JPS61172009A - Gyrocompass - Google Patents

Gyrocompass

Info

Publication number
JPS61172009A
JPS61172009A JP502586A JP502586A JPS61172009A JP S61172009 A JPS61172009 A JP S61172009A JP 502586 A JP502586 A JP 502586A JP 502586 A JP502586 A JP 502586A JP S61172009 A JPS61172009 A JP S61172009A
Authority
JP
Japan
Prior art keywords
precession
angle
period
motor
gyro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP502586A
Other languages
Japanese (ja)
Inventor
Tadashi Iizuka
正 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP502586A priority Critical patent/JPS61172009A/en
Publication of JPS61172009A publication Critical patent/JPS61172009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PURPOSE:To enable accurate measurement of a compass direction angle, by installing liquid wedge that can be assumed as absence of pendulum length and photoelectric automatic collimator. CONSTITUTION:A liquid wedge 16 is arranged in parallel light beam baths composed of a reflecting mirror M2 fixed in the 1st symbals frame 3 and an integrally constructed photoelectric automatic collimator 14 and by the collimator 14 and the liquid wedge 16 an inclination of the earth rotation is measured photoelectrically and by amplifying this signal, an electric power proportional to the inclination angle is applied to a torque motor 10 and magnetic exciting coil 9 and by this arrangement a period of the precession is accelerated pronouncedly and the true and false error by the horizontal velocity is removed. When the gyromotor starts the recession, when an output of the collimator 14 exceeds a certain value in the neighborhood of a point where the true ratio compass direction is passed, an instantaneous braking electric current proportional to the inclined output is introduced or the braking electric current of the constant pulse width and the constant current intensity is introduced with a frequency proportional to the angle of inclination to a torque motor for setting the precession to the true ratio direction at one or several trials.

Description

【発明の詳細な説明】 従来の舶用ジャイロコンノにスは大型で真比制定時間が
長く高価であったが本発明ジャイロコンパスは真比測定
又は制定時間が極めて早く真比決定精度も飛躍的に向上
し小型軽量廉価である等のすぐれた特長をそなえるもの
1ある。
[Detailed Description of the Invention] Conventional marine gyro compasses are large, take a long time to establish a true ratio, and are expensive; however, the gyro compass of the present invention has an extremely quick true ratio measurement or establishment time, and dramatically improves the accuracy of true ratio determination. There is one type that has excellent features such as being small, lightweight, and inexpensive.

本発明ジャイロコンパスを図面について説明すると次の
通りフある。
The gyro compass of the present invention will be explained as follows with reference to the drawings.

第1図及び第2図、第3図に於いてジャイロモーター(
1)はその回転軸(XX’)のまわりにインI々−ター
el1)からの交流電力を受けて矢印の方向に高速回転
しジャイロモーターの回転軸(xx’)はモーター枠体
(2)により支えられ、ジャイロ軸と直交した垂直な回
転軸(2s)(2s’)とベアリング(2B)(2B)
により第一ジンバル枠(3)の中で回転自在に支承され
、且つ第一ジンバル枠(3ンの上部の吊金具(5)から
吊線(6)lこよりジャイロモーター(1)を含むモー
ター枠体(2)を吊っている。
In Figures 1, 2, and 3, the gyro motor (
The gyro motor 1) receives AC power from the inputter el1) around its rotation axis (XX') and rotates at high speed in the direction of the arrow, and the rotation axis (XX') of the gyro motor is connected to the motor frame (2). supported by vertical rotational axes (2s) (2s') perpendicular to the gyro axis and bearings (2B) (2B)
The motor frame body including the gyro motor (1) is rotatably supported in the first gimbal frame (3) by a hanging wire (6) from the hanging fitting (5) on the upper part of the first gimbal frame (3). (2) is hanging.

第一ジンバル枠(2)は略その重心上にある水平回転軸
(3E+)(as’)とベアリング(3B ) (3S
′)により第二水平ジン−々ル枠(4)の中で回転自在
に支承され、第二水平ジンバル(4)は第一ジンノ々ル
水平軸(3B)(3S′)と同一水平面内フこれと直交
する第ニシン・々ル軸(図示せず)により第一ジンバル
軸と同様な方法により追従枠I内に回転自在に支えよれ
、追従枠αυは上下の垂直軸(工ts)(11B’ )
とベアリング(IIB ) (IIB’)によりジャイ
ロ本体(ハ)の台MC2n上の下盤に)と上面ガラス板
(ハ)の間1全周自在に回転できる構造にしである。
The first gimbal frame (2) has a horizontal rotation axis (3E+) (as') located approximately on its center of gravity and a bearing (3B) (3S
') is rotatably supported in the second horizontal gimbal frame (4), and the second horizontal gimbal (4) is supported in the same horizontal plane as the first gimbal horizontal axis (3B) (3S'). A second gimbal axis (not shown) perpendicular to this is rotatably supported within the follower frame I in the same manner as the first gimbal axis, and the follower frame αυ is connected to the upper and lower vertical axes (works) (11B ' )
The structure is such that it can freely rotate around the entire circumference between the gyro main body (c) on the lower plate on the stand MC2n) and the upper glass plate (c) by bearings (IIB) (IIB').

追従枠<111の上部軸(118)には方向盤α3があ
りカッマーガラス(至)を通じて指標(2)により方向
角を読みとることが1きる。
There is a direction plate α3 on the upper axis (118) of the following frame <111, and the direction angle can be read by the indicator (2) through the cummer glass (to).

尚上部軸(118)上の方向盤下部にはジャイロモータ
ーや他の制御回路への電力を供給するためのスリップリ
ング(Iりがある。
Furthermore, there is a slip ring (I) at the bottom of the direction board on the upper shaft (118) for supplying power to the gyro motor and other control circuits.

追従枠αDの下部軸(IIEI)には追従枠を駆動する
追従歯車@がありサー?モーター働の歯車(2)が噛み
合っている。
There is a follower gear @ on the lower shaft (IIEI) of the follower frame αD that drives the follower frame. The motor gears (2) are meshing.

真比制定型のジャイロコンパスを構成する場合は追従歯
車@とシンクロ発信器翰の歯車C21)が噛み合い方向
角を遠隔伝送するシンクロ受信器+411と接続されリ
ピータ−を駆動する。
When configuring a true-ratio type gyro compass, the follower gear @ and the gear C21) on the synchro transmitter are connected to a synchro receiver +411 that remotely transmits the meshing direction angle to drive a repeater.

真比演算型のジャイロコンパスに於いては追従枠下部軸
(11B’ )上に回転磁気目盛盤α樽を設ける。
In the true ratio calculation type gyro compass, a rotating magnetic scale plate α barrel is provided on the lower shaft (11B') of the tracking frame.

磁気目盛盤<II)ま真円金属ドラムの円周上に磁性膜
を塗布しこれに精密な磁気目盛を録音したものでピック
アップa場とディテクター(至)により、1易親目盛を
瞬時に17200 (3’)まで細分割して方向角を電
気信号としてデジタルでとりだしカウンター((7)で
方向角を計数表示させることが1きる。
Magnetic scale board <II) A magnetic film is coated on the circumference of a perfectly round metal drum and a precise magnetic scale is recorded on it.The pick-up a field and detector (to) instantly change the main scale to 17200. The direction angle can be subdivided up to (3'), the direction angle can be digitally extracted as an electrical signal, and the direction angle can be counted and displayed using a counter ((7)).

以上の構造に於いてジャイロモーター(1)は略奮心1
支えているためジャイロモーターが高速回転するかぎり
そ一ター軸(X X’ )は地球自転と無関係に絶対空
間に於いて一定方向を指向する、0しかし地球は1分間
に1ルの角度の割合で自転しているためモーター枠体(
2)に取付けられた液体楔(1eの上表面は水平面を保
つが下面のガラス板αηは地球自転に応じた傾きを生ず
る。この傾斜角を自動的に光電検出する方法及び検出信
号を用いてジャイロの回転軸に圧下トルクを加え才差運
動を発生させるための光学的構造及び電気回路について
第4図により説明する。
In the above structure, the gyro motor (1) is approximately 1
As long as the gyro motor rotates at high speed, the gyro motor axis (X Since it rotates on its axis, the motor frame body (
2) The upper surface of the liquid wedge (1e) attached to the liquid wedge (1e) maintains a horizontal plane, but the lower glass plate αη tilts according to the rotation of the earth. The optical structure and electric circuit for applying a downward torque to the rotating shaft of the gyro to generate precession will be explained with reference to FIG. 4.

第4図は第1図に示す傾斜検出装置の側面図を示すもの
で第一ジンバル枠(3)に固定された光電オートコリメ
ーターα射よ反射@(M、)とM(至)ニヨリ一体の構
造になっている。
Figure 4 shows a side view of the tilt detection device shown in Figure 1. The photoelectric autocollimator α radiation, reflection @(M,) and M (to) are integrated in the photoelectric autocollimator fixed to the first gimbal frame (3). It has a structure of

オートコリメーターIは対物レンズ(L工)の光軸上に
光軸と45°の傾きをもって配置された半透明鏡(M1
)を経て直角に曲げられた光軸上の焦点面に配置された
発光ダイオード(より)による光を対物レンズを通じて
平行光束として反射鏡(M2)側に送り出す。
The autocollimator I is a semi-transparent mirror (M1) placed on the optical axis of the objective lens (L) at an angle of 45° to the optical axis.
), the light emitted by the light emitting diode (straight) arranged at the focal plane on the optical axis bent at right angles is sent out to the reflecting mirror (M2) through the objective lens as a parallel beam.

発光ダイオード(より)は直径α2〜α5ies+の点
光源フあり寿命が半永久的で光源位置が安定1単色光、
小型、小電力1対震性にすぐれ、本装置に利用する光源
として極めて有利である。
Light emitting diodes (more) have a point light source with a diameter of α2 to α5ies+, have a semi-permanent life, and have a stable light source position.1 Monochromatic light.
It is small, has low power consumption, and has excellent earthquake resistance, making it extremely advantageous as a light source for use in this device.

今前記した光電オートコリメーターa4の光路上に液体
楔aQがないとすれば対物レンズ(L□)から発射され
た平行光束は反射鏡(M2)により反射され、再び対物
レンズ1集束され半透明鏡(M8)を通過後凹レンズ(
−2)により焦点距離を増倍しその焦点面に光源像(φ
)を結ぶ。
If there is no liquid wedge aQ on the optical path of the photoelectric autocollimator a4 mentioned above, the parallel light beam emitted from the objective lens (L□) will be reflected by the reflecting mirror (M2), and will be focused again on the objective lens 1, making it semitransparent. After passing through the mirror (M8), the concave lens (
-2), the focal length is multiplied and the light source image (φ
).

焦点面には光電変換素子(PD、)(PD2)が光軸対
象に2個配置してあり両者の素子に入射した光は夫々光
電変換され差動増巾器(至)を経てトルクモーターの励
磁コイル(9)に供給され第一ジンバル枠の回転軸(3
E+’)に直結したトルクモーターrラム員に回転力を
発生せしめ、その結果圧下トルクを与えることが1きる
On the focal plane, two photoelectric conversion elements (PD, ) (PD2) are arranged symmetrically on the optical axis, and the light incident on both elements is photoelectrically converted and sent to the torque motor via a differential amplifier (to). The rotation axis (3) of the first gimbal frame is supplied to the excitation coil (9).
The torque motor (R) directly connected to E+' generates rotational force in the ram member, and as a result, it is possible to apply a rolling torque.

しかし前記するように液体楔α・がない場合は反射像は
軸対象に結像するから二つの光電素子の出力は等しく差
動増巾器の出力は零でありトルクモーターに回転力は生
じない。
However, as mentioned above, if there is no liquid wedge α, the reflected image is formed axially symmetrically, so the outputs of the two photoelectric elements are equal and the output of the differential amplifier is zero, and no rotational force is generated in the torque motor. .

前記するオート;リメーター(141の平行光路上に第
一ジンノ々ル枠(3)に固定した液体楔αeを入れると
モーター軸が水平面から傾いた角度と等しい角度が液体
疾に与えられ傾斜信号を光電検出することがフきる。
When the liquid wedge αe fixed to the first jet nozzle frame (3) is placed on the parallel optical path of the auto remeter (141) described above, an angle equal to the angle at which the motor axis is tilted from the horizontal plane is given to the liquid wedge, and a tilt signal is generated. Photoelectric detection is possible.

液体棟顛は前記するように第一ジンバル枠(3)に固定
された円筒舖内に適轟な粘度を有する透明液体αのを上
下に平行なガラス板aηf封入したものfある。
As described above, the liquid frame is a cylinder fixed to the first gimbal frame (3), in which a transparent liquid α having an appropriate viscosity is enclosed in vertically parallel glass plates aηf.

このような構造の装置に於いてジャイロモーター(1)
がその回転軸(XX)のまわりに高速回転し  、運転
状態になるとジャイロの回転軸は地球自転に無関係に一
定方向を指向するが液面は常に水平面を保つため地球自
転角1キ/6oseeの割合1傾角(0)を生ずる。
In a device with such a structure, a gyro motor (1)
The gyro rotates at high speed around its axis of rotation (XX), and when it is in operation, the axis of rotation of the gyro points in a fixed direction regardless of the rotation of the earth, but the liquid level always remains horizontal, so the angle of rotation of the earth is 1/6 osee. yields a ratio 1 inclination (0).

傾角即ち頂角(0)を有する液体プリズムにコリメータ
ーの射出光が入射するとその偏角αはα=(n−1)・
0 だけ楔の厚い方向に偏光する。
When the emitted light from the collimator is incident on a liquid prism having an inclination angle, that is, an apex angle (0), its deflection angle α is α=(n-1)・
The light is polarized by 0 in the direction of the thicker wedge.

一般に液体の屈折率nは1.51あるからα;α5・θ
となる。この屈折光が反射鏡CM2)により反射される
と光テコの原理により反射方向が逆となり再び液体楔で
0.5・0の偏角を受けて行き戻りの合計で 0.5eθ+0.5・θ=0 の偏角を生ずる。
Generally, the refractive index n of liquid is 1.51, so α; α5・θ
becomes. When this refracted light is reflected by the reflecting mirror CM2), the direction of reflection is reversed due to the principle of optical leverage, and it is again subjected to a declination of 0.5.0 in the liquid wedge, resulting in a total of 0.5eθ + 0.5・θ. produces an argument of =0.

偏角θを受けた反射光が対物レンズに入射するとすれば
これが焦点面に光源像を結像した場合光電素子面に於け
る光軸からの像の変位置ΔBは対物レンi(I+、)と
凹レンズ(L、)jζよって合成された焦点距離Fと前
記偏角0の積 ΔS=F・ 0 の変位を生じΔSに比例した電気信号を得、トルクモー
ターに圧下トルクを与える。圧下トルクの量は前記コリ
メーターの焦点距離Fと差動増巾器の増巾度により定ま
る。
Assuming that the reflected light that has undergone a polarization angle θ is incident on the objective lens, and this forms a light source image on the focal plane, the displacement position ΔB of the image from the optical axis on the photoelectric element surface is the objective lens i (I+,) and the concave lens (L, )jζ generates a displacement of the product ΔS=F·0 of the combined focal length F and the deflection angle 0, and obtains an electric signal proportional to ΔS, which gives a rolling torque to the torque motor. The amount of reduction torque is determined by the focal length F of the collimator and the degree of amplification of the differential amplification device.

以上の説明から明らかなように本発明は液体楔を用いる
ことにより、機械的振子長が略零でしかもコリメーター
の焦点距離と等価な振子を用いた傾斜計と同等な光電出
力が得られるからジャイロ装置が大きな動揺又は水平加
速度を受けても指北作用に殆んどその影響を受けない。
As is clear from the above explanation, by using a liquid wedge, the mechanical pendulum length of the present invention is approximately zero, and a photoelectric output equivalent to that of an inclinometer using a pendulum equivalent to the focal length of the collimator can be obtained. Even if the gyro device is subjected to large oscillations or horizontal accelerations, it will hardly be affected by the pointing action.

又凹レンズ(L2)を組合せて合成焦点距離を長くした
\め変位置へSが大きくなり差動増巾器の増巾度を余り
大きくしなくても多大な圧下トルクを与えることができ
その結果1差運動の周期を大巾に短縮することがフきる
In addition, by combining the concave lens (L2) and increasing the composite focal length, S becomes larger and a large reduction torque can be applied without increasing the amplification degree of the differential amplification device. The period of one-difference motion can be greatly shortened.

このように本発明ジャイロコンパスは前記傾斜検出装置
及びトルクモーターによる圧下トルクの伝達方法により
第一ジンノ々ル枠(3)が速い速度フオ差運動を行うが
、第一ジンノ々ル枠の回転摩擦を極少にするため第一ジ
ンノ々ル枠上部から吊金具(5)によりジャイロモータ
ー(1)及びモーター枠体(2)の重量を支えるのに充
分な張力を有する金属吊線(6)で吊り上下の回転軸(
2B)(2E1)とラジアルゼールベアリング(2B)
(2B)で円滑回転できるようにしである。
As described above, in the gyro compass of the present invention, the first gin nozzle frame (3) performs a high speed differential movement due to the method of transmitting the reduction torque by the inclination detection device and the torque motor. In order to minimize the weight of the gyro motor (1) and motor frame (2), it is suspended from the top of the first gin noll frame using a metal hanging wire (6) with sufficient tension to support the weight of the gyro motor (1) and motor frame (2). axis of rotation (
2B) (2E1) and radial Zeel bearing (2B)
(2B) to ensure smooth rotation.

そごフモーター枠体(2)が才筆運動により角変化を生
ずるとモーター枠体に支持腕で取付けられた差動変圧器
のコアー(7′)と第一ジンバル枠(3)に固着された
差動コイル(7)との間に位置変化を生じその結果角変
化に応じた電気信号を発生する。
When the motor frame (2) undergoes an angular change due to a sharp movement, it is fixed to the core (7') of the differential transformer attached to the motor frame by a support arm and the first gimbal frame (3). A positional change occurs between the differential coil (7) and an electrical signal corresponding to the angular change is generated as a result.

この角変化信号はスリップリングaりを経てサーぜ増巾
器(至)電力増巾器(至)により増巾されサーボそ一タ
ー(2)に供給され歯車機構を介して追従枠α8を駆動
し才筆運動と同様な運動をサーボ追尾する。
This angle change signal is amplified by a surge amplifier (to) and a power amplifier (to) via a slip ring a, and is then supplied to the servo starter (2), which drives the follower frame α8 via a gear mechanism. The servo tracks a motion similar to the handwriting motion.

本発明ジャイロコンパスは前記するような構造をもたせ
次に示すような方法により才筆運動を短時間に制定させ
るか、自動演算システムにより才筆運動を制定すること
なく短時間に且つ高精度に真比を決定させることに意義
がある。
The gyro compass of the present invention has the above-mentioned structure, and can be used to make a sharp stroke motion in a short time by the following method, or to make a precise stroke motion in a short time and with high precision using an automatic calculation system without having to create a sharp stroke motion. It is meaningful to let the ratio be determined.

真比制定型のジャイロコンパスlスを構成する場合は、
第3図に示すような自動制御回路(至)を設け、才筆運
動を短時間に制定し真比を指向させるようにしたもので
ある。
When configuring a true ratio type gyro compass,
An automatic control circuit (to) as shown in FIG. 3 is provided to establish a skillful handwriting movement in a short time and to aim for true ratio.

第6図に於いてジャイロモーターの回転軸(XX’)が
東西を向いて水平に吊られたとすればモーター軸のN側
は毎分15の割合で上るため液体疾aeとトルクモータ
ーα〔により圧下トルクが加はり、S〜8′に示すよう
な才筆運動を生じ、N方位通過点フモーター軸の傾斜角
は積分され才筆運動のスピードは点線P□〜F、Jζ示
す如く最大とf(す、N方位通過後は逆の傾斜角を受は
積分傾斜角は減少し西側の方位でとまり、今度はS端が
圧下トルクを受は運動方向は逆となり、いわゆる才筆運
動を行う。
In Figure 6, if the rotating shaft (XX') of the gyro motor is hung horizontally facing east and west, the N side of the motor shaft rises at a rate of 15 per minute, so due to the liquid speed ae and the torque motor α [ The reduction torque is applied, producing a sharp stroke motion as shown in S~8', and the inclination angle of the motor axis at the passing point in the N direction is integrated, and the speed of the smooth stroke becomes maximum and f as shown by dotted lines P□~F, Jζ. (After passing through the N direction, the integral inclination angle decreases and stops at the west direction, and now the S end receives the rolling torque and the direction of movement is reversed, performing a so-called slender movement.

上記の才筆運動に於いて傾斜角の積分値は常に液体楔の
出力として得られるもの1あり、これを微分すれば微分
値が零を示す点、又は刻々傾斜角を前時刻の値と比較し
これが等しくなる点はモーター軸が略N方位を通過した
時点〕あり、その時点f傾斜角に比例した瞬時制動電流
をトルクモーター(11の励磁コイル(9)に重畳して
加えれば傾斜角はP2〜P0になりその結果才差運動の
振巾を大巾に減少させることが1きる。又残存振巾P3
は次のN方位通過点1同嘩に制動が加えられP4からP
In the above-mentioned stroke, the integral value of the inclination angle is always obtained as the output of the liquid wedge1, and if you differentiate it, you will find the point where the differential value is zero, or you can compare the inclination angle moment by moment with the value at the previous time. However, there is a point at which these become equal when the motor shaft passes approximately the N direction, and at that point, if an instantaneous braking current proportional to the inclination angle f is superimposed on the excitation coil (9) of the torque motor (11), the inclination angle becomes P2 to P0, and as a result, the amplitude of precession can be greatly reduced by 1.Also, the residual amplitude P3
Braking is applied to the next N direction passing point 1, and from P4 to P
.

に減衰し数回の制動インAルスによりN方位に短時間に
制定することが1きる。
It is possible to establish the N direction in a short time by applying several braking pulses.

尚上記の方法は制動電流のノルス巾が一定のものをN方
位通過点の傾斜角に比例した数だけ加え、デジタル的に
制御してもよい。舶用ジャイロの如く才筆運動の振巾が
上記の制御手段を経て1°未満となり実用上問題になら
ない精度限界となれば制動インノルスは停止し一般ジャ
イロコンパスと同様な作動をさせればよい。
The above method may be digitally controlled by adding braking currents with a constant Norse width in a number proportional to the inclination angle of the N direction passing point. As with a marine gyro, when the amplitude of the stroke motion becomes less than 1° after passing through the above-mentioned control means, which is the limit of accuracy that does not pose a practical problem, the braking inolus is stopped and the compass is operated in the same way as a general gyro compass.

真比演算型のジャイロコンパスは第5図に示スように方
向を検知しようとする装置又は船舶等の方向を(YY)
としくYY’)が真比となす角をXとする◇ ジャイロは真比Nを中心に才筆運動を行うためSからd
に正弦振動をする。 ゛ 才筆運動の周期Tはジャイロモーターの回転数、慣性モ
ーメント、圧下トルクの検出ループの利得常数1定まる
。例えば回転子直径52−のジャイロモーターを120
0ORPM’t’回転すると慣性モーメントは約700
f −cm” ?、周期Tは4分程度となり一定値を示
す。
As shown in Figure 5, the true ratio calculation type gyro compass detects the direction (YY) of the device or ship whose direction is to be detected.
Let X be the angle that YY') makes with the true ratio ◇ Since the gyro performs a fine stroke movement centering on the true ratio N, from S to d
vibrates sinusoidally.゛The period T of the swivel motion is determined by the gain constant 1 of the detection loop of the rotation speed of the gyro motor, the moment of inertia, and the reduction torque. For example, a gyro motor with a rotor diameter of 52 mm is
When rotating 0ORPM't', the moment of inertia is approximately 700
f −cm”?, the period T is about 4 minutes and shows a constant value.

振巾すはジャイロモーターの回転軸を東西方向としてク
ランプを解放するとき最大値を示し真比近傍1は小さな
値となる。
When the rotation axis of the gyro motor is set in the east-west direction and the clamp is released, the swing width reaches its maximum value, and the value near the true ratio 1 becomes a small value.

このような才筆運動は第5図に示すように略完全な正弦
運動を形成するものであり時刻tから2xΔtだけ進ん
だ時刻に於ける振巾をa□、Δt 進んだ時刻の振巾を
a2)時刻t″r!a3、逆にΔを遅れた時刻の振巾を
a4.2xΔを遅れた時刻をasとする。
As shown in Fig. 5, this type of stroke motion forms a nearly perfect sine motion, and the amplitude at the time 2xΔt advances from time t is a□, and the amplitude at the time Δt advances from time t. a2) Time t″r!a3, conversely, let the amplitude at the time delayed by Δ be a4.2x The time delayed by Δ is as.

これ等の値は周期T、最大振巾b1装置の方向が真比と
Xの角度だけずれた方位に於ける軸上で正弦波形上にあ
る。
These values lie on a sinusoidal waveform on an axis with a period T and a maximum amplitude b1 in an orientation in which the direction of the device is offset by an angle of true ratio and X.

本装置の角度読取り信号は前記Δtの時間々隔1第2図
の電気回路図に示すシーケンス回路(2)から発せられ
、回転磁気目盛盤cIυのデテクター(至)の出力をカ
ウンター(ロ)で読みとった測角値はコンピューター(
至)に一時記憶される。
The angle reading signal of this device is emitted from the sequence circuit (2) shown in the electric circuit diagram of Fig. 2 at the time interval 1 of the above-mentioned Δt, and the output of the detector (to) of the rotating magnetic scale cIυ is detected by the counter (b). The angle measurement values read are sent to the computer (
(to) is temporarily stored.

周期Tが一定なジャイロシステムfはサンプリング角度
ax x as + a4を用いて真比を次式によって
求めることが↑きる0 2π a2=X+bsin (Z−;Δt)・・・・・・・・
・・・・・・・(1)a3=x+ba1nz    ・
・・・・・・・・・・・・・・(2)a、=X+bBi
nZ#「吃t−bsin−ムt ・aasZT    
     T ・・・・・・・・イ1) ・・・・・・・・・噛 16式に一2cxI2!Δtを乗じ(1’)(ffit
 <i+式の和をとると1f x= a・−2°・−チt+a・    0608.1
10210.14)上式中周期T1Δtは既知、a2・
a3. a、は測定値1あるから真比からの方位角Xは
コンピューター(至)により(4)式を解いて直ちにデ
ジタル表示部−により表示させることが1きる。また周
期Tが未知であったり、不定fあるジャイロシステムは
測定値a1e a2 t a3 r tL4+ asを
用いて周期Tを自動的に求め且つ真比Xを算出すること
ができるOa2とa4について解くと、 a2= X + b81n (Z−、−At )上式を
鵬液、て x a2==X+bainZ−cos−Δt2π −bain−Δt −omZ ”・・・・(5)2π a、=X+1)sinZjcos−Δt2π +bain−Δt ’awaZ・・・・・・”(6)(
5)式から(6)式を引くと 2π a2−a4=−2bsin−Δt−cosZ   ・川
”・・・(71同様にa□ とa、について解くと、 tt SL1=:X+bsin(Z −−−2Δt)K as ;X + ’be in (Z + −・2Δt
 )上式を展開Tると、 2π a1=X+bsユnzcaIT°2□t2π −bain−1Δt IIaysZ ・…・・・”(8
)2π a、 ”X + bainZcm−・2Δt2π +bθ1n−・2Δt−■2・・・・・・・・・(9)
(8)式から(9)式を引くと ゛ 2π (10)−a、ニー2 ebsin −’ 2Δtac
a!z…・・曲…(11員式を(7)式で割ると J * ax + aa e asは測定値でありΔt
は厳密に定められているから周期Tが未知フも上値を用
い69式により随時Tをコンピューター(至)により求
めこれを用いて(4)式により真比方位を求めることが
1きる。
For a gyro system f with a constant period T, the true ratio can be found using the following formula using the sampling angle ax x as + a40 2π a2=X+bsin (Z-; Δt)...
・・・・・・・・・(1) a3=x+ba1nz ・
・・・・・・・・・・・・・・・(2) a,=X+bBi
nZ#「吃t-bsin-mut・aasZT
T ・・・・・・・I1) ・・・・・・・・・16 types and 12cxI2! Multiply Δt (1') (ffit
<If you take the sum of the expressions 1f x= a・−2°・−chit+a・0608.1
10210.14) In the above equation, the period T1Δt is known, a2・
a3. Since a has a measured value of 1, the azimuth X from the true ratio can be immediately displayed on the digital display after solving equation (4) using a computer. Also, in a gyro system where the period T is unknown or has an indefinite f, the period T can be automatically determined using the measured values a1e a2 t a3 r tL4+ as, and the true ratio X can be calculated. Solving for Oa2 and a4 , a2= −Δt2π +bain−Δt 'awaZ......''(6)(
Subtracting equation (6) from equation 5), 2π a2-a4=-2bsin-Δt-cosZ ・River''...(71Similarly, solving for a□ and a, tt SL1=:X+bsin(Z −- -2Δt)K as ;X + 'be in (Z + -・2Δt
) Expanding the above formula, 2π a1=X+bsunzcaIT°2□t2π −bain−1Δt IIaysZ ・……”(8
)2π a, ”X + bainZcm-・2Δt2π +bθ1n-・2Δt-■2・・・・・・・・・(9)
Subtracting equation (9) from equation (8), ゛ 2π (10) - a, knee 2 ebsin -' 2Δtac
a! z...Song...(Divide the 11-membered formula by equation (7): J * ax + aa e as is the measured value and Δt
is strictly determined, so even if the period T is unknown, the upper value can be used to calculate T at any time using equation 69 using a computer (to), and using this, the true ratio direction can be obtained from equation (4).

更に(4)式に(11)式を代入し整理すると、5点測
定を行へば周期Tが未知tも常に正しい真比からの方位
角Xを求めることが1きる。
Furthermore, by substituting equation (11) into equation (4) and rearranging, it is possible to obtain the azimuth X from the true ratio, which is always correct even if the period T is unknown t, by performing measurements at five points.

サンプリングタイムΔtは周期Tのl/16以下とすれ
ばよく、Tを4分とすればΔtは15秒に選び1分以内
に真比からの方位角を1′〜2′の角精度で求められる
ことが実証されている。
The sampling time Δt should be less than 1/16 of the period T, and if T is 4 minutes, Δt should be 15 seconds, and the azimuth from the true ratio can be determined within 1 minute with an angular accuracy of 1' to 2'. It has been proven that

又正弦波形上の各点は常にN点(振巾の中心)を余効す
る情報を含んフいるから前記計測を連続的に行い順次方
位角を指示させるか、或る時間(5′〜1d)の多数の
測定グループの平均値をとることにより更に精度を向上
させることが1きる0本装置は先に説明した如く傾斜検
出を光電的に高感度に行い且つ充分な増巾度をかけてト
ルクモーターにより大きな圧下トルクを加えることが1
きるから才差運動の周期は事実上1分以下とすることが
できるため舶用ジャイロ等に用いる真比制定型受は数回
の制動制御を行っても極めて短時間に相比制定させるこ
とができ、真比演算型では短いサンプリングタイムの間
に極めて高精度に真比方位を瞬時に表示させることがt
きる0以上説明した如く本発明ジャイロコンパスは略重
心で支えられたジャイロモーターを振子長零と見做せる
液体楔と光電オートコリメーターにより高感度に傾斜検
出を行っているため船舶等に使用して、大きなピッチン
グやローリングを受けても精度の低下がなく才差運動の
周期を早めジャイロモーターを強制相比させるか、全く
これを制定することなく瞬時に1′以下のMlf−r!
真真勇方位求めることができるばかりか、緯度変化や電
圧変化により周期の変動するジャイロシステムを用いて
も常にこれを修正して正しい方法が求まる大きな特長を
有し、しかも装置は小型軽量、兼価フあり出力はセルシ
ン遠隔指示、デジタル表示、記録も自在であり他の方向
制御機器への接続も可能フある等の著大な特長を有する
ものである。
Also, since each point on the sine waveform always contains information that has an aftereffect on the N point (the center of amplitude), the above measurement can be performed continuously and the azimuth angle can be indicated sequentially, or the measurement can be performed over a certain period of time (5' to 1 d). ) The accuracy can be further improved by taking the average value of a large number of measurement groups of It is possible to apply a large reduction torque using a torque motor.
Since the precession period can be effectively reduced to less than 1 minute, the true ratio establishment type receiver used in marine gyros can establish the ratio in an extremely short time even if braking control is performed several times. With the true ratio calculation type, it is possible to instantly display the true direction with extremely high accuracy during a short sampling time.
As explained above, the gyro compass of the present invention is suitable for use in ships, etc. because it detects inclination with high sensitivity using a liquid wedge and a photoelectric autocollimator, which allows the gyro motor supported approximately at the center of gravity to be regarded as a pendulum length zero. Then, even when subjected to large pitching or rolling, there is no decrease in accuracy, and the precession cycle is accelerated and the gyro motor is forced to phase, or Mlf-r is instantaneously reduced to less than 1' without establishing this at all!
Not only can the true direction be determined, but even if a gyro system whose period fluctuates due to changes in latitude or voltage is used, it has the great feature of constantly correcting it and finding the correct method. It has great features such as output with value, remote instruction, digital display, recording, and connection to other direction control equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明ジャイロコンパスの一実施例の縦断面図
、第2図は真比演算型ジャイロコンノソスの電気回路を
示すブロック図、第3図は真比制定型ジャイロコン・ぞ
スの電気回路を示すブロック図、第4図は傾斜検出装置
の解説側面因、第5図は真比演算型ジャイロコンパスの
才差運動の過程に於ける正弦波振動の説明図、fsG図
は真比制定型ジャイロコンパスの才差運動の制動過程を
示す説明図1ある。 符号の説明 (1)・・・ジャイロモーター、(2)・・・モーター
枠体、(2B、2B)・・・モーター枠体支持ベアリン
グ、(3)・・・第一ジンバル枠、(38′)・・・第
一シン、6ル枠水平軸、(4)・・・第二水平ジンノ々
ル枠、(6)・・・吊線、(7)・・・差動トランス、
(9)・・・トルクモーター励磁コイル、αトトルクモ
ータードラム、(111・・・追従枠、(11B’)・
・・追従枠下部回転軸、a4・・・光電オートコリメー
ター、αe・・・液体楔、α梯・・・回転磁気録音目盛
盤、員・・・ピックアップ、(M2)・・・反射鏡、T
・・・才差運動の周期、Δt・・・サンプリングタイム
間隔、(X X’ )・・・ジャイロモーター回転軸。
Fig. 1 is a longitudinal sectional view of one embodiment of the gyro compass of the present invention, Fig. 2 is a block diagram showing the electric circuit of the true ratio calculation type gyro compass, and Fig. 3 is a diagram of the true ratio calculation type gyro compass. A block diagram showing the electric circuit, Fig. 4 is an explanation of the side effects of the inclination detection device, Fig. 5 is an explanatory diagram of sine wave vibration in the process of precession of a true ratio calculation type gyro compass, and an fsG diagram is a diagram of the true ratio calculation type gyro compass. There is an explanatory diagram 1 showing the braking process of the precession of the enactment type gyro compass. Explanation of symbols (1)...Gyro motor, (2)...Motor frame, (2B, 2B)...Motor frame support bearing, (3)...First gimbal frame, (38' )...First shin, 6-hole frame horizontal shaft, (4)...Second horizontal gin noll frame, (6)...Hanging wire, (7)...Differential transformer,
(9)...Torque motor excitation coil, α-torque motor drum, (111...Following frame, (11B')
...Following frame lower rotation axis, A4...Photoelectric autocollimator, αe...Liquid wedge, α ladder...Rotating magnetic recording scale board, Member...Pickup, (M2)...Reflector, T
...Period of precession, Δt...Sampling time interval, (X X')...Gyro motor rotation axis.

Claims (1)

【特許請求の範囲】 1)ジャイロモーター(1)を含むモーター枠体(2)
をその回転軸(XX′)が水平になるように第一ジンバ
ル枠(3)の上方から吊線(6)により懸架すると共に
左右動を防止するために上下端部をベアリング(2B)
(2B)で支え、第一ジンバル枠(3)は略その重心で
直交二軸の第二水平ジンバル枠(4)で支え、モーター
枠体の才差運動を差動トランス(7)等の電気的結合に
より追従枠(11)をサーボ追尾せしめるジャイロコン
パスに於て、 才差運動の周期Tを早めるために第一ジンバル枠(3)
に固定された反射鏡(M_2)と一体構造をした光電オ
ートコリメーター(14)の平行光路内に同じく第一ジ
ンバル枠に固定された液体楔(16)を配置し、前記オ
ートコリメーターと液体楔により地球自転の傾斜角を光
電検出し、この信号を増巾して第一ジンバル枠の水平軸
(3S′)に設けられたトルクモーター(10)及び励
磁コイル(9)に傾斜角に比例した電力を加へることに
よりモーター軸上に大きな圧下トルクを与えジャイロモ
ーターを略重心で支えながら才差運動の周期を大巾に早
めると共に水平加速度による真比誤差を除去し、 ジャイロモーターが才差運動をするとき液体楔を含む光
電オートコリメーターの出力が最大値を示す真比方位通
過点近傍でこの値が或る値を超える場合にのみ、任意な
時定数をもたせて傾斜出力に比例した瞬時的な制動電流
を流すか、一定パルス巾で一定電流の制動電流を傾斜角
に比例した回数だけトルクモーターに加えて才差運動を
1回又は数回で真比方向に制定することを特長とするジ
ャイロコンパス。 2)特許請求の範囲1)に示すジャイロコンパスに於い
て傾斜角最大点に於ける瞬時制定用の制動電流を流すこ
となく、無制限な才差運動を続行せしめ、追従枠(11
)の下部(又は上部)回転軸(11S′)上に角度エン
コーダー例へば回転磁気録音目盛盤(18)を装着し才
差運動の1周期の任意な区間を等しい時間々隔Δtで角
度を自動的に読み出し、 才差運動の周期Tが既知のものは三点の方向角値を前記
回転目盛盤(18)から1対又は1対毎に連続的にピッ
クアップ(19)により読み取りこれを自動的に記憶さ
せ、 周期が一定しないジャイロコンパスでは前記同様等しい
時間間隔Δtで5点の方位角値をサンプリングするか、
任意な時間間隔で一周期の正弦波をゲートして直接才差
運動の周期をデジタル測定した値を用いて周期を順次補
正し、 才差運動の真比通過点を、三点サンプリングの方向角値
と周期T、サンプリングタイムΔtを含む函数方程式又
は5点サンプリングの方向角値を含む函数方程式を用い
、電子計算回路により演算決定し才差運動を制止させる
ことなく真比からの方位角を動揺体上で瞬時に且つ高精
度に計測し、これをデジタル表示又は連続記録すること
を特長とするジャイロコンパス。
[Claims] 1) Motor frame (2) including a gyro motor (1)
is suspended from above the first gimbal frame (3) by a hanging line (6) so that its axis of rotation (XX') is horizontal, and bearings (2B) are attached to the upper and lower ends to prevent horizontal movement.
(2B), and the first gimbal frame (3) is supported by a second horizontal gimbal frame (4) with two orthogonal axes approximately at its center of gravity. In a gyro compass that makes the tracking frame (11) perform servo tracking by coupling the first gimbal frame (3) to accelerate the period T of precession,
A liquid wedge (16), which is also fixed to the first gimbal frame, is placed in the parallel optical path of a photoelectric autocollimator (14) which has an integral structure with a reflecting mirror (M_2) fixed to the The inclination angle of the earth's rotation is photoelectrically detected by the wedge, and this signal is amplified and sent to the torque motor (10) and excitation coil (9) installed on the horizontal axis (3S') of the first gimbal frame in proportion to the inclination angle. By applying this electric power, a large reduction torque is applied to the motor shaft, supporting the gyro motor almost at its center of gravity, greatly accelerating the period of precession, and eliminating true ratio errors caused by horizontal acceleration, making the gyro motor more efficient. When performing differential motion, the output of the photoelectric autocollimator including the liquid wedge is proportional to the tilt output with an arbitrary time constant only when this value exceeds a certain value near the true ratio azimuth passing point where the output reaches the maximum value. Either apply a constant braking current with a constant pulse width to the torque motor a number of times proportional to the inclination angle to create precession in the true ratio direction once or several times. Features a gyro compass. 2) In the gyro compass shown in claim 1), unlimited precession is allowed to continue without flowing a braking current for instantaneous establishment at the maximum inclination angle point, and the tracking frame (11
) is equipped with an angle encoder (for example, a rotary magnetic recording dial (18)) on the lower (or upper) rotating shaft (11S'), and automatically adjusts the angle at equal time intervals Δt in any section of one cycle of precession. If the period T of the precession is known, the direction angle values at three points are read from the rotary dial (18) one pair or every pair continuously by the pickup (19) and are automatically read out. For a gyro compass whose period is not constant, sample the azimuth angle values at five points at equal time intervals Δt as described above, or
Gating one period of a sine wave at an arbitrary time interval and using the digitally measured value of the period of the precessional movement, the period is sequentially corrected, and the true ratio passing point of the precession is determined by the direction angle of the three-point sampling. Using a functional equation that includes the value, period T, and sampling time Δt, or a functional equation that includes the directional angle value of five-point sampling, an electronic calculation circuit determines the calculation and oscillates the azimuth from the true ratio without suppressing the precession. A gyro compass is characterized by instantaneous and highly accurate measurements on the body and digital display or continuous recording.
JP502586A 1986-01-16 1986-01-16 Gyrocompass Pending JPS61172009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP502586A JPS61172009A (en) 1986-01-16 1986-01-16 Gyrocompass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP502586A JPS61172009A (en) 1986-01-16 1986-01-16 Gyrocompass

Publications (1)

Publication Number Publication Date
JPS61172009A true JPS61172009A (en) 1986-08-02

Family

ID=11599961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP502586A Pending JPS61172009A (en) 1986-01-16 1986-01-16 Gyrocompass

Country Status (1)

Country Link
JP (1) JPS61172009A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939702A (en) * 1972-08-30 1974-04-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939702A (en) * 1972-08-30 1974-04-13

Similar Documents

Publication Publication Date Title
US4717251A (en) Elevation measurement in high order surveying
US2517612A (en) Stable platform
US4466189A (en) Angle measuring device
US4244116A (en) Devices for measuring the azimuth and the slope of a drilling line
CN104655154A (en) Static balance testing device and method of high-precision gyroscope suspension system
US4339959A (en) Rate gyroscope having an optical sensor system
US5493396A (en) High resolution ring laser gyroscope readout
US2412614A (en) Gyroscopic instrument
US4123849A (en) Miniature north reference unit
US3239673A (en) Photosensitive device for determining relative rotation
JPS61172009A (en) Gyrocompass
US2855781A (en) Stable reference platform
US3890718A (en) Method for determining astronomic north by gyrocompass
RU108644U1 (en) SENSITIVE ELEMENT OF GRAVIMETER
US3898744A (en) Constant precessed gyrocompass
US3863357A (en) Power driven band clamp for pendulous north seeking gyroscopes
US3701200A (en) Gyroscopic instrument
RU2296299C1 (en) Method for determining direction of true meridian of ground transport
JP2578842B2 (en) Azimuth measuring method by optical azimuth measuring device and apparatus used for the azimuth measuring method
Cheremisenov A gyrocompass based on a rotating laser gyroscope: experience in the development and experimental results
RU2237878C2 (en) Method of determining value and phase of unbalance
US3492736A (en) Navigation system
JP2602446B2 (en) True north measurement method
US3442144A (en) Control apparatus
JPS61207919A (en) Due north surveying instrument