JPS6117228B2 - - Google Patents

Info

Publication number
JPS6117228B2
JPS6117228B2 JP15729277A JP15729277A JPS6117228B2 JP S6117228 B2 JPS6117228 B2 JP S6117228B2 JP 15729277 A JP15729277 A JP 15729277A JP 15729277 A JP15729277 A JP 15729277A JP S6117228 B2 JPS6117228 B2 JP S6117228B2
Authority
JP
Japan
Prior art keywords
manufacturing
acid anhydride
resin
epoxy resin
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15729277A
Other languages
Japanese (ja)
Other versions
JPS5490501A (en
Inventor
Juzo Hagiwara
Yoshiaki Kimura
Haruhiko Okazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15729277A priority Critical patent/JPS5490501A/en
Publication of JPS5490501A publication Critical patent/JPS5490501A/en
Publication of JPS6117228B2 publication Critical patent/JPS6117228B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電機コイルの製造方法に係り、絶縁処
理の方法に関する。 回転機・変圧器などの電気機器が高電圧化およ
び大容量化するに併なつてコイル絶縁には電気
的・機械的および物理的に優れた特性が要求され
るようになつた。 一般に高圧・大容量回転電機のコイル絶縁処理
方法は次の二つに分けられる。 一つは接着剤の少ない、いわゆるドライマイカ
テープを電気導体上に巻回してタンク内に入れ、
減圧下乾燥し溶剤および水分などを除去したの
ち、絶縁組織の空隙部にエポキシ樹脂などの無溶
剤合成樹脂を減圧および加圧注入する方法であ
る。 もう一つの方法は、絶縁層を形成するために必
要且つ十分な樹脂量をあらかじめ含んだ、いわゆ
るプリプレグマイカテープを電気導体上に巻回し
た後加熱モールドを行なう方法である。 前者はマイカテープ巻回後に樹脂注入工程があ
るので製作期間を長く要し、製作コストが高くな
る。しかも高圧・大容量の回転機および変圧器の
ように製作台数が少ないものは、注入樹脂の可使
期間内に樹脂をくり返し使用する機会がない場合
がある。このような場合は製作コストがさらに高
くなる。しかし、注入する樹脂の選定あるいは最
適なる注入工程により電気的・機械的および物理
的に優れた絶縁層を得ることはできる。 後者は、樹脂注入工程がないので製作期間が短
く、製作コストが安い。しかし絶縁層の内部から
揮発性物質が抜けきらなかつたり、あるいは空隙
が残存しやすいため高温・高電圧時の電気特性が
劣る。 又、これらの改良のため完全な無溶剤プリプレ
グマイカテープが使用されているが、可使期間が
短い、柔軟性に乏しい巻回作業のさい電気導体を
加熱しながら行なうなど種々欠点がある。プリプ
レグマイカテープを用いて減圧樹脂注入方法と同
等以上の電気的・機械的および物理的特性の得ら
れるプリプレグテープおよびコイル絶縁処理法が
要望されている。 本発明は上記課題に対処してなされたものでマ
イカテープに含有される接着樹脂を可使期間が長
くかつ電気導体上への巻回作業性の優れた溶剤型
に改良し、減圧下での加熱乾燥工程においてマイ
カテープに含まれる溶剤や水分などの揮発性物質
および電気導体に巻回する際発生する微小な空隙
などを除去し、しかる後に温度・圧力を適切に選
定し、樹脂を硬化することにより減圧樹脂注入方
法と同等以上の特性を有するコイル絶縁を得るも
のである。 以下本発明において使用するプリプレグマイカ
テープおよびその電機コイルへの適用方法を具体
的に説明する。 本発明に用いるマイカテープの特色は、エポキ
シ樹脂と酸無水物からなる樹脂を接着剤に用い、
かつ電気導体へのテープ巻回作業を容易とし、又
テープ可使期間を長くするため適度の溶剤分を含
有させる点にある。 一般にエポキシ樹脂硬化剤としての酸無水物
は、反応が緩慢なために硬化促進剤を併用する
が、そのようにするとコイル巻回後のモールド工
程で樹脂の流動が十分に行なわれにくく、絶縁層
に空隙が残り、高温時の電気特性・絶縁耐力に悪
影響を与える。具体例としては、本発明における
マイカテープ接着用ワニス、ビスフエノールA系
エポキシ樹脂(例えばシエル社製商品名エピコー
ト828あるいはエピコート1001)に酸無水物(例
えばメチルナジツク酸無水物)を加えたのち、ア
セトン、トルオールあるいはメチル・エチル・ケ
トンなどの溶剤を加えた樹脂に硬化促進剤(例え
ばBF3―ピペリジンなど)を全く添加しない場合
あるいは0.1部、または1部を加えた場合の絶縁
層のtanδ―電圧特性を第1図に示す。 固形樹脂分が40%以下になるとワニスの粘度が
低下し、通常のプリプレグマイカテープ製作時の
乾燥履歴では裏打材との接着が悪くなりはがれや
すくなる。又、固形樹脂分が80%以上になるとプ
リプレグマイカテープの柔軟性は、気温と残存揮
発分の影響を敏感に受け、テープの製造保管が難
かしく電気導体への巻回作業性が非常に不安定と
なる。 脂環系エポキシ樹脂は、酸無水物との硬化反応
が急速に行なわれるのでビスフエノールA系エポ
キシ樹脂に対して30%以上になるとテープのポツ
トライフが短かくなると共に、硬化反応のための
加熱・加圧中における樹脂の熱流出量が少なくな
り、空隙のない緻密な絶縁層を得にくい。第2図
に具体例として脂環系エポキシ樹脂(例えばチツ
ソノツクス221など)をビスフエノールA系エポ
キシ樹脂に対して30%以上のものと、30%以下の
ものとの熱流出量を示す。 マイカテープのポツトライフを短くすることな
くコイル成型時に適切な作業性と樹脂の熱流出性
を保ち、しかも得られたコイルが高温度・高電圧
下で優れた絶縁特性を示すためには硬化剤酸無水
物として少くとも無水メチルCD酸(例えば日本
化薬製カヤハードMCDなど)を40%含有するの
がよい。具体例として表1における樹脂配合のサ
ンプルコイルのtanδ―電圧特性を第3図に示
す。
The present invention relates to a method of manufacturing an electric coil, and more particularly, to a method of insulation treatment. As the voltage and capacity of electrical equipment such as rotating machines and transformers have increased, coil insulation has come to be required to have excellent electrical, mechanical, and physical properties. In general, coil insulation treatment methods for high-voltage, large-capacity rotating electric machines can be divided into the following two types. One is to wrap so-called dry mica tape, which uses less adhesive, around an electrical conductor and place it in a tank.
After drying under reduced pressure to remove solvent and moisture, a solvent-free synthetic resin such as an epoxy resin is injected into the voids of the insulating structure under reduced pressure and pressure. Another method is to wrap a so-called prepreg mica tape, which already contains a sufficient amount of resin necessary to form an insulating layer, onto an electrical conductor and then heat mold it. The former requires a resin injection process after winding the mica tape, which requires a long manufacturing period and increases manufacturing costs. Furthermore, in the case of high-voltage, large-capacity rotating machines and transformers, which are produced in small numbers, there may be no opportunity to use the resin repeatedly within the usable life of the injected resin. In such a case, the manufacturing cost becomes even higher. However, it is possible to obtain an electrically, mechanically, and physically excellent insulating layer by selecting the resin to be injected or by selecting an optimal injection process. The latter does not require a resin injection process, so the manufacturing period is short and the manufacturing cost is low. However, volatile substances cannot escape from inside the insulating layer, or voids tend to remain, resulting in poor electrical properties at high temperatures and high voltages. Further, completely solvent-free prepreg mica tapes have been used to improve these properties, but they have various drawbacks such as short pot life, poor flexibility, and the need to heat the electrical conductor during winding. There is a need for a prepreg tape and coil insulation treatment method that uses prepreg mica tape to obtain electrical, mechanical, and physical properties equivalent to or better than the reduced pressure resin injection method. The present invention was made in response to the above-mentioned problems, and the adhesive resin contained in mica tape has been improved to a solvent type that has a long shelf life and is easy to wind on electrical conductors. During the heating and drying process, volatile substances such as solvent and moisture contained in the mica tape and minute voids that occur when it is wound around an electrical conductor are removed, and then the temperature and pressure are appropriately selected to harden the resin. By doing so, it is possible to obtain coil insulation having characteristics equivalent to or superior to those obtained by the reduced pressure resin injection method. The prepreg mica tape used in the present invention and the method of applying it to an electric coil will be specifically described below. The characteristics of the mica tape used in the present invention are that a resin consisting of an epoxy resin and an acid anhydride is used as an adhesive;
In addition, the tape contains an appropriate amount of solvent in order to facilitate the tape winding work around the electrical conductor and to extend the usable life of the tape. Generally, acid anhydride as an epoxy resin curing agent has a slow reaction, so a curing accelerator is used in conjunction with it, but if this is done, the resin will not flow sufficiently during the molding process after coil winding, and the insulating layer voids remain, which adversely affects electrical properties and dielectric strength at high temperatures. As a specific example, in the mica tape adhesive varnish of the present invention, an acid anhydride (for example, methylnadic acid anhydride) is added to a bisphenol A-based epoxy resin (for example, Epikoat 828 or Epikoat 1001 manufactured by Ciel), and then acetone is added. , tan δ-voltage of the insulating layer when no curing accelerator (for example, BF 3 -piperidine, etc.) is added to the resin with toluene or a solvent such as methyl ethyl ketone, or when 0.1 part or 1 part is added. The characteristics are shown in Figure 1. When the solid resin content is less than 40%, the viscosity of the varnish decreases, and the drying history during normal prepreg mica tape production causes poor adhesion to the backing material and makes it easy to peel off. Furthermore, when the solid resin content exceeds 80%, the flexibility of prepreg mica tape is sensitive to the effects of temperature and residual volatile matter, making it difficult to manufacture and store the tape, and making it extremely difficult to wind it around electrical conductors. It becomes stable. Since alicyclic epoxy resin undergoes a rapid curing reaction with acid anhydride, if it exceeds 30% of bisphenol A epoxy resin, the pot life of the tape will be shortened and the heating and curing reaction required for the curing reaction will be shortened. The amount of heat flowing out of the resin during pressurization is reduced, making it difficult to obtain a dense insulating layer without voids. As a specific example, FIG. 2 shows the amount of heat leaked from an alicyclic epoxy resin (for example, Chitsonox 221, etc.) that is 30% or more of the bisphenol A epoxy resin and when it is 30% or less. In order to maintain appropriate workability and heat flow properties of the resin during coil molding without shortening the pot life of the mica tape, and to ensure that the resulting coil exhibits excellent insulation properties under high temperature and high voltage conditions, the curing agent acid is required. It is preferable to contain at least 40% of anhydrous methyl CD acid (for example, Kayahard MCD manufactured by Nippon Kayaku Co., Ltd.) as an anhydride. As a specific example, FIG. 3 shows the tan δ-voltage characteristics of a sample coil with the resin composition shown in Table 1.

【表】 第4図に示すように酸無水物は100℃の温度で
蒸発するものが多いため、マイカテープ製作時お
よびコイル成型時の加熱で減少する量を余分にあ
らかじめワニス配合時に加え、硬化後のエポキシ
基と酸無水物の当量比を1:0.8〜1.1になるよう
にする。 マイカは、はがしマイカ又は集成マイカのいず
れでもよく、又テープ裏打材としてコイル巻回に
耐えうる強度と耐熱性などから、ガラスクロス・
ガラス繊維またはポリエチレンテレフタレート不
織布などを用いる。 上記配合のワニスにおいてはビスフエノールA
系エポキシ樹脂の一部又は全部をノボラツク樹脂
にかえてもよいが、これを、集成マイカ箔あるい
ははがしマイカの一面にガラスクロスまたはガラ
ス繊維を、また他の面にポリエチレンテレフタレ
ート不織布を配置した基材に、接着剤量が35〜45
%(はがしマイカ使用の場合は15〜20%)になる
ように塗布したのち100〜120℃で1.0〜1.5時間加
熱乾燥して、溶剤分2〜5%のエポキシプリプレ
グマイカテープを得る。 本発明に係る電機コイルの製造方法の特色は、
コイル絶縁として上記配合のエポキシプリプレグ
マイカテープを用いることにより、減圧下におけ
る加熱乾燥において絶縁層内の揮発性物質を除去
した後、温度・圧力を適切に選定したモールド加
熱硬化工程を施こすことにより優れた絶縁性能を
有する巻線絶縁を得る点にある。 次に本発明に係る電機コイルの製造方法を詳細
かつ具体的に、また完成されたコイルの特性を図
にて説明する。電気導体の上に本発明によるエポ
キシプリプレグマイカテープを使用電圧階級に応
じて裏打材のガラスクロスや、ガラス繊維がコイ
ルの表面になるように一定の張力にて半重巻にて
巻回し、適切な寸法に切断されたモールド用の鉄
板を当て、その上に加熱収縮性のテープ(例えば
ポリエチレンテレフタレート)を巻回する。この
ようにされた電気導体を減圧および加圧の可能な
タンクの中にセツトし、減圧下(約3Torr以下)
で巻回数に応じて適切な温度(50〜130℃)と時
間(5〜15Hrs.)の加熱乾燥工程にて絶縁層間
に夾雑する溶剤・水分などの揮発性物質を除去す
る。 然る後にエポキシプリプレグマイカテープ内の
樹脂がゲル化を開始する150〜170℃までタンク内
の温度を上昇し、コイル表面に5〜15Kg/cm2の圧
力が加わる様なモールド加圧処理を施こし、25〜
35時間加熱処理後、60〜80℃まで冷却してからタ
ンクから取り出すことにより優れた特性を有する
コイル絶縁を得ることができる。 このようにして得られたコイル絶縁は、減圧含
浸方式に比較して優れた特性を有し、かつ耐熱性
としてF種を得ることができる。 又、電圧階級に応じて低圧(3300V級)から高
圧(25000V級)までを、加熱・乾燥および硬化
工程1回で製作できる。
[Table] As shown in Figure 4, many acid anhydrides evaporate at a temperature of 100°C, so an extra amount that will be reduced by heating during mica tape production and coil molding is added in advance to the varnish formulation and cured. The equivalent ratio of the epoxy group to the acid anhydride is adjusted to 1:0.8 to 1.1. The mica may be peeled mica or laminated mica, and glass cloth or
Use glass fiber or polyethylene terephthalate nonwoven fabric. In the varnish with the above formulation, bisphenol A
Part or all of the epoxy resin may be replaced with novolac resin, but this can be used as a base material with glass cloth or glass fiber on one side of laminated mica foil or peeled mica, and polyethylene terephthalate nonwoven fabric on the other side. , the amount of adhesive is 35-45
% (15 to 20% in the case of peelable mica) and then heated and dried at 100 to 120°C for 1.0 to 1.5 hours to obtain an epoxy prepreg mica tape with a solvent content of 2 to 5%. The characteristics of the method for manufacturing an electric coil according to the present invention are as follows:
By using epoxy prepreg mica tape with the above formulation as coil insulation, volatile substances in the insulation layer are removed by heat drying under reduced pressure, and then a mold heat curing process is performed with appropriately selected temperatures and pressures. The aim is to obtain winding insulation with excellent insulation performance. Next, the method for manufacturing an electric coil according to the present invention will be explained in detail and specifically, and the characteristics of the completed coil will be explained using figures. The epoxy prepreg mica tape according to the present invention is wrapped on top of the electrical conductor in a half-wrap manner with a constant tension so that the backing material glass cloth or glass fiber is on the surface of the coil depending on the voltage class used. A molding iron plate cut to size is placed on top of the mold, and a heat-shrinkable tape (for example, polyethylene terephthalate) is wrapped around it. The electrical conductor made in this way is set in a tank that can be depressurized and pressurized, and then placed under reduced pressure (approximately 3 Torr or less).
Volatile substances such as solvents and moisture that are mixed between the insulation layers are removed through a heating drying process at an appropriate temperature (50 to 130°C) and time (5 to 15 hours) depending on the number of turns. After that, the temperature inside the tank is raised to 150-170℃, at which point the resin in the epoxy prepreg mica tape starts to gel, and a mold pressure treatment is applied to apply a pressure of 5-15 kg/ cm2 to the coil surface. Strain, 25~
After heat treatment for 35 hours, the coil insulation is cooled to 60-80°C and then taken out from the tank to obtain coil insulation with excellent properties. The coil insulation thus obtained has superior properties compared to the vacuum impregnation method, and can obtain class F heat resistance. Also, depending on the voltage class, it can be manufactured from low voltage (3300V class) to high voltage (25000V class) with a single heating, drying and curing process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はtanδ―電圧特性曲線を示す図、第2
図は熱流出量と熱処理条件の関係を示す図、第3
図は表1における樹脂配合のサンプルコイルの
tanδ―電圧特性を示す図、第4図は酸無水物の
減量率と加熱温度との関係を示す図、第5図およ
び第6図は本発明によつて得られたコイル絶縁と
減圧加圧含浸方式によつて得られたコイル絶縁の
特性を比較して示す図であり、第5図はコイル絶
縁のtanδ―電圧特性を示す図、第6図は500Vに
おけるコイル絶縁のtanδと体積抵抗率の温度特
性を示す図、第7図は水浸漬前後のtanδ―電圧
特性を示す図である。 1…硬化促進剤を0部、2…硬化促進剤を0.1
部、3…硬化促進剤を1部、4…脂環系エポキシ
樹脂をビスフエノールA系エポキシ樹脂に対して
30%以上、5…脂環系エポキシ樹脂をビスフエノ
ールA系エポキシ樹脂に対して30%以下、6…サ
ンプルA、7…サンプルB、8…常圧3Hrs加熱
後、9…100±10mm/Hg3Hrs加熱後、10…プ
リプレグ絶縁コイル、11…真空加圧含浸コイ
ル、12…体積抵抗率(本発明)、13…体積抵
抗率(減圧加圧含浸方式)、14…tanδ(本発
明)、15…tanδ(減圧加圧含浸方式)、16…
水浸前、17…水浸後。
Figure 1 shows the tanδ-voltage characteristic curve, Figure 2 shows the tanδ-voltage characteristic curve.
Figure 3 shows the relationship between heat flow amount and heat treatment conditions.
The figure shows sample coils with resin compositions in Table 1.
Figure 4 shows the relationship between the weight loss rate of acid anhydride and heating temperature. Figures 5 and 6 show the coil insulation obtained by the present invention and reduced pressure. This is a diagram showing a comparison of the characteristics of coil insulation obtained by the impregnation method. Figure 5 is a diagram showing the tan δ - voltage characteristics of coil insulation, and Figure 6 is a diagram showing the tan δ and volume resistivity of coil insulation at 500V. FIG. 7 is a diagram showing the tanδ-voltage characteristics before and after immersion in water. 1...0 parts of curing accelerator, 2...0.1 part of curing accelerator
3... 1 part of curing accelerator, 4... Alicyclic epoxy resin to bisphenol A epoxy resin
30% or more, 5...30% or less of alicyclic epoxy resin to bisphenol A epoxy resin, 6...Sample A, 7...Sample B, 8...After heating for 3 hours at normal pressure, 9...100±10mm/Hg3Hrs After heating, 10... prepreg insulated coil, 11... vacuum pressure impregnation coil, 12... volume resistivity (present invention), 13... volume resistivity (low pressure pressure impregnation method), 14... tan δ (present invention), 15... tanδ (vacuum pressure impregnation method), 16...
Before water immersion, 17...after water immersion.

Claims (1)

【特許請求の範囲】 1 ビスフエノールA系エポキシ樹脂、脂環系エ
ポキシ樹脂およびノボラツク系エポキシ樹脂から
成る群から選ばれたエポキシ樹脂と酸無水物と有
機溶剤とからなるワニスを裏打材上のマイカに含
浸しこのワニスを半硬化状としたプリプレグマイ
カテープを電気導体に巻回してのち加熱減圧乾燥
して揮発性物質を除去ししかるのち加熱モールド
することを特徴とする電機コイルの製造方法。 2 エポキシ樹脂はその30%を超えない部分が脂
環系であることを特徴とする特許請求の範囲第1
項記載の電機コイルの製造方法。 3 エポキシ樹脂はその40〜80%が固形樹脂であ
ることを特徴とする特許請求の範囲第1項記載の
電機コイルの製造方法。 4 酸無水物はその40%以上が無水メチルCD酸
であることを特徴とする特許請求の範囲第1項記
載の電機コイルの製造方法。 5 エポキシ樹脂と酸無水物の配合割合は
酸無水物当量/エポキシ当量=0.8〜1.1であることを特
徴とする 特許請求の範囲第1項記載の電機コイルの製造方
法。
[Scope of Claims] 1. A varnish consisting of an epoxy resin selected from the group consisting of bisphenol A-based epoxy resins, alicyclic epoxy resins, and novolac-based epoxy resins, an acid anhydride, and an organic solvent is applied to mica on a backing material. A method for manufacturing an electrical coil, which comprises: winding a prepreg mica tape impregnated with semi-hardened varnish around an electric conductor, drying under reduced pressure by heating to remove volatile substances, and then heat-molding. 2. Claim 1, wherein not more than 30% of the epoxy resin is alicyclic.
A method for manufacturing an electric coil as described in Section 1. 3. The method for manufacturing an electric coil according to claim 1, wherein 40 to 80% of the epoxy resin is solid resin. 4. The method for manufacturing an electric coil according to claim 1, wherein 40% or more of the acid anhydride is methyl CD acid anhydride. 5. The method for manufacturing an electric coil according to claim 1, wherein the mixing ratio of the epoxy resin and the acid anhydride is acid anhydride equivalent/epoxy equivalent = 0.8 to 1.1.
JP15729277A 1977-12-28 1977-12-28 Preparing insulation for coil of rotary machine Granted JPS5490501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15729277A JPS5490501A (en) 1977-12-28 1977-12-28 Preparing insulation for coil of rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15729277A JPS5490501A (en) 1977-12-28 1977-12-28 Preparing insulation for coil of rotary machine

Publications (2)

Publication Number Publication Date
JPS5490501A JPS5490501A (en) 1979-07-18
JPS6117228B2 true JPS6117228B2 (en) 1986-05-06

Family

ID=15646461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15729277A Granted JPS5490501A (en) 1977-12-28 1977-12-28 Preparing insulation for coil of rotary machine

Country Status (1)

Country Link
JP (1) JPS5490501A (en)

Also Published As

Publication number Publication date
JPS5490501A (en) 1979-07-18

Similar Documents

Publication Publication Date Title
US2656290A (en) Processes for producing electrical coils insulated with mica and synthetic resins and the products thereof
US3845438A (en) Tape insulated conductor
US4085250A (en) Resin rich epoxide-mica flexible high voltage insulation
US3240848A (en) Method of making encapsulated transformers containing a dielectric gas
US2320866A (en) Flexible insulating material
US2479357A (en) Method of making electrical insulations
US2594096A (en) Process for treating windings with completely-reactive compositions
US4661397A (en) Polybutadiene bonded extremely flexible porous mica tape
US4157414A (en) Resin rich polybutadiene-mica flexible high voltage insulation
US3930915A (en) Method of making an electrical article
US2805472A (en) Method for producing insulated coils and products thereof
US3823200A (en) Electrical insulation compound,particularly for high power,high tension coils to be used in rotating electrical machinery,and insulation material utilizing said composition
US3127470A (en) Insulation for electrical conductors
JPH0588489B2 (en)
US3629024A (en) Method of insulating armature coils
JPS636966B2 (en)
JPS6117228B2 (en)
JPH07149928A (en) Production of prepreg for electric insulation and mica tape
US2856547A (en) Insulation of electrical devices
US3068533A (en) Method of impregnating and covering electric windings
JPS5899249A (en) Manufacture of coil for rotary electric machinery
JP3748324B2 (en) Coil for rotating electrical machine
KR870001454B1 (en) Electric apparatus of insulation handling
US3117900A (en) Insulating electrical conductors
JPS6245687B2 (en)