JPS61171133A - Dry etching method - Google Patents

Dry etching method

Info

Publication number
JPS61171133A
JPS61171133A JP1083885A JP1083885A JPS61171133A JP S61171133 A JPS61171133 A JP S61171133A JP 1083885 A JP1083885 A JP 1083885A JP 1083885 A JP1083885 A JP 1083885A JP S61171133 A JPS61171133 A JP S61171133A
Authority
JP
Japan
Prior art keywords
reaction chamber
substrate
gas
etching
etching gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1083885A
Other languages
Japanese (ja)
Inventor
Kanji Tsujii
辻井 完次
Yusuke Yajima
裕介 矢島
Seiichi Murayama
村山 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1083885A priority Critical patent/JPS61171133A/en
Publication of JPS61171133A publication Critical patent/JPS61171133A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable the etching of a superthin layer controlled on atomic- molecular level in a small amount damage, by a method wherein the substrate surface is etched by activating the etching gas previously adsorbed to the substrate surface through utilization of metastable excited molecules having a relatively long lifetime. CONSTITUTION:A valve 14 is closed after the process of etching the substrate surface first layer is finished, and the introduction of metastable molecules into a reaction chamber 7 is stopped by opening a valve 16. After this reaction chamber 7 is exhausted to vacuum again, the etching gas is leaked out of an etching gas source 8 and thus adsorbed on a substrate 6 in the chamber 7. At this step, the metastable excited molecules are exhausted via by-pass pipe 15, valve 16, and pipe 11. Successively, said etching gas remaining in the chamber 7 is exhausted; then, the metastable excited molecules is led into the chamber 7 again, and the substrate 6 is etched on activation of the etching gas which has adsorbed to the substrate 6 surface. At the step when the substrate 6 is etched to a desired thickness by repeating the above-mentioned process, the operation is stopped.

Description

【発明の詳細な説明】 (発明の利用分野〕 本発明はドライエツチング方法に係り、特に被エツチン
グ基板面から単分子・原子層ないしは、数分子・原子層
をエツチングする方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to a dry etching method, and particularly to a method for etching a single molecule/atomic layer or several molecule/atomic layers from the surface of a substrate to be etched.

〔発明の背景〕[Background of the invention]

T、 S Iの製造プロセスが微細化の一途をたどって
いる状況から、新しいエツチング技術として光励起化学
反応を利用する方法が注目されている。
As the manufacturing process for T and SI continues to become finer, a new etching technique that utilizes a photoexcited chemical reaction is attracting attention.

光励起プロセスに期待が寄せられる最大の理由は、低温
プロセスへの期待と共に被エツチング基板へのダメージ
の低減を図ることにあると考えられる。
The main reason for the high expectations for the photoexcitation process is thought to be the desire for a low-temperature process and the desire to reduce damage to the substrate to be etched.

このような光アシストエツチングに関する内容は、例え
ばSem1conductor vorld、 198
4.11 e 103ページに詳しく記載されている。
Contents regarding such optically assisted etching can be found, for example, in Sem 1 conductor vol. 198.
4.11 e Detailed information is provided on page 103.

しかしながら現時点では、光照射した際固体表面で進行
する反応過程については不明な点が多く、各種表面計測
手法を駆使してその解明に力が注がれている。前記の公
知例では、吸着した分子の光活性化により基板面がエツ
チングされることが明らかにされている。この現象を別
の観点から捉えれば、エツチングガスの補給がなければ
吸着したエツチングガスが消耗された段階に至ると、エ
ツチング反応が停止するものと予測される。このことは
、固体表面に吸着させるエツチングガスの量をコントロ
ールすると共に、吸着ガス以外のエツチングガスを系外
に除去し、かかる状況下で基板面の吸着ガスを活性化し
てエツチング反応を進行させると、エツチング深さを分
子・原子レベルで正確にコントロールできることを示唆
している。
However, at present, there are many unknowns about the reaction processes that occur on solid surfaces when exposed to light, and efforts are being made to elucidate them using various surface measurement techniques. In the above-mentioned known example, it has been revealed that the substrate surface is etched by photoactivation of the adsorbed molecules. Looking at this phenomenon from another perspective, it is predicted that if the etching gas is not replenished, the etching reaction will stop when the adsorbed etching gas is exhausted. This means that in addition to controlling the amount of etching gas adsorbed onto the solid surface, etching gases other than the adsorbed gas are removed from the system, and under these conditions the adsorbed gas on the substrate surface is activated to allow the etching reaction to proceed. , suggesting that the etching depth can be precisely controlled at the molecular/atomic level.

いっぽう半導体プロセスの低温化を実現する別の手段と
してプラズマを利用する方法があり、ドライエツチング
やプラズマCVD法に利用されている・プラズマを用い
る方法の欠点として・プラ     Jダマ中で発生す
る荷電粒子による基板損傷の問題。
On the other hand, there is another method of using plasma to lower the temperature of the semiconductor process, and it is used in dry etching and plasma CVD methods. ・Disadvantages of the method using plasma: ・Charged particles generated in plastic J agglomerates board damage issue due to

があり、これを除去する工夫がなされている。たとえば
、公開特許公報昭54−123599号では、マイクロ
波放電で生成したプラズマのうち比較的長寿命を有する
活性種を放電部から離れた位置に移動させ、別に導入し
たモノシランガスと反応させることによってシリコン窒
化膜を形成している。前記公知例には明記されていない
が、上記窒化膜形成に関与する長寿命活性種は、6.1
7eVの励起エネルギー、2.1秒の励起寿命を有する
準安定励起窒素分子N% (A3Σu+)であると推測
される。
, and efforts are being made to eliminate this. For example, in Japanese Patent Publication No. 54-123599, active species having a relatively long life in the plasma generated by microwave discharge are moved to a position away from the discharge part and reacted with separately introduced monosilane gas, thereby producing silicon silicon. A nitride film is formed. Although not specified in the above-mentioned known example, the long-lived active species involved in the formation of the nitride film is 6.1.
It is estimated to be a metastable excited nitrogen molecule N% (A3Σu+) with an excitation energy of 7 eV and an excitation lifetime of 2.1 seconds.

かかる方式に於ては、プラズマ発生部から離れた位置で
反応ガスの解離反応が進行する為、低温下でかつ荷電粒
子による基板の損傷が無く半導体のプロセスを実施する
ことができる6 〔発明の目的〕 したがって本発明の目的は、前記のような原子層・分子
層レベルで制御された超薄層のエツチングを低損傷でエ
ツチング可能なエツチング方法を提供することにある6 〔発明の概要〕 前記目的を達成する為に本発明では、基板面に予め吸着
したエツチングガスを比較的長寿命を有する準安定励起
分子を利用して活性化して基板表面をエツチングするよ
うにしたことを特徴としている。
In such a method, the dissociation reaction of the reaction gas proceeds at a location away from the plasma generation part, so semiconductor processes can be carried out at low temperatures and without damaging the substrate due to charged particles6. [Objective] Therefore, an object of the present invention is to provide an etching method that enables etching of an ultra-thin layer controlled at the atomic layer/molecular layer level as described above with low damage.6 [Summary of the Invention] In order to achieve the object, the present invention is characterized in that the etching gas adsorbed on the substrate surface in advance is activated using metastable excited molecules having a relatively long life, thereby etching the substrate surface.

すなわち本発明においては、被エツチング基板を有する
反応室を排気する工程、前記反応室にエツチングガスを
導入し基板上に吸着させる工程、前記反応室に導入した
残留エツチングガスを排気する工程、前記反応室から離
れた部位で発生した準安定励起分子を前記反応室に導入
して吸着したエツチングガスを活性化し、基板表面をエ
ツチングする工程を含むことを特徴としている。
That is, in the present invention, a step of evacuating a reaction chamber having a substrate to be etched, a step of introducing an etching gas into the reaction chamber and adsorbing it onto the substrate, a step of evacuating the residual etching gas introduced into the reaction chamber, and a step of evacuating the etching gas introduced into the reaction chamber; The method is characterized in that it includes a step of introducing metastable excited molecules generated at a site remote from the chamber into the reaction chamber to activate the adsorbed etching gas and etching the substrate surface.

〔発明の実施例〕 以下、本発明の一実施例を第1図により説明する。1は
窒素や希ガスの供給源、たとえば、窒素を例にとればガ
ス供給源1から出た窒素ガスは弁2及び管3を通って準
安定励起種発生部4で準安定励起窒素分子N、” (A
3Σu0)に変換される。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to FIG. Reference numeral 1 denotes a supply source of nitrogen or a rare gas, for example, taking nitrogen as an example, the nitrogen gas emitted from the gas supply source 1 passes through a valve 2 and a pipe 3 to a metastable excited species generating section 4 where it generates metastable excited nitrogen molecules N. ,” (A
3Σu0).

変換方法としては、マイクロ波放電や二電極放電法が有
効である0発生部4で生成した準安定励起分子は弁14
管5を経て被エツチング基板6を有する反応室7に導入
される。本実施例で基板面の超薄層をエツチングする際
は、前記の如く準安定励起分子を反応室7に導くに先立
ち、基板6の表面にエツチングガスを吸着させておく、
つまり。
As a conversion method, microwave discharge or two-electrode discharge method is effective.The metastable excited molecules generated in the 0 generation section 4 are
It is introduced through a tube 5 into a reaction chamber 7 containing a substrate 6 to be etched. When etching an ultra-thin layer on the substrate surface in this embodiment, before introducing the metastable excited molecules into the reaction chamber 7 as described above, an etching gas is adsorbed onto the surface of the substrate 6.
In other words.

基板6を反応室7の所定の位置に設置後、該反応室7を
いったん真空排気する。つづいてエツチングガス源8か
ら該ガスをリークさせ、弁9.管10を経て反応室7に
導く、前記エツチングガスの導入により、基板6の表面
に該ガスを吸着させたのち、前述した如く準安定励起分
子〔たとえばN−(A’Σu0)〕を反応室7に導き、
基板6に吸着したエツチングガスを活性化し、基板6表
面をエツチングする。準安定励起分子を前記反応室7に
導入中は、未反応の準安定励起分子ガスや前記エツチン
グの過程で生成したガスを弁13管11を通して排気装
置12で排気する。この間、反応室7には、エツチング
ガス源8から反応室7へのガスのリークは中断されてい
るので、基板6の表面に吸着したエツチングガスが消耗
されると、最早や基板6のエツチングは進行しなくなる
。したがって、基板6に当初吸着させるエツチングガス
の層を単分子層もしくは数原子層程度に限定すれば、該
吸着ガス分子と化学量論的に反応してエツチング除去さ
れる基板層の厚さも同程度に限定でき、一層ずつ精度よ
く剥ぎ取ることが可能となる0本実施例により所望の厚
みの基板Mをエツチング除去場合は、前記の基板表面第
1層をエツチングする工程が終了したのち次のプロセス
に移る。まず、弁14を閉じると共に弁16を開き準安
定励起分子が前記反応室7に導入するのを停止する。そ
して該反応室7を再び真空排気したのちエツチングガス
源8から該ガスをリークさせ、反応室7内の前記基板6
上に該ガスを吸着させる。
After the substrate 6 is placed at a predetermined position in the reaction chamber 7, the reaction chamber 7 is once evacuated. Subsequently, the etching gas is leaked from the etching gas source 8, and the etching gas is leaked from the valve 9. By introducing the etching gas into the reaction chamber 7 through the tube 10, the etching gas is adsorbed onto the surface of the substrate 6, and then, as described above, metastable excited molecules [for example, N-(A'Σu0)] are introduced into the reaction chamber. lead to 7,
The etching gas adsorbed on the substrate 6 is activated, and the surface of the substrate 6 is etched. While the metastable excited molecules are being introduced into the reaction chamber 7, unreacted metastable excited molecule gas and gas generated during the etching process are exhausted by the exhaust device 12 through the valve 13 and pipe 11. During this time, gas leakage from the etching gas source 8 to the reaction chamber 7 is interrupted, so once the etching gas adsorbed on the surface of the substrate 6 is consumed, the substrate 6 can no longer be etched. It stops progressing. Therefore, if the layer of etching gas that is initially adsorbed onto the substrate 6 is limited to about a monomolecular layer or a few atomic layers, the thickness of the substrate layer that is etched away by reacting stoichiometrically with the adsorbed gas molecules is also about the same. When removing the substrate M of a desired thickness by etching according to this embodiment, the next process is performed after the step of etching the first layer on the surface of the substrate is completed. Move to. First, the valve 14 is closed and the valve 16 is opened to stop the metastable excited molecules from being introduced into the reaction chamber 7. After the reaction chamber 7 is evacuated again, the etching gas is leaked from the etching gas source 8, and the substrate 6 in the reaction chamber 7 is
The gas is adsorbed onto the top.

この段階では準安定励起分子は、バイパス管15、弁1
6.管11を経由して排気されている。引き続き、反応
室7に残留する該エツチングガスを排気したのち、再び
準安定励起分子を反応室7に導       Jいて、
基板6面に吸着したエツチングガスを活性化して基板6
のエツチングを行う、上記のプロセスを繰り返し、基板
6が所望の厚さまでエツチングされた段階で操作を停止
する。
At this stage, the metastable excited molecules are transferred to the bypass pipe 15 and the valve 1.
6. It is exhausted via pipe 11. Subsequently, after exhausting the etching gas remaining in the reaction chamber 7, the metastable excited molecules are introduced into the reaction chamber 7 again.
The etching gas adsorbed on the surface of the substrate 6 is activated to remove the substrate 6.
The above-described process is repeated, and the operation is stopped when the substrate 6 is etched to a desired thickness.

第2図は、本発明の第2の実施例であり、前記反応室に
準安定励起分子を導入する機能と共に該反応室に設置さ
れた基板面に光エネルギーを照射する機能を具備させた
ことを特徴としている。第1の実施例同様基板22が反
応室23に設置された後系全体を排気装置28で真空排
気する0次にエツチングガス源24から該ガスをリーク
させ、弁25.管26を経て反応室23に導く、その際
基板22の表面にエツチングガスが吸着される。
FIG. 2 shows a second embodiment of the present invention, which is equipped with a function of introducing metastable excited molecules into the reaction chamber and a function of irradiating light energy onto the surface of a substrate installed in the reaction chamber. It is characterized by As in the first embodiment, after the substrate 22 is placed in the reaction chamber 23, the entire system is evacuated by the exhaust device 28. The gas is leaked from the zero-order etching gas source 24, and the gas is leaked from the zero-order etching gas source 24. The etching gas is introduced into the reaction chamber 23 through a tube 26, at which time the etching gas is adsorbed onto the surface of the substrate 22.

つづいて、反応室23内に残留するエツチングガスを排
気装置28により排気する。上記のエツチングガスを基
板22に吸着させたのち、反応室23に残留する該反応
ガスを排気するまでの工程をここでは前工程と呼ぶ。そ
の間、ガス源17からリークした準安定励起分子発生用
ガスは、弁18、管19を経て発生部20で準安定励起
分子に変換され、前記の反応室23内の前工程が完了す
るまでは、排気装置28の働きで管21、弁31、管2
7を経て排気される。前記の前工程が終了した時点で弁
31を閉じ、弁30及び弁29を開けることによって1
発生部20で生成した準安定励起分子を反応室23に導
く、それと同時に光源32から放射される光33を光導
入窓34を通して反応室23に導き基板22面を照射す
る。
Subsequently, the etching gas remaining in the reaction chamber 23 is exhausted by the exhaust device 28. The process from adsorbing the etching gas to the substrate 22 to exhausting the reaction gas remaining in the reaction chamber 23 is herein referred to as a pre-process. Meanwhile, the gas for generating metastable excited molecules leaking from the gas source 17 passes through the valve 18 and pipe 19 and is converted into metastable excited molecules in the generation section 20, until the pre-process in the reaction chamber 23 is completed. , pipe 21, valve 31, pipe 2 by the action of exhaust device 28
7 and then exhausted. 1 by closing the valve 31 and opening the valve 30 and the valve 29 at the time when the above-mentioned pre-process is completed.
The metastable excited molecules generated in the generating section 20 are introduced into the reaction chamber 23, and at the same time, the light 33 emitted from the light source 32 is introduced into the reaction chamber 23 through the light introduction window 34 and illuminates the surface of the substrate 22.

本実施例では、基板22に吸着したエツチングガスは準
安定励起分子と反応して活性化されると共に基板22面
に照射される光エネルギーによっても活性化されるとい
う相乗効果があり、効率良く基板22面の最表層をエツ
チングすることができる0本実施例に於ても、基板22
面を所望の深さだけエツチングする場合は、前記の前工
程の実施とその後の準安定励起分子の反応室23への導
入並びに光エネルギーの基板22への照射の工程とを繰
り返すことにより達成できる。
In this embodiment, there is a synergistic effect in that the etching gas adsorbed on the substrate 22 is activated by reacting with the metastable excited molecules and is also activated by the light energy irradiated onto the surface of the substrate 22, so that the etching gas is efficiently etched onto the substrate 22. In this embodiment, the outermost layer of the substrate 22 can be etched.
Etching the surface to a desired depth can be achieved by repeating the above-mentioned pre-step and the subsequent steps of introducing metastable excited molecules into the reaction chamber 23 and irradiating the substrate 22 with light energy. .

第3図は、本発明の第3の実施例であり、反応室を2個
設けたことを特徴としている0本実施例は、上記の第1
図及び第2図の実施例のもつ一つの問題点、つまり基板
面にエツチングガスを吸着させる工程、さらには続いて
反応室に残留する該ガスを排気する工程、の2工程を実
行している間、準安定励起分子がバイパス管を通して無
駄に消耗される欠点を除去する目的で構成したものであ
る。
FIG. 3 shows a third embodiment of the present invention, which is characterized by having two reaction chambers.
One problem with the embodiments shown in Figs. and 2 is that two steps are performed: a step of adsorbing the etching gas onto the substrate surface, and a subsequent step of exhausting the gas remaining in the reaction chamber. This structure was designed to eliminate the disadvantage that metastable excited molecules are wasted through the bypass pipe during the process.

エツチングガス源43から出た該ガスは管44を経たあ
と、弁45及び弁46の開閉操作により第1の反応室4
1又は第2の反応室42のどちらか一方に流入し該反応
室に設置されている基板面に吸着する。いっぽう準安定
励起分子発生用ガスのガス源35からリークする該ガス
は、管36を経て準安定励起種発生部37で準安定励起
分子に変換され、管38を経たあと、弁39及び弁40
の開閉操作により第1の反応室41又は第2の反応室4
2のどちらか一方に流入する。該反応室では予めエツチ
ングガスを基板面に吸着させておくことにより、流入し
てくる準安定励起分子と反応し、該基板がエツチングさ
れる。たとえば第1の反応室に於て前記の前工程が実施
されている間、準安定励起分子は弁40を経て第2の反
応室に流入され該反応室内に設置された基板のエツチン
グを行う、第2の反応室に設置された前記基板のエツチ
ング工程が完了(該基板に吸着したエツチングガスが消
耗される段階を完了と定義)すると共に、第1の反応室
における前工程が完了する段階に至ったとき、弁40を
閉じると共に弁39を開き、準安定励起分子を第1の反
応室41に導き該反応室に設置されている基板面のエツ
チングを実行する。その間、第2の反応室42では、前
記の前工程を実施するようプログラミングする。このよ
うな構成により、第1図及び第2図の実施例で経験した
如き準安定励起分子の無駄な消耗を抑えることができる
。尚第3図の実施例では、2個の反応室が設けられてい
たが所望の数だけ増設することができる1例えば、前記
の前工程は(1)反応室を排気したのちエツチングガス
を該反応室に導き基板面に吸着させる工程、と(2)該
反応室に残留する該エツチングガスを排気する工程から
なってい6・L′f″″″′・Hifp*’に3“IC
L= f:、Jil +・11   Jの反応室で前記
(1)の工程を、第2の反応室で前記(2)の工程を、
第3の反応室では、その間、準安定励起分子を導入して
エツチングの工程を実施することができる。各々の工程
が完了した段階で各反応室へのガス導入側、更には排気
側に設けられた弁の開閉操作を所定の手順で行い、前記
第1の反応室では、前記(2)の工程を、前記第2の反
応室では、準安定励起分子を導入してエツチングを行う
工程を、前記第3の反応室では、前記(1)の操作を行
うようにプログラミングしておくとよい。
The gas discharged from the etching gas source 43 passes through the pipe 44 and is then opened and closed in the first reaction chamber 4 by opening and closing the valves 45 and 46.
It flows into either the first or second reaction chamber 42 and is adsorbed onto the substrate surface installed in the reaction chamber. On the other hand, the gas leaking from the gas source 35 of the gas for generating metastable excited molecules passes through a pipe 36 and is converted into metastable excited molecules in the metastable excited species generating section 37, and after passing through a pipe 38, the gas leaks from the gas source 35 for generating metastable excited molecules.
The first reaction chamber 41 or the second reaction chamber 4 is opened and closed by opening and closing operations.
It flows into either one of 2. In the reaction chamber, an etching gas is adsorbed on the substrate surface in advance, so that it reacts with the incoming metastable excited molecules, and the substrate is etched. For example, while the above-mentioned pre-step is being carried out in the first reaction chamber, the metastable excited molecules flow into the second reaction chamber through the valve 40 to etch the substrate placed in the second reaction chamber. The etching process of the substrate installed in the second reaction chamber is completed (completeness is defined as the stage in which the etching gas adsorbed on the substrate is consumed), and the pre-process in the first reaction chamber is completed. When this is reached, the valve 40 is closed and the valve 39 is opened to introduce the metastable excited molecules into the first reaction chamber 41 to perform etching of the substrate surface placed in the reaction chamber. Meanwhile, the second reaction chamber 42 is programmed to carry out the aforementioned pre-process. With this configuration, unnecessary consumption of metastable excited molecules as experienced in the embodiments of FIGS. 1 and 2 can be suppressed. In the embodiment shown in Fig. 3, two reaction chambers are provided, but the number can be increased as desired.1For example, in the previous step, (1) the reaction chamber is evacuated and then the etching gas is supplied to the etching chamber. It consists of a step of introducing the etching gas into a reaction chamber and adsorbing it to the substrate surface, and (2) a step of exhausting the etching gas remaining in the reaction chamber.
L = f:, Jil + 11 J The step (1) is carried out in the reaction chamber, and the step (2) is carried out in the second reaction chamber.
In the third reaction chamber, an etching step can be carried out during which metastable excited molecules are introduced. When each step is completed, the valves provided on the gas introduction side and the exhaust side of each reaction chamber are opened and closed according to a predetermined procedure, and in the first reaction chamber, the step (2) is completed. Preferably, the second reaction chamber is programmed to perform the step of introducing metastable excited molecules and etching, and the third reaction chamber is programmed to perform the operation (1).

第4図は、本発明の第4の実施例であり、準安定励起分
子を反応室47に導入する際、該準安定励起分子が基板
58面に一様に衝突する様に構成した装置の部分構成図
である。同図(A)は正面図、同図(B)は準安定励起
分子導入系の上面図である。この系に於ては、反応室4
7の外側で生成された準安定励起分子は第4図の管48
5分岐管49.50を経たのち環状管51に設けられた
4箇所の穴52,53,54,55から反応室47に導
入される。準安定励起分子を反応室47に導入する穴5
2および53は分岐管49と環状管51との接続部56
.また穴54および55は分岐管50と環状管51との
接続部57からそれぞれ等距離にあり、かつ各穴52〜
55は環状管51を四等分する対称位置に設けられてい
る。その為、反応室47に導入された準安定励起分子は
、エツチングガスを吸着した基板58面上にほぼ一様に
拡散して該基板58面を均一にエツチングする。尚第2
図に示したように、基板面に光エネルギーを並行して照
射する系に本実施例を適用する場合は、第4図(A)に
示すように、基板58に対して真上の■の方向から光5
9を照射すればよい。基板58面に光照射を行わない場
合は、環状管51の径を基板58の径より小さくしても
よい。
FIG. 4 shows a fourth embodiment of the present invention, in which an apparatus is constructed such that when introducing metastable excited molecules into the reaction chamber 47, the metastable excited molecules uniformly collide with the surface of the substrate 58. FIG. Figure (A) is a front view, and Figure (B) is a top view of the metastable excited molecule introduction system. In this system, reaction chamber 4
The metastable excited molecules generated outside the tube 7 are the tube 48 in Figure 4.
After passing through five branch pipes 49 and 50, it is introduced into the reaction chamber 47 through four holes 52, 53, 54, and 55 provided in the annular pipe 51. Hole 5 for introducing metastable excited molecules into reaction chamber 47
2 and 53 are connecting portions 56 between the branch pipe 49 and the annular pipe 51
.. Further, the holes 54 and 55 are located at the same distance from the connecting portion 57 between the branch pipe 50 and the annular pipe 51, and each hole 52 to
55 are provided at symmetrical positions dividing the annular tube 51 into four equal parts. Therefore, the metastable excited molecules introduced into the reaction chamber 47 are almost uniformly diffused onto the surface of the substrate 58 on which the etching gas has been adsorbed, thereby uniformly etching the surface of the substrate 58. Furthermore, the second
As shown in the figure, when this embodiment is applied to a system in which light energy is irradiated in parallel to the substrate surface, as shown in FIG. light from direction 5
9 should be irradiated. When the surface of the substrate 58 is not irradiated with light, the diameter of the annular tube 51 may be smaller than the diameter of the substrate 58.

その場合、環状管51に設けられた穴52,53゜54
.55については、第4図(B)に示されているよりも
更に基板58面に対向する位置にシフトすることが望ま
しい。
In that case, the holes 52, 53, 54 provided in the annular tube 51
.. 55 is desirably shifted to a position further facing the surface of the substrate 58 than shown in FIG. 4(B).

第5図は本発明の第5番目の実施例であり、複数の基板
60〜63を並列にエツチングする除用いる装置の部分
構成図である1本実施例は、ちょうど第4図の実施例を
4個併置した構造となっている。本図に於ては、準安定
励起分子は管64から4方向の管65,66.67.6
8に分岐し、つづいて管65は管69及び70に、管6
6は管71及び72に、管67は管73及び74に、管
68は管75及び76に分岐したのち、環状管’I’l
、78.79.80に各々4箇所設けられた穴81〜8
4.85〜88.89〜92.93〜96から反応室に
流入し、エツチングガスを予め吸着した基板60〜63
をエツチングする。尚本実施例では4枚の基板60〜6
3に対して並列エツチングを行う様子が示されているが
、所望の数に増減することができる。
FIG. 5 is a fifth embodiment of the present invention, and is a partial configuration diagram of an etching device for etching a plurality of substrates 60 to 63 in parallel.This embodiment is exactly the same as the embodiment shown in FIG. It has a structure in which four are placed side by side. In this figure, the metastable excited molecules extend from tube 64 to tubes 65, 66, 67, and 6 in four directions.
8, tube 65 then branches into tubes 69 and 70, and tube 6
6 branches into pipes 71 and 72, pipe 67 branches into pipes 73 and 74, pipe 68 branches into pipes 75 and 76, and then the annular pipe 'I'l
, 78, 79, 80 holes 81 to 8 provided in four places each.
4. 85-88. 89-92. Substrates 60-63 flowing into the reaction chamber from 93-96 and adsorbing etching gas in advance.
etching. In this embodiment, four substrates 60 to 6 are used.
Although parallel etching is shown for 3, the number can be increased or decreased as desired.

尚本発明に用いるエツチングガスとしては、半導体のド
ライエツチング分野で広く用いられているハロゲンを含
有するガスが有効である。
As the etching gas used in the present invention, a halogen-containing gas widely used in the field of semiconductor dry etching is effective.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く本発明によれば、被エツチング基板の表
面にある単〜数原子・分子層を精度よく、かつ荷電粒子
による影響を除去して低温状態でエツチングができる。
As described above, according to the present invention, single to several atomic/molecular layers on the surface of the substrate to be etched can be etched with high precision and at low temperatures while eliminating the influence of charged particles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例の装置構成図、第2図は光照
射機能を備えた実施例の装置構成図、第3図は1反応室
を2個備えた実施例の装置構成図、第4図(A)、(B
)は環状管構造のガス導入部をもつ装置の部分構成図で
同図(A)は正面図。 同図(B)は上面図、第5図は複数の基板に対して並列
エツチングを行う機能をもつ実施例の部分構成図である
。 1.17.35・・・準安定励起分子発生用ガス源、4
.20,37・・・準安定励起種発生部、6,22゜5
8.60,61,62.63・・・基板、7,23゜4
1.42.47・・・反応室、8,24.43・・・エ
ツチングガス源、32・・・光源、33.59・・・光
ビーム、34・・・光導入窓、51,77.78,79
゜fJ 1  図 γ 2 図 第 3 回 ■ 4 国
Figure 1 is a configuration diagram of an apparatus according to an embodiment of the present invention, Figure 2 is a configuration diagram of an apparatus according to an embodiment equipped with a light irradiation function, and Figure 3 is a configuration diagram of an apparatus according to an embodiment equipped with two reaction chambers. , Fig. 4 (A), (B
) is a partial configuration diagram of a device having a gas introduction part having an annular tube structure, and (A) is a front view. FIG. 5B is a top view, and FIG. 5 is a partial configuration diagram of an embodiment having a function of performing parallel etching on a plurality of substrates. 1.17.35...Gas source for generating metastable excited molecules, 4
.. 20,37...Metastable excited species generation part, 6,22゜5
8.60,61,62.63...Substrate, 7,23°4
1.42.47...Reaction chamber, 8,24.43...Etching gas source, 32...Light source, 33.59...Light beam, 34...Light introduction window, 51,77. 78, 79
゜fJ 1 Figure γ 2 Figure 3rd ■ 4 Country

Claims (1)

【特許請求の範囲】 1、被エッチング基板を有する反応室を排気する工程、
前記反応室にエッチングガスを導入し前記基板上に吸着
させる工程、前記反応室に導入した残留エッチングガス
を排気する工程、前記反応室から離れた部位で発生した
準安定励起分子を前記反応室に導入して吸着したエッチ
ングガスを活性化し、基板表面をエッチングする工程を
含むことを特徴とするドライエッチング方法。 2、前記の反応室を排気する工程から準安定励起分子を
反応室に導入する工程までを1サイクルとするプロセス
を繰り返すことにより前記被エッチング基板を所望の深
さにエッチングすることを特徴とする特許請求の範囲第
1項記載のドライエッチング方法。 3、前記の準安定励起分子が、窒素もしくは希ガスから
なることを特徴とする特許請求の範囲第1項あるいは第
2項記載のドライエッチング方法。 4、前記エッチングガスにハロゲン元素を含むことを特
徴とする特許請求の範囲第1項から第3項までのいずれ
か1つの項に記載のドライエッチング方法。 5、前記反応室を複数個備え、個々の反応室内に於て (1)エッチングガス導入による前記基板への該ガスの
吸着の工程、 (2)該反応室に残留する該ガスを排気する工程、もし
くは、 (3)前記準安定励起分子を該反応室に導入する工程の
いずれかが実施されると共に、該複数個の反応室内で異
つたフェーズの工程が進行する状況を設定し、前記(3
)の工程が終了した第1の反応室と前記(2)の工程が
終了した第2の反応室のタイミングをとらえ前記準安定
励起分子の流路を第1の反応室から第2の反応室に切り
換える機能を備えたことを特徴とする特許請求の範囲第
1項記載のドライエッチング方法。 6、複数個のガス噴出口を有する環状管から前記準安定
励起分子を前期反応室に導くことを特徴とする特許請求
の範囲第1項記載のドライエッチング方法。
[Claims] 1. A step of evacuating a reaction chamber containing a substrate to be etched;
A step of introducing an etching gas into the reaction chamber and adsorbing it onto the substrate, a step of exhausting residual etching gas introduced into the reaction chamber, and a step of introducing metastable excited molecules generated in a region away from the reaction chamber into the reaction chamber. A dry etching method comprising the step of activating the introduced and adsorbed etching gas and etching the substrate surface. 2. The substrate to be etched is etched to a desired depth by repeating a process in which one cycle includes the step of evacuating the reaction chamber to the step of introducing metastable excited molecules into the reaction chamber. A dry etching method according to claim 1. 3. The dry etching method according to claim 1 or 2, wherein the metastable excited molecules are made of nitrogen or a rare gas. 4. The dry etching method according to any one of claims 1 to 3, wherein the etching gas contains a halogen element. 5. A plurality of the reaction chambers are provided, and in each reaction chamber, (1) a step of adsorbing the gas to the substrate by introducing an etching gas; (2) a step of exhausting the gas remaining in the reaction chamber; or, (3) setting a situation in which any one of the steps of introducing the metastable excited molecules into the reaction chamber is carried out, and processes of different phases proceed in the plurality of reaction chambers; 3
) The flow path of the metastable excited molecules is connected from the first reaction chamber to the second reaction chamber by timing the first reaction chamber where the step (2) has been completed and the second reaction chamber where the step (2) has been completed. 2. The dry etching method according to claim 1, further comprising a function of switching to. 6. The dry etching method according to claim 1, characterized in that the metastable excited molecules are introduced into the first reaction chamber from an annular tube having a plurality of gas outlets.
JP1083885A 1985-01-25 1985-01-25 Dry etching method Pending JPS61171133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1083885A JPS61171133A (en) 1985-01-25 1985-01-25 Dry etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1083885A JPS61171133A (en) 1985-01-25 1985-01-25 Dry etching method

Publications (1)

Publication Number Publication Date
JPS61171133A true JPS61171133A (en) 1986-08-01

Family

ID=11761488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1083885A Pending JPS61171133A (en) 1985-01-25 1985-01-25 Dry etching method

Country Status (1)

Country Link
JP (1) JPS61171133A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265133A (en) * 1988-08-30 1990-03-05 Sony Corp Dry etching method
JP2012079877A (en) * 2010-09-30 2012-04-19 Shibaura Mechatronics Corp Plasma processing method and plasma processing device
JP2014522104A (en) * 2011-07-20 2014-08-28 ラム リサーチ コーポレーション Atomic layer etching using metastable gas generated from inert gas
CN111370308A (en) * 2020-02-18 2020-07-03 中国科学院微电子研究所 Etching method and system, etching control device, electronic device and equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265133A (en) * 1988-08-30 1990-03-05 Sony Corp Dry etching method
JP2012079877A (en) * 2010-09-30 2012-04-19 Shibaura Mechatronics Corp Plasma processing method and plasma processing device
JP2014522104A (en) * 2011-07-20 2014-08-28 ラム リサーチ コーポレーション Atomic layer etching using metastable gas generated from inert gas
US10014192B2 (en) 2011-07-20 2018-07-03 Lam Research Corporation Apparatus for atomic layering etching
CN111370308A (en) * 2020-02-18 2020-07-03 中国科学院微电子研究所 Etching method and system, etching control device, electronic device and equipment

Similar Documents

Publication Publication Date Title
TWI683925B (en) Isotropic atomic layer etch for silicon and germanium oxides
US9741558B2 (en) Selectively lateral growth of silicon oxide thin film
JP2022538040A (en) Photoresist development with halogenated chemicals
KR101578939B1 (en) Treatment system and gas distribution system
KR101046530B1 (en) Post-Processing of Low Dielectric Constant (κ) Films
JPS61231716A (en) Filming apparatus
EP0186419A2 (en) Method of dry etching or film formation
US20050175789A1 (en) Method for energy-assisted atomic layer deposition and removal
US10763123B2 (en) Method for processing workpiece
TW201430951A (en) Conformal film deposition for gapfill
US20070232076A1 (en) Method of repairing damaged film having low dielectric constant, semiconductor device fabricating system and storage medium
JPS61171133A (en) Dry etching method
JPS6188527A (en) Semiconductor processing apparatus
US20230154745A1 (en) Cyclic Low Temperature Film Growth Processes
JP7195239B2 (en) Film forming method and film forming apparatus
JPS6236668A (en) Ashing method
JPH0128830B2 (en)
JPS61171134A (en) Photo processor
TW202418368A (en) Selective deposition for sub 20 nm pitch euv patterning
TW202410197A (en) Semiconductor device manufacturing method and semiconductor manufacturing device
JPS6212121A (en) Photo processing equipment
JPS6179230A (en) Method for processing semiconductor substrate
JPS61152009A (en) Thin film forming method
JPS61231715A (en) Photo processor
KR20030010324A (en) Fabrication method for semiconductor device including oxygen plasma pre-treatment process