectional reflectance distribution function measurements on anisotropic material surfaces
US5414517A (en) Method and apparatus for measuring the shape of glossy objects
Xiang et al. Spatial phase-shifting profilometry by use of polarization for measuring 3D shapes of metal objects
US5383025A (en) Optical surface flatness measurement apparatus
JP2015081894A (en) Surface shape measurement device and surface shape measurement method
Kawate et al. New scatterometer for spatial distribution measurements of light scattering from materials
Morel et al. Polarization imaging for 3D inspection of highly reflective metallic objects
Faber et al. Can deflectometry work in presence of parasitic reflections?
US20230168482A1 (en) Phase-shifting diffraction phase interferometry
TWI708040B (en) External reflection-type three dimensional surface profilometer
JPS5817305A (en) Device for measuring magnetic head spacing
JPS63191010A (en) Method of measuring surface roughness