JPS61171533A - Preparation of minute spherical particle - Google Patents

Preparation of minute spherical particle

Info

Publication number
JPS61171533A
JPS61171533A JP60011719A JP1171985A JPS61171533A JP S61171533 A JPS61171533 A JP S61171533A JP 60011719 A JP60011719 A JP 60011719A JP 1171985 A JP1171985 A JP 1171985A JP S61171533 A JPS61171533 A JP S61171533A
Authority
JP
Japan
Prior art keywords
drying
moisture
sec
particles
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60011719A
Other languages
Japanese (ja)
Other versions
JPH0261407B2 (en
Inventor
Goro Sato
護郎 佐藤
Yusaku Arima
悠策 有馬
Michio Komatsu
通郎 小松
Hirokazu Tanaka
博和 田中
Yoshitsune Tanaka
喜凡 田中
Takeo Shimada
武雄 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOKUBAI KASEI KOGYO KK
JGC Catalysts and Chemicals Ltd
Original Assignee
SHOKUBAI KASEI KOGYO KK
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOKUBAI KASEI KOGYO KK, Catalysts and Chemicals Industries Co Ltd filed Critical SHOKUBAI KASEI KOGYO KK
Priority to JP60011719A priority Critical patent/JPS61171533A/en
Publication of JPS61171533A publication Critical patent/JPS61171533A/en
Publication of JPH0261407B2 publication Critical patent/JPH0261407B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Colloid Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To improve the shape and density of a minute spherical particle, by performing two-stage spray drying treatment for drying a sol, gel or suspension of inorg oxide or hydroxide at a low drying speed before drying the same at a high speed. CONSTITUTION:A sol, gel or suspension of inorg oxide or hydroxide with a viscosity of about 500cp or less, pref., 50cp or less is sprayed by using a gas- liquid two-fluid mixture and slowly dried at 10-100 deg.C at drying speed of 0.02k moisture/sec.kg solid or less, pref., 0.016kg moisture/sec.kg solid to obtain a powder with moisture content of about 12% or more. This powder is contacted with gas at 110-400 deg.C, pref., 150-300 deg.C and dried at a drying speed of 0.04kg moisture/sec.kg solid or more, pref., 0.05kg moisture/sec.kg solid to obtain a spherical particle with an average particle size of 0.5-30mum.

Description

【発明の詳細な説明】 本発明は微小球状無機酸化物の製造方法に関するもので
ある。さらに詳しくは噴霧乾燥法により微小球状無機酸
化物を製造するに当り、その乾燥を異った条件下の2段
階で行うことにより5、非常に球形度が高く、分散の良
い粒子を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing microspherical inorganic oxides. More specifically, when producing microspherical inorganic oxides by spray drying, drying is carried out in two stages under different conditions. It is related to.

噴震乾燥法により球形粒子を得ることは古くから食品、
医薬品、触媒工業などの分野で行われており、数十ミク
ロン−数百ミクロンの広い幅での球状粒子が得られてい
る。
Obtaining spherical particles by the eruption drying method has been used for food products and other products since ancient times.
It is used in fields such as pharmaceuticals and catalyst industry, and spherical particles with a wide width of several tens of microns to several hundred microns are obtained.

これらの乾燥法は噴霧された液滴を100〜500℃の
直接又は間接加熱された熱風と接触させ、液滴表面から
急速に溶媒を蒸発乾燥させることにより球状粉末を得る
方法である。また上記液滴製造法は大別して次の2種類
の方法に分けられる。1つは、供給液を高圧下に微細孔
を通過させて液滴とする方法(ノズル型式)で、他は高
速回転板により、液を遠心力で液滴とする方法(アトマ
イザ−型式、ディスク式)であり、これらはいずれも液
に直接力を加えて細分断する形式の液滴製造法である。
These drying methods are methods for obtaining spherical powder by bringing sprayed droplets into contact with directly or indirectly heated hot air at 100 to 500°C, and rapidly evaporating the solvent from the droplet surface to dry it. Further, the above-mentioned droplet manufacturing method can be roughly divided into the following two types of methods. One method is to make droplets by passing the supplied liquid through fine holes under high pressure (nozzle type), and the other is to use a high-speed rotating plate to form droplets using centrifugal force (atomizer type, disk type). (Formula), and both of these are droplet production methods in which force is directly applied to the liquid to break it into small pieces.

しかしながら、30μ以下の微小球形粒子を得るために
はいずれの方法にも問題がある。その第1は微小液滴の
連続発生法であり、その第2は乾燥して得られる粉体の
形状である。ノズル形式で微小球形粒子を得ようとすれ
ば、当然噴霧圧力を大幅に高くするか、微細孔の径を極
端に小さくする必要があるが、ポンプ、配管、接続部の
耐圧構造、材質、無機懸濁物による摩耗、塊状物や異物
によるノズルの詰りなど多大な問題が発生し、長期安定
生産は望めない。アトマイザ−形式での回転による液滴
製造では、回転数の増加がその手段となるが、回転伝達
機構の摩耗、破損、発熱の除去など多くの問題があり。
However, both methods have problems in obtaining microspherical particles of 30 μm or less. The first is a continuous generation method of micro droplets, and the second is the shape of the powder obtained by drying. In order to obtain microspherical particles using a nozzle, it is naturally necessary to significantly increase the spray pressure or make the diameter of the micropores extremely small. Many problems occur, such as wear due to suspended matter and nozzle clogging due to lumps and foreign matter, and long-term stable production cannot be expected. Droplet production by rotation in an atomizer format involves increasing the number of rotations, but there are many problems, such as wear and tear on the rotation transmission mechanism and the elimination of heat generation.

やはり長期安定運転は望めない。After all, long-term stable operation cannot be expected.

本発明者らは第1の問題、即ち微小液滴の連続発生法に
は二流体ノズルによる噴霧法(同一ノズルの中へ液体と
高速気体を供給し、気体のせん断力で液を霧状まで微細
に噴霧する方法、きりふき原理の応用)を採用すること
で目的を達成することを見出した。この方法によれば。
The present inventors solved the first problem, that is, a method for continuously generating microdroplets, by using a two-fluid nozzle atomization method (supplying liquid and high-speed gas into the same nozzle, and using the shear force of the gas to turn the liquid into a mist). It was discovered that the objective could be achieved by adopting a method of finely spraying (an application of the Kirifuki principle). According to this method.

気体圧力1〜10kg/a#、ノズルよりの流出速度3
QOm/see以上での運転で、30μ以下の微小粒子
を得ることが可能である。
Gas pressure 1-10kg/a#, flow rate from nozzle 3
By operating at QOm/see or higher, it is possible to obtain fine particles of 30μ or less.

第2のさらに大きな問題は、この二流体ノズルによる噴
霧法によっても30μ以下粒子の製造は可能であるが、
球形度が高く中空でない粒子を得ることは困難である。
The second and bigger problem is that although it is possible to produce particles of 30μ or less using this two-fluid nozzle atomization method,
It is difficult to obtain solid particles with high sphericity.

まず第一に噴霧された微小液滴は粉末やコロイド粒子が
液滴内部でも流動性や移動自由度をもち、第二に液滴か
らの初期の水分蒸発は液滴表面のみから行われることで
ある。微小液滴では比表面積が大きく、通常の100〜
500℃のガス流雰囲気に噴霧された液滴は急速な表面
からの蒸発が起り、表面部分のみが固化し易く、その結
果得られる粒子は球形度を損うばかりでなく、中空やへ
その発生、極端な場合はひずめ状など雑多な非球形粒子
となる。またノズルが高温域に直接さらされることによ
り、ノズルの閉塞やそれに伴う偏流が起りやすく、長期
安定運転は困難であった。
First of all, the powder or colloid particles in the sprayed micro droplets have fluidity and freedom of movement even inside the droplet, and secondly, the initial water evaporation from the droplet occurs only from the droplet surface. be. Micro droplets have a large specific surface area, with a typical surface area of 100~
Droplets sprayed into a gas flow atmosphere at 500°C undergo rapid evaporation from the surface, and only the surface portion is likely to solidify, resulting in particles that not only lose their sphericity, but also have hollow spots and bulges. In extreme cases, the particles become miscellaneous non-spherical particles, such as cone-shaped particles. Furthermore, since the nozzle is directly exposed to a high temperature range, the nozzle is likely to become clogged and the resulting flow drifts, making stable long-term operation difficult.

オ! IIJJ f $ 4!。い□11.□、やや2
91べく鋭意研究を重ねた結果、二流体ノズル式噴霧法
による液滴を、第1段階として低速乾燥速度で乾燥し、
第2段階として高速乾燥速度で乾燥することにより、形
状、密度において満足すべき微小球状粒子が得られるこ
とを見出した。
Oh! IIJJ f $ 4! . □11. □, somewhat 2
As a result of extensive research into 91, we have developed a technology that uses a two-fluid nozzle atomization method to dry droplets at a slow drying speed as the first step.
It has been found that microspherical particles with satisfactory shape and density can be obtained by drying at a high drying speed in the second step.

本発明はこの知見に基くものである。The present invention is based on this knowledge.

以下本発明を工程順を追って説明する。Hereinafter, the present invention will be explained step by step.

本発明の原料は、ゾル、ヒドロゲル、酸化物微粉懸濁液
、酸化物キセロゲル懸濁液などが用いられるが、微小球
形粒子を得る目的からして、ゾル又は懸濁液の粘度は5
00cp以下、好ましく 、は50cp以下が望ましい
、 そして原料としては例えば、シリカゾル、アルミナゾル
、鉄ゾル、チタニャゾル、ジルコニヤゾルなどの高濃度
で低粘度液状であるコロイド液、有機シリコン、有機チ
タン、有機アルミニウム、有機ジルコニウムなどの化合
物溶液又はその加水分解懸濁液、ケイ酸液、ビトロゲル
などの低分子量加水分解液などが使用可能であり、この
中でも高濃度で低粘度のゾル液が最も適している。また
目的に応じ、これらの原料を混合して供することも可能
である。
The raw materials used in the present invention include sol, hydrogel, oxide fine powder suspension, oxide xerogel suspension, etc., but for the purpose of obtaining microspherical particles, the viscosity of the sol or suspension is 5.
00 cp or less, preferably 50 cp or less, and raw materials include, for example, colloidal liquids with high concentration and low viscosity such as silica sol, alumina sol, iron sol, titania sol, and zirconia sol, organic silicon, organic titanium, organic aluminum, and organic Compound solutions such as zirconium or hydrolyzed suspensions thereof, silicic acid solutions, low molecular weight hydrolyzed solutions such as vitrogel, etc. can be used, and among these, high concentration and low viscosity sol solutions are most suitable. Furthermore, depending on the purpose, it is also possible to provide a mixture of these raw materials.

本発明に用いられる微小液適製造設備としては、二流体
ノズル式噴霧法が適している。これは“霧吹き″と称せ
られる液滴製造法の総称であるが、液単味を高圧や高速
回転で切断し液滴を製造するのに比較し、高速の気体で
液をせん断じ液滴化するため微細な液滴を製造し易いか
らである。本漬で噴霧する場合、気体の圧力は1〜10
kg/cJ、好ましくは2.5〜8.0kg/a#、ノ
ズルより噴出する気液混合体の線速度は300m/se
c以上、好ましくは400〜700m/seeが良い。
A two-fluid nozzle spray method is suitable for the micro-liquid manufacturing equipment used in the present invention. This is a general term for droplet production methods called "atomization," but compared to producing droplets by cutting a single liquid with high pressure or high-speed rotation, this method involves shearing the liquid with high-speed gas and turning it into droplets. This is because it is easy to produce fine droplets. When spraying with Honzuke, the gas pressure is 1 to 10
kg/cJ, preferably 2.5 to 8.0 kg/a#, and the linear velocity of the gas-liquid mixture ejected from the nozzle is 300 m/sec
c or more, preferably 400 to 700 m/see.

本発明の第1段階の乾燥は気液二流体混合ノズルで噴霧
された微小液滴を低速乾燥速度で乾燥することにある。
The first stage of drying of the present invention consists in drying the minute droplets sprayed by the gas-liquid two-fluid mixing nozzle at a low drying speed.

乾燥用の気流は噴霧流に対し平行流又は直角流であるこ
とが必要である。
The drying air flow needs to be parallel or perpendicular to the spray flow.

第1段階の乾燥に於ては、乾燥用ガスは予め加熱され、
温度は10〜100℃、好ましくは30〜60℃であり
、そのノズルより供給される噴霧用気体との流量の比は
11,000〜500.好ましくはs、ooo〜900
であることが必要である。乾燥用ガスはLNG、LPG
、油状燃料を燃焼したガスそのままでもよく、又、予め
これらの燃焼や電気などにより間接加熱された空気によ
ってもよし)。
In the first stage of drying, the drying gas is heated in advance,
The temperature is 10-100°C, preferably 30-60°C, and the flow rate ratio with the atomizing gas supplied from the nozzle is 11,000-500°C. Preferably s, ooo~900
It is necessary that Drying gas is LNG, LPG
, gas obtained by burning oily fuel may be used as is, or air that has been indirectly heated in advance by combustion or electricity) may be used.

本発明の目的は中空や異形でない微小球形粒子を得るに
あり、そのためには第1段階の乾燥をゆるやかに行なう
必要がある。本発明によれば低温乾燥域での乾燥速度は
0.02kg水分/秒、kg固型分以下、好ましくは0
.016kg水分/秒、kg固型分以下である必要があ
る。
The purpose of the present invention is to obtain microspherical particles that are neither hollow nor irregularly shaped, and for this purpose it is necessary to perform the first step of drying slowly. According to the present invention, the drying rate in the low temperature drying region is 0.02 kg moisture/sec, kg solids or less, preferably 0.
.. It must be less than 0.016 kg water/sec, kg solid content.

この乾燥速度は便宜上次式で表わされる。For convenience, this drying rate is expressed by the following formula.

得られる粉体の径が30μ以上の場合、本条件下でも非
常に中空度が高く、へその多い粉末が得られる。また、
乾燥速度が本発明より大きい場合、中空やへその多い粉
末が得られるばかりか、ひずめ状やかけら状の軽質な非
球形粒子が得られる。
When the diameter of the obtained powder is 30 μm or more, a powder with a very high degree of hollowness and a large number of hollow holes can be obtained even under these conditions. Also,
When the drying rate is higher than that of the present invention, not only a powder with many hollow holes and navels is obtained, but also light non-spherical particles in the shape of lobes and pieces are obtained.

このようにして得られる第1段乾燥を経た粉末は、その
水分含有量は12%以上であり、これは過剰な乾燥雰囲
気にさらされていないことを示している。
The powder thus obtained after the first stage drying has a moisture content of 12% or more, indicating that it has not been exposed to an excessive drying atmosphere.

本発明の第1段階の乾燥に於て、乾燥用気体は予め加湿
して湿度を調節したものでも構わさない。また既に用い
られた気体より粉体を除去した後の気体の一部を循環使
用することは好ましいことである。
In the first stage of drying of the present invention, the drying gas may be humidified in advance to adjust its humidity. Further, it is preferable to recycle a part of the gas after powder has been removed from the gas that has already been used.

本発明の第2段階の乾燥は、第1段階の乾燥で得られた
粉末を高速で乾燥することにある。
The second stage of drying of the present invention consists in drying the powder obtained in the first stage of drying at high speed.

第1段階の乾燥で得られた粉末は多量の水分を含んでお
り、可能な限り早急に脱水する必要がある。さもなけれ
ば、粉末同志の接触による凝集粉体の発生や、蒸発水の
凝固による液滴による濡れの発生、管壁や乾燥室壁への
衝突による非球形化、スケール化などのトラブルの原因
となる。
The powder obtained in the first stage of drying contains a large amount of water and needs to be dehydrated as soon as possible. Otherwise, problems such as agglomerated powder due to contact between powders, wetting caused by droplets due to solidification of evaporated water, non-spherical shape and scaling due to collision with pipe walls and drying chamber walls may occur. Become.

本発明によれは、第1段階の乾燥で得られた     
  1粉末を110〜400℃、好ましくは150〜3
00℃の気体と接触させて、乾燥速度を0.04kg水
分/秒、kg固型分以上、好ましくは0.05kg水分
/秒0kg固型分とすることにより、凝集粒子や衝突に
よる異形粒子がほとんど無い製品が得られ連続生産が可
能となった。
According to the present invention, the obtained in the first stage drying
1 powder at 110-400℃, preferably 150-3
By contacting with gas at 00°C and setting the drying rate to 0.04 kg moisture/sec, kg solid content or more, preferably 0.05 kg moisture/sec 0 kg solid content, agglomerated particles and irregularly shaped particles due to collision are removed. This enabled us to obtain a product that was almost never available, and to enable continuous production.

第2段階の乾燥により得られた粉体は湿式、乾式捕集な
ど任意の方法で捕集されるが、乾式バグフィルタ−を用
いる方法が最も簡便で好ましい。さらに得られた微小球
粉末は必要に応じ、分級や焼成などの工程を得た後、目
的の用途に供せられる。
The powder obtained in the second stage of drying can be collected by any method such as wet or dry collection, but a method using a dry bag filter is the simplest and preferred method. Furthermore, the obtained microsphere powder is subjected to a process such as classification or firing as required, and then used for the intended purpose.

本発明で得られる微小球状粒子は、次の性状をもってい
る。
The microspherical particles obtained by the present invention have the following properties.

真球度     0.85以上 嵩密度     0.7〜1.5 g /alサイズ範
囲    0.5〜30μ 次に本発明の実施例を比較例と共に示す。
Sphericity: 0.85 or more Bulk density: 0.7 to 1.5 g/al Size range: 0.5 to 30 μ Next, examples of the present invention will be shown together with comparative examples.

実施例及び比較例 市販のシリカゾル、チタニャゾル、アルミナゾルを原料
とし二流体ノズル式噴震法を用いて微粉末乾燥品を得た
。試料A、B、Cは低乾燥速度域と高乾燥絞度域の2段
の乾燥段階を経る方法を用いた本発明の実施例である。
Examples and Comparative Examples Using commercially available silica sol, titania sol, and alumina sol as raw materials, dried fine powder products were obtained using a two-fluid nozzle jetting method. Samples A, B, and C are examples of the present invention using a method that involves two drying stages: a low drying speed region and a high drying degree region.

また試料り、Eは高乾燥速度域に直接噴霧方法を用いた
For sample E, a direct spray method was used in the high drying speed range.

各試料の製造条件を表−1に示す。Table 1 shows the manufacturing conditions for each sample.

噴霧乾燥された粉末を500℃で1時間焼成して得られ
た粉末の性状は表−2のようであった。
The properties of the powder obtained by firing the spray-dried powder at 500°C for 1 hour were as shown in Table 2.

なお下記表に言う真球度とは走査型電子顕微鏡(SEM
)で2000倍拡大し、単一粒子が重ならない様分散し
た電子顕微鏡写真を取り、これを島津製作所(株)のイ
メージアナライザーで画像解析し、単一粒子1ケ1ケの
投影面の面積と円周を測定し、面積から真円と仮定して
得られる相当直径をHDとし、又円周から真円と仮定し
て得られる相当直径をHdとしたときのこれらの2つの
比即ち のことである。
Note that the sphericity mentioned in the table below refers to the sphericity measured using a scanning electron microscope (SEM).
) to take an electron micrograph with 2,000 times magnification and dispersed single particles so that they do not overlap, and analyze this image with a Shimadzu image analyzer to calculate the area of the projected surface of each single particle. Measure the circumference, and let HD be the equivalent diameter obtained from the area assuming it is a perfect circle, and let Hd be the equivalent diameter obtained from the circumference assuming it is a perfect circle. It is.

そしてこの真球度の値が0.850〜1.00のものを
真球とした。かつサンプリングしたもののうち、真球が
90%以上認められるものを真球状微粒子と名付けた。
A ball having a sphericity value of 0.850 to 1.00 was defined as a true sphere. Among the sampled particles, those in which 90% or more of the particles were true spheres were named true spherical fine particles.

又、表面上に小さい粒子の耐着、陥没なとの認められる
粒子は真球とはしない。
In addition, particles that are observed to have small adhesion or depression on the surface are not considered to be true spheres.

表−2 (註)第1図、第2図、第3図は本発明の実施例A、B
、Cの資料の顕微鏡写真であって粒子の揃った球状物で
あることを示している。これに対し第4図及び第5図は
比較例による資料の顕微鏡写真であって、共に粒形が球
状でなかったり不揃いになることを示している。
Table 2 (Note) Figures 1, 2, and 3 are examples A and B of the present invention.
, is a microscopic photograph of material C, showing that it is a spherical object with uniform particles. On the other hand, FIGS. 4 and 5 are micrographs of materials according to comparative examples, and both show that the grain shape is not spherical or irregular.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第5図は何れも本発明方法による粒子及び
比較例の方法による粒子の顕微鏡写真である。 象1図 伊・・ 311゛        第2図 b゛、 :? ダj l“′       第4図
1 to 5 are microscopic photographs of particles obtained by the method of the present invention and particles obtained by the method of the comparative example. Elephant 1 Figure I... 311゛ Figure 2 b゛, :? Figure 4

Claims (1)

【特許請求の範囲】 1、無機酸化物又は水酸化物のゾル、ゲル、懸濁液を噴
霧乾燥して平均粒子径0.5〜30μの球状粒子を得る
に当り乾燥を a、低乾燥速度で乾燥する段階とこれに続く b、高乾燥速度で乾燥する段階 の2段の乾燥段階で行うことを特徴とする微小球状無機
酸化物粒子の製造方法。 2、低乾燥速度域での乾燥速度が0.02kg水分/秒
、kg固型分以下であり、高乾燥速度域での乾燥速度が
0.04kg水分/秒、kg固型分以上である特許請求
の範囲第1項記載の方法。
[Claims] 1. When spray drying a sol, gel, or suspension of an inorganic oxide or hydroxide to obtain spherical particles with an average particle size of 0.5 to 30 μm, drying is performed at a low drying rate. A method for producing microspherical inorganic oxide particles, comprising two drying steps: drying at a high drying rate, followed by drying at a high drying rate. 2. A patent in which the drying speed in the low drying speed range is 0.02 kg moisture/sec, kg solids or less, and the drying rate in the high drying speed range is 0.04 kg moisture/sec, kg solids or more The method according to claim 1.
JP60011719A 1985-01-23 1985-01-23 Preparation of minute spherical particle Granted JPS61171533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60011719A JPS61171533A (en) 1985-01-23 1985-01-23 Preparation of minute spherical particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60011719A JPS61171533A (en) 1985-01-23 1985-01-23 Preparation of minute spherical particle

Publications (2)

Publication Number Publication Date
JPS61171533A true JPS61171533A (en) 1986-08-02
JPH0261407B2 JPH0261407B2 (en) 1990-12-20

Family

ID=11785846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60011719A Granted JPS61171533A (en) 1985-01-23 1985-01-23 Preparation of minute spherical particle

Country Status (1)

Country Link
JP (1) JPS61171533A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350311A (en) * 1986-08-20 1988-03-03 Shiseido Co Ltd Spherical-shaped clay mineral and its production
JP2006306709A (en) * 2005-03-31 2006-11-09 Seiko Epson Corp Method for producing dielectric film and method for producing piezoelectric element as well as method for producing liquid-jet head, dielectric film, piezoelectric element, and liquid-jet apparatus
JP2010105833A (en) * 2008-10-28 2010-05-13 Sekko Seiho Kogokin Shinzairyo Kk Method for producing tricobalt tetroxide
JP2010120842A (en) * 2008-10-24 2010-06-03 Soshin Kagaku Sangyo Kk Method for producing tri-metal tetraoxide
JP2012122068A (en) * 2010-12-03 2012-06-28 Samsung Led Co Ltd Method for preparing phosphor, phosphor, and light emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1382384B1 (en) 2002-07-15 2011-05-18 Asahi Glass Company, Limited Process for producing inorganic spheres

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350311A (en) * 1986-08-20 1988-03-03 Shiseido Co Ltd Spherical-shaped clay mineral and its production
JP2006306709A (en) * 2005-03-31 2006-11-09 Seiko Epson Corp Method for producing dielectric film and method for producing piezoelectric element as well as method for producing liquid-jet head, dielectric film, piezoelectric element, and liquid-jet apparatus
JP2010120842A (en) * 2008-10-24 2010-06-03 Soshin Kagaku Sangyo Kk Method for producing tri-metal tetraoxide
JP2010105833A (en) * 2008-10-28 2010-05-13 Sekko Seiho Kogokin Shinzairyo Kk Method for producing tricobalt tetroxide
JP2012122068A (en) * 2010-12-03 2012-06-28 Samsung Led Co Ltd Method for preparing phosphor, phosphor, and light emitting device

Also Published As

Publication number Publication date
JPH0261407B2 (en) 1990-12-20

Similar Documents

Publication Publication Date Title
Peng et al. Spray-drying cellulose nanofibrils: Effect of drying process parameters on particle morphology and size distribution
JP3284218B2 (en) Apparatus and method for granulating powdery material
JP5312953B2 (en) Spray device for producing finely dispersed spray and process for producing free-flowing spray-dried alumina powder using the spray device
US4089120A (en) Production of macrospherical particles for anti-perspirants and the like
Pham Behaviour of a conical spouted‐bed dryer for animal blood
US6074983A (en) Method for making spherical adsorbent particles
Aundhia et al. Spray Drying in the pharmaceuticaul Industry-A Review
JPH0351459B2 (en)
JP2005514186A (en) Method for producing fine particles
JP5358948B2 (en) Powder coating method
JPS58119341A (en) Catalyst carrier
Chahal et al. Effect of process conditions on spray dried calcium carbonate powders for thermal spraying
JPH0261406B2 (en)
JPH06254382A (en) Production of microcapsule and its apparatus for production
WO1999052822A1 (en) Method for producing spherical silica particles
JPS61171533A (en) Preparation of minute spherical particle
Wang et al. Dispersion and aggregation of nanoparticles derived from colloidal droplets under low-pressure conditions
Binesh et al. Microencapsulation: Spray drying
JPH0343201B2 (en)
CN2794622Y (en) Low temperature jet flow spray drier
JPH0343202B2 (en)
JPS61168520A (en) Production of fine spherical silica powder
JP3957581B2 (en) Method for producing spherical silica powder
Lindeløv et al. Spray drying for processing of nanomaterials
JP2005219972A (en) Mica-based powder having controlled shape and structure and method of manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees