JPS61171114A - Manufacture of soft magnetic thin film - Google Patents

Manufacture of soft magnetic thin film

Info

Publication number
JPS61171114A
JPS61171114A JP1193185A JP1193185A JPS61171114A JP S61171114 A JPS61171114 A JP S61171114A JP 1193185 A JP1193185 A JP 1193185A JP 1193185 A JP1193185 A JP 1193185A JP S61171114 A JPS61171114 A JP S61171114A
Authority
JP
Japan
Prior art keywords
thin film
soft magnetic
bias current
magnetic
magnetic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1193185A
Other languages
Japanese (ja)
Inventor
Nobuyuki Hayama
信幸 羽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1193185A priority Critical patent/JPS61171114A/en
Publication of JPS61171114A publication Critical patent/JPS61171114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain thin film of soft magnetic material which presents small irregularity of characteristics and shows little deterioration of the frequency characteristics and the Barkhausen noise even in the curved path of magnetic flux, by forming two- layered structure of the films of soft magnetic material which sandwiches a non- magnetic thin film, and annealing this element in the magnetic field generated by flowing the bias current. CONSTITUTION:When the bias current IB is supplied along the horseshoe pattern from the terminals 5 and 6, the bias current IB branches into the three paths corresponding to the electric resistance of the non-magnetic film 2, the first and the second thin films of soft magnetic material 1 and 3. Each of them generates the magnetic field perpendicular to the bias current IB. One part of the magnetic field penetrates the first and the second thin films of soft magnetic material 1 and 3 and magnetizes them. The directions of each magnetization M are inverse with each other and perpendicular to the bias current IB. In order to make the magnetization M in the direction of the magnetic field generated by the bias current IB easy to saturate, the thickness of the non-magnetic film 2 is so set that the first thin film 1 and the second thin film 2 have the magnetostatic coupling to reduce the demagnetization caused by their forms. Thus, annealing is performed under the condition of predetermined time and temperature.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気センサ、磁気ヘッド等の磁気変換器に用い
られる軟磁性薄膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a soft magnetic thin film used in magnetic transducers such as magnetic sensors and magnetic heads.

(従来技術とその問題点) 従来、磁気テープ、磁気ディスク等の磁気記憶媒体に磁
気的情報を書き込んだり読み出したりするため軟磁性薄
膜を用いた種々の磁気変換器が開示されている。例えば
、誘導型磁気ヘッドの磁気コアとしての軟磁性薄膜は、
磁気記憶媒体からの信号磁束を有効に収束しコイルと鎖
交させることを目的とし、又、磁束応答型磁気ヘッドと
して知られる磁気抵抗効果型磁気ヘッドに用いられる磁
気シールドとしての軟磁性薄膜は不要磁界をし中へいし
再生分解能を向上させることを目的とする。
(Prior Art and its Problems) Conventionally, various magnetic transducers using soft magnetic thin films have been disclosed for writing and reading magnetic information to and from magnetic storage media such as magnetic tapes and magnetic disks. For example, a soft magnetic thin film as the magnetic core of an inductive magnetic head is
The purpose is to effectively converge the signal magnetic flux from the magnetic storage medium and link it with the coil, and there is no need for a soft magnetic thin film as a magnetic shield used in magnetoresistive magnetic heads, also known as flux-responsive magnetic heads. The purpose is to improve the reproduction resolution by reducing the magnetic field.

これらの目的のため、軟磁性薄膜には高透磁率であるこ
と及び、その周波数特性が良好であること等が要求され
る。従って、軟磁性薄膜は、一般に一軸異方性が付与さ
れその磁化困難軸と平行に信号磁束が導かれるように、
形状及び磁気記憶媒体との位置関係が最適に設計される
For these purposes, soft magnetic thin films are required to have high magnetic permeability and good frequency characteristics. Therefore, soft magnetic thin films are generally given uniaxial anisotropy so that the signal magnetic flux is guided parallel to the axis of hard magnetization.
The shape and positional relationship with the magnetic storage medium are optimally designed.

これに対し、軟磁性薄膜の磁化容易軸方向に信号磁束を
導入する様に設計された磁気ヘッドでは、低周波領琥に
おいて高透磁率が得られるものの信号磁束の周波数が増
加するにつれ、その透磁率は急峻に低下し、この結果コ
イルと鎖交する信号磁束も減少し、再生出力の急峻な減
衰が見られる。
On the other hand, in a magnetic head designed to introduce signal magnetic flux in the direction of the easy axis of magnetization of a soft magnetic thin film, high magnetic permeability can be obtained at low frequencies, but as the frequency of signal magnetic flux increases, the permeability increases. The magnetic flux sharply decreases, and as a result, the signal magnetic flux interlinking with the coil also decreases, resulting in a sharp attenuation of the reproduction output.

更に磁壁の移動に伴う、バルクハウゼンノイズ等も観測
される。
Furthermore, Barkhausen noise and the like associated with the movement of domain walls are also observed.

上述した様に、軟磁性薄膜を用いた磁気変換器において
は、軟磁性薄膜に一軸異方性を付与するとともに、その
磁化困難軸と平行(即ち、磁化容易軸と直交方向)に信
号磁束を径由させることが良好な特性を得るための必須
条件となる。
As mentioned above, in a magnetic transducer using a soft magnetic thin film, uniaxial anisotropy is imparted to the soft magnetic thin film, and signal magnetic flux is directed parallel to the axis of hard magnetization (that is, in a direction orthogonal to the axis of easy magnetization). It is an essential condition to obtain good properties.

こう言った磁気変換器への一軸異方性を付与する方法と
して、従来、基体上に真空蒸着、スパッタリング、及び
電着等の手法を用いて、均一磁界中で軟磁性薄膜を成膜
したり、あるいは、成膜後、均一磁界中でアニール処理
を施したりして、磁化容易軸を該磁界と略平行にするこ
とにより一軸異方性を形成してきた。更に、磁気変換器
としての機能を成すため、基体上に成膜された軟磁性薄
膜をフォトリソグラフィ技術により、その磁化容易軸と
所定の配置をした磁気コアパターンに加工する。更に、
コイル等の他の機能部分を形成、加工する工程をへて、
磁気変換器として完成する。
Conventionally, methods for imparting uniaxial anisotropy to magnetic transducers include forming a soft magnetic thin film on a substrate in a uniform magnetic field using methods such as vacuum evaporation, sputtering, and electrodeposition. Alternatively, after film formation, uniaxial anisotropy has been formed by annealing in a uniform magnetic field to make the axis of easy magnetization substantially parallel to the magnetic field. Further, in order to function as a magnetic transducer, the soft magnetic thin film formed on the substrate is processed by photolithography into a magnetic core pattern having a predetermined arrangement with the axis of easy magnetization. Furthermore,
After going through the process of forming and processing other functional parts such as coils,
Completed as a magnetic transducer.

しかし、上記の製造工程で、磁気コアパターンと磁化容
易軸との配置関係は設定通りにはならず、バラツキが生
じる。これは、−軸異方性を付与する際の磁界分布及び
膜質の不均一性により、必ずしも、磁化容易軸方向が基
体全面で均一でないためである。又、磁気コアパターン
に加工する際の配置ズレも反映される。
However, in the above manufacturing process, the arrangement relationship between the magnetic core pattern and the axis of easy magnetization is not as set, and variations occur. This is because the easy axis direction of magnetization is not necessarily uniform over the entire surface of the substrate due to non-uniform magnetic field distribution and film quality when imparting -axis anisotropy. In addition, misalignment during processing into a magnetic core pattern is also reflected.

これは結果として、磁気変換器の特性のバラツキ及び製
造歩留の低下を招く。
This results in variations in the characteristics of the magnetic transducer and a reduction in manufacturing yield.

更に、信号磁束の径路と磁化困難軸とが必ずしも磁気コ
アパターンの全域で平行とならない、即ち、磁束の径路
が曲線的な磁気ヘッドが例えば、第6回日本応用磁気学
会学術講演概要集1982年講演番号17aB−10に
開示されている。かかる磁気ヘッドは磁気記憶媒体から
流入する信号磁束を軟磁性薄膜の一端から膜面内を径由
さ−せ、他端から再び磁気記憶媒体にもどす閉磁路構造
となっている。この種の磁気変換器においては、信号磁
     1束径路が曲線状となるため、前述した均一
磁界を利用した軟磁性薄膜の製造方法では、磁化容易軸
と信号磁束の方向が一致する領域が存在し、周波数特性
の劣化及び再生効率の低下を招く。
Furthermore, the path of the signal magnetic flux and the axis of hard magnetization are not necessarily parallel throughout the entire magnetic core pattern, that is, a magnetic head with a curved path of magnetic flux may be It is disclosed in lecture number 17aB-10. Such a magnetic head has a closed magnetic path structure in which signal magnetic flux flowing from a magnetic storage medium is routed through the film surface from one end of a soft magnetic thin film and returned to the magnetic storage medium from the other end. In this type of magnetic transducer, the single magnetic flux path of the signal is curved, so in the method of manufacturing a soft magnetic thin film using the uniform magnetic field described above, there is a region where the axis of easy magnetization coincides with the direction of the signal magnetic flux. However, this results in deterioration of frequency characteristics and reduction in reproduction efficiency.

(発明の目的) 本発明は前記従来の欠点を解決した、特性のバラツキの
少ないしかも、曲線状の磁束径路でありても周波数特性
の劣化及びバルクハウゼンノイズの少ない軟磁性薄膜の
製造方法を開示することにある。
(Object of the Invention) The present invention discloses a method for manufacturing a soft magnetic thin film that solves the above-mentioned conventional drawbacks and has less variation in characteristics, as well as less deterioration of frequency characteristics and Barkhausen noise even with a curved magnetic flux path. It's about doing.

(発明の構成) 本発明によれば、第1及び第2の軟磁性膜を非磁性薄膜
を介して静磁気的結合を行い得る間隔で積層する工程と
、非磁性薄膜、第1及び第2の軟磁性薄膜のうち少くな
くとも一つにバイアス電流を供給し、このバイアス電流
が発生させる磁界中で軟磁性薄膜をアニールする工程と
を備えたことを特徴とする軟磁性薄膜の製造方法が得ら
れる。
(Structure of the Invention) According to the present invention, a step of laminating a first and a second soft magnetic film through a non-magnetic thin film at an interval that allows magnetostatic coupling to occur; A method for manufacturing a soft magnetic thin film, comprising the steps of supplying a bias current to at least one of the soft magnetic thin films, and annealing the soft magnetic thin film in a magnetic field generated by the bias current. can get.

(構成の詳細な説明) 本発明は上述の製造方法により従来技術の問題点を解決
した。即ち、本発明では、第1の軟磁性薄膜、非磁性導
体層及び第2の軟磁性薄膜が順次積層された構成を有し
、かつ所定のパターンに加工された積層体にバイアス電
流を通電し、前記バイアス電流が発生する磁界を用いて
、第1もしくは第2の軟磁性薄膜の少くなくとも一方の
磁化をバイアス電流と直交せしめ、この状態においてア
ニール処理を施こすことにより、バイアス電流の方向に
磁化困難軸を有する一軸異方性を生成せしめることがで
きる。従って、バイアス電流の方向に信号磁束の径路を
一致させることにより、周波数特性の劣化の少ない軟磁
性薄膜が得られる。
(Detailed Description of Configuration) The present invention solves the problems of the prior art by the above-mentioned manufacturing method. That is, in the present invention, a bias current is applied to a laminate having a structure in which a first soft magnetic thin film, a nonmagnetic conductive layer, and a second soft magnetic thin film are laminated in sequence, and which is processed into a predetermined pattern. , by using the magnetic field generated by the bias current to make the magnetization of at least one of the first or second soft magnetic thin films perpendicular to the bias current, and performing an annealing treatment in this state, the direction of the bias current can be changed. It is possible to generate uniaxial anisotropy having a hard axis of magnetization. Therefore, by aligning the path of the signal magnetic flux with the direction of the bias current, a soft magnetic thin film with less deterioration in frequency characteristics can be obtained.

又、バイアス電流の方向は軟磁性薄膜のパターンにより
一意的に決定できるため、−軸異方性の方向は軟磁性薄
膜のパターンに応じて一意的に決定される。これは、軟
磁性薄膜パターンを同−基体上でフォトリングラフィ技
術を用いて、一括大看製造する際に生ずる特性のバラツ
キを解消する。
Furthermore, since the direction of the bias current can be uniquely determined by the pattern of the soft magnetic thin film, the direction of the -axis anisotropy is uniquely determined according to the pattern of the soft magnetic thin film. This eliminates variations in characteristics that occur when soft magnetic thin film patterns are manufactured in bulk on the same substrate using photolithography technology.

以下、゛本発明について、図面を参照して詳細に説明す
る。第1図は、本発明を適用するに好適な軟磁性薄膜の
構成例を示す概略斜視図で、基体4上に第1の軟磁性薄
膜1、非磁性薄膜2及び第2の軟磁性薄膜3が順次積層
され、馬蹄形の曲線パターンを有する磁気コアを成して
いる。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic perspective view showing a configuration example of a soft magnetic thin film suitable for applying the present invention. are sequentially laminated to form a magnetic core with a horseshoe-shaped curved pattern.

第1及び第2の軟磁性薄膜1及び3は例えば、パーマロ
イ、アモルファス軟磁性体(例えば、Co−Zr 、 
Co−Ta 、 Co−Ti等のco−メタル系アモル
ファス合金)、センダスト合金等が適し、非磁性薄膜2
には人もOB 、 5in1等の絶縁物もしくはTi、
Ta等の導電性物質が適する。
The first and second soft magnetic thin films 1 and 3 are made of, for example, permalloy, amorphous soft magnetic material (e.g. Co-Zr,
Co-metal amorphous alloys such as Co-Ta and Co-Ti), sendust alloys, etc. are suitable, and non-magnetic thin films 2
People also use OB, insulators such as 5in1 or Ti,
A conductive material such as Ta is suitable.

又、鳴蹄形パターンの両端にはバイアス電流IBを供給
するための端子5及び6が接続されている。
Further, terminals 5 and 6 for supplying bias current IB are connected to both ends of the ringing hoof pattern.

かかる構成において、バイアス電流IBが端子5及び6
より馬蹄形パターンに沿って供給されると、バイアス電
流1.は非磁性薄膜2、第1及び第2の軟磁性薄膜1及
び3の電気抵抗に応じて分流し、そ゛れぞれ、バイアス
電流1.と直交方向に磁界を発生する。そして磁界の一
部は第1及び第の軟磁性薄膜1及び3の膜面内を通り、
それぞれの磁化Mを互いに逆方向で、かつバイアス電流
1.とは直交する方向に励磁する。尚、バイアス直流1
゜の発生する励磁磁界方向に磁化Mが飽和しやすくする
ため、I!1の軟磁性薄膜lと第2の軟磁性薄膜3とが
静磁気的結合を行い、それぞれの軟磁性薄膜の形状反磁
界を軽減する様に、非磁性薄膜2の厚みが設定されてい
る。
In such a configuration, bias current IB is applied to terminals 5 and 6.
When applied along a more horseshoe pattern, the bias current 1. is divided according to the electrical resistance of the non-magnetic thin film 2 and the first and second soft magnetic thin films 1 and 3, and the bias current 1. A magnetic field is generated in the direction orthogonal to the A part of the magnetic field passes through the film planes of the first and second soft magnetic thin films 1 and 3,
The respective magnetizations M are in opposite directions, and the bias current is 1. It is excited in the direction perpendicular to . In addition, bias DC 1
In order to make it easier for the magnetization M to saturate in the direction of the excitation magnetic field generated by °, I! The thickness of the non-magnetic thin film 2 is set so that the first soft magnetic thin film l and the second soft magnetic thin film 3 perform magnetostatic coupling and reduce the shape demagnetizing field of each soft magnetic thin film.

かかる状態において、所定の時間及び温度の条件下でア
ニール処理される。アニール処理の条件は、第1及び第
2の軟磁性膜1及び3の材質に応じて選定される。例え
ばアモルファス軟磁性体を採用するなら、その結晶化温
度(400〜500℃)以下、パーマロイ、センダスト
合金等の多結晶質の材料であれば、グレイン成長を生じ
ない温度(300〜400℃)以下のアニール温度が望
ましい。
In this state, an annealing treatment is performed under predetermined time and temperature conditions. The conditions for the annealing treatment are selected depending on the materials of the first and second soft magnetic films 1 and 3. For example, if an amorphous soft magnetic material is used, it is below its crystallization temperature (400-500°C), and if it is a polycrystalline material such as permalloy or sendust alloy, it is below the temperature at which grain growth does not occur (300-400°C). An annealing temperature of .

アニールはバイアス電流1.が供給されることにより発
生するジ為−ル熱を利用して設定しても良い。又、アニ
ール処理の雰囲気は真空中又は水素、窒素ガス中で行う
か、又は絶縁性の保護膜を被着させた後に行うのが望ま
しい。これ等は、第1及び第2の軟磁性薄膜1及び3の
酸化にともなう磁気特性の劣化を防止する。
Annealing is performed at a bias current of 1. It may also be set using the gel heat generated by the supply of . Further, it is preferable that the annealing treatment be performed in a vacuum, hydrogen or nitrogen gas, or after an insulating protective film has been deposited. These prevent deterioration of magnetic properties due to oxidation of the first and second soft magnetic thin films 1 and 3.

以上のアニール工程の結果、バイアス電流I。As a result of the above annealing process, the bias current I.

を供給しなくとも、第1及び第2の軟磁性薄膜1及び3
の磁化Mはバイアス電流IIIの径路と直交する方向に
固定されてしまう。即ち、バイアス電流1.の径路と直
交する方向に磁化容易軸10人が、またバイアス電流I
nと平行方向に磁化困難軸を有する一軸異方性が生成さ
れる。
Even without supplying the first and second soft magnetic thin films 1 and 3
The magnetization M of is fixed in the direction perpendicular to the path of the bias current III. That is, the bias current 1. The axis of easy magnetization is 10 in the direction perpendicular to the path of , and the bias current I
Uniaxial anisotropy having a hard magnetization axis in a direction parallel to n is generated.

尚、第1及び第2の軟磁性薄膜1及び3は、前述した如
く、バイアス電流と直交する方向の形状反磁界を軽減す
ることを目的に積層されている。
Note that, as described above, the first and second soft magnetic thin films 1 and 3 are laminated for the purpose of reducing the shape demagnetizing field in the direction orthogonal to the bias current.

従って、第1及び第2の軟磁性薄膜1及び3のいずれか
一方は他方の形状反磁界を軽減する機能だけを有すもの
でありてもよい。この場合、第1及び第2の軟磁性薄膜
1及び3の材料及び膜厚、寸法、更にはバイアス電流r
aの選定が容易になるという利点が生ずる。又、磁気コ
アとして良好な動作を行なわせるために、形状反磁界を
軽減する目的のためだけに設けられた軟磁性薄膜は、ア
ニール工程終了後に、エツチング等により除去するのが
望ましい。
Therefore, either one of the first and second soft magnetic thin films 1 and 3 may have only the function of reducing the shape demagnetizing field of the other. In this case, the materials, film thicknesses, and dimensions of the first and second soft magnetic thin films 1 and 3, as well as the bias current r
An advantage arises that selection of a becomes easy. Further, in order to perform a good operation as a magnetic core, it is desirable to remove the soft magnetic thin film provided only for the purpose of reducing the shape demagnetizing field by etching or the like after the annealing process is completed.

以上の様にして製造された第1図の磁気コアにおいては
、端子5及び6が接続されている馬蹄形パターンの一端
から他端に、磁気記憶媒体からの信号磁束が流出入する
様に配置すれば、信号磁束の径路が磁化容易軸E、Aと
常に直交するため、磁壁の不規則な移動に供うバルクハ
ウゼンノイズ及び周波数特性の劣化がなくなる・ 以上、第1図では、1個の軟磁性薄膜パターンの製造方
法について述べたが、本発明は、基体上に複数の軟磁性
薄膜パターンを一括して製造する際にも更に好適である
。第2図はこの様な例を説明するための平面図である・ 第2図に詔いて、基体上に複数の軟磁性薄膜パターン7
に、これ等を並例接続して、バイアス電流1.を供給す
るための端子5及び6が接続されている倫前記、軟磁性
薄膜パターン7は第1図を用いて説明したと同様、第1
の軟磁性薄膜、非磁性薄膜、PI3の軟磁性薄膜が順次
積層された構成を有している。又、軟磁性薄膜パターン
7及び端子5及び6はフォ) IJソグラフィ技術を用
いて、一括して形成される。従りて、端子5及び6を構
成する材料は軟磁性薄膜パターン7と同じでありても良
い。
In the magnetic core of FIG. 1 manufactured as described above, the terminals 5 and 6 are arranged so that the signal magnetic flux from the magnetic storage medium flows in and out from one end of the horseshoe pattern to the other end. For example, since the path of the signal magnetic flux is always perpendicular to the easy magnetization axes E and A, Barkhausen noise and deterioration of frequency characteristics due to irregular movement of the domain wall are eliminated. Although the method for manufacturing a magnetic thin film pattern has been described, the present invention is also suitable for manufacturing a plurality of soft magnetic thin film patterns on a substrate at once. FIG. 2 is a plan view for explaining such an example. In FIG. 2, a plurality of soft magnetic thin film patterns 7 are formed on the base.
By connecting these in parallel, the bias current 1. The soft magnetic thin film pattern 7 to which the terminals 5 and 6 for supplying the
It has a structure in which a soft magnetic thin film of , a nonmagnetic thin film, and a soft magnetic thin film of PI3 are sequentially laminated. Furthermore, the soft magnetic thin film pattern 7 and the terminals 5 and 6 are formed all at once using the IJ lithography technique. Therefore, the material constituting the terminals 5 and 6 may be the same as that of the soft magnetic thin film pattern 7.

かかる構成において、端子5及び6から供給されるバイ
アス電流1.は複数の軟磁性薄膜パターン7に分流し、
それぞれ分流したバイアス電流IBと直交方向に、かつ
軟磁性薄膜パターン7の膜面内を通る磁界を発生する。
In such a configuration, bias currents 1. is divided into a plurality of soft magnetic thin film patterns 7,
A magnetic field is generated that passes through the plane of the soft magnetic thin film pattern 7 in a direction perpendicular to the bias current IB that is divided into respective branches.

以下、第1図を用いて説明したと同様、磁界は第1及び
第2の軟磁性薄膜の少くなくとも一方の磁化を磁界の方
向に励磁する。この状態で、第1及び第2の軟磁性薄膜
の材料に応じた時間及び温度条件でアニール処理するこ
とにより、バイアス電流が供給された方向と直交方向に
磁化容易軸E、Aを有する一軸異方性が生成される。こ
の磁化容易軸B。人の方向は、軟磁性薄膜パターン7の
基体上での位置によらず、バイアス電流IBの方向、即
ち、軟磁性薄膜パターン7と端子5及び6の形状により
一意的に決定される。このことは、基体4上で磁気特性
の揃ったバラツキの少ない多量の軟磁性薄膜パターンが
得られることを意味する・ 尚、第2図では複数の軟磁性薄膜パターン7が短柵状と
なっているが、第1図で示した様に曲線状のパターンで
あっても良い。又、軟磁性薄膜パターンは並列に接続し
ているが、直列又はこれ等の組み合せで接続しても良い
Hereinafter, as explained using FIG. 1, the magnetic field excites the magnetization of at least one of the first and second soft magnetic thin films in the direction of the magnetic field. In this state, by annealing at a time and temperature condition depending on the materials of the first and second soft magnetic thin films, a uniaxial magnet having easy magnetization axes E and A in a direction orthogonal to the direction in which the bias current is supplied is formed. A direction is generated. This axis of easy magnetization B. The direction of the person is uniquely determined by the direction of the bias current IB, that is, the shape of the soft magnetic thin film pattern 7 and the terminals 5 and 6, regardless of the position of the soft magnetic thin film pattern 7 on the base body. This means that a large number of soft magnetic thin film patterns with uniform magnetic properties and little variation can be obtained on the substrate 4.In addition, in FIG. 2, a plurality of soft magnetic thin film patterns 7 are shaped like short fences. However, a curved pattern as shown in FIG. 1 may also be used. Further, although the soft magnetic thin film patterns are connected in parallel, they may be connected in series or in a combination thereof.

更に、第2図において、軟磁性薄膜パターンとして完成
させるには、端子5及び6をエツチングして除去するか
、直接機械的に切断すれば良い。
Furthermore, in FIG. 2, in order to complete the soft magnetic thin film pattern, terminals 5 and 6 may be removed by etching or directly mechanically cut.

以上、これまでの説明は、所定の軟磁性薄膜パターンを
形成した後にバイアス電流を供給してアニールする手法
について述べたが、あらかじめ所要とする軟磁性薄膜パ
ターンより大きなパターンと電極を形成して、本発明に
よるバイアス電流を供給してアニール処理した後に、所
要とする軟磁性薄膜パターンを形成してもよい。この手
法は所要とする軟磁性薄膜パターンのバイアス電流の径
路と直交する方向のパターン幅が極めて小さくなって形
状反磁界が無視できない場合や、前記パタ     J
−ン幅がバイアス電流の径路とともに変化し、バイアス
電流の方向が不均一になってしまう場合に有効である。
The above explanation has been about the method of forming a predetermined soft magnetic thin film pattern and then supplying a bias current to anneal it. A desired soft magnetic thin film pattern may be formed after annealing by supplying a bias current according to the present invention. This method is useful when the pattern width in the direction perpendicular to the bias current path of the required soft magnetic thin film pattern is extremely small and the shape demagnetizing field cannot be ignored, or when the pattern width of the pattern J
This is effective when the width of the bias current changes along with the path of the bias current and the direction of the bias current becomes non-uniform.

即ち、あらかじめ形成した大きなパターンによって、形
状反磁界やバイアス電流方向の不均一性を軽減し、この
状態で本発明の型造方法によって一軸異方性を均一に生
成することにより、所要の軟磁性薄膜パターンに加工し
た後でも、−軸異方性を均一に付与することができる。
In other words, by reducing the non-uniformity of the shape demagnetizing field and bias current direction by using a large pattern formed in advance, and in this state, by uniformly generating uniaxial anisotropy using the molding method of the present invention, the desired soft magnetic properties can be obtained. Even after processing into a thin film pattern, -axis anisotropy can be uniformly imparted.

(実施例) 以下、本発明の実施例について、具体的な材料、アニー
ル条件を例示して説明する。
(Example) Examples of the present invention will be described below by illustrating specific materials and annealing conditions.

第1図において、第1の軟磁性薄膜1及び第2の軟磁性
薄膜3としてCo90%−Ta10%(いずれもアトミ
ックパーセント)の組成から成るアモルファス軟磁性膜
をそれぞれ、0.5μmの厚みに、非磁性薄膜2として
Tiを0.05μmの厚みに、スパッタ法により連続し
て成膜した。これ等の積層膜はフォトリングラフィ技術
を用いて、幅5゜μmを有する馬蹄形パターンに加工し
、端午5及び6を接続した。
In FIG. 1, a first soft magnetic thin film 1 and a second soft magnetic thin film 3 are amorphous soft magnetic films having a composition of 90% Co-10% Ta (both atomic percentages), each having a thickness of 0.5 μm. As the non-magnetic thin film 2, a Ti film with a thickness of 0.05 μm was continuously formed by sputtering. These laminated films were processed into a horseshoe-shaped pattern having a width of 5 μm using photolithography technology, and the edges 5 and 6 were connected.

かかる構成の軟磁性膜を窒素ガス雰囲気中で250℃に
昇温せしめ、かつ端子5及び6よりバイアス電流として
400m人供給し、この状態を4時間保持した。尚、バ
イアス電流Inを供給している間は、これによるジュー
ル熱を含めて、軟磁性膜の温度を250℃に設定した。
The temperature of the soft magnetic film thus constructed was raised to 250° C. in a nitrogen gas atmosphere, and 400 m of bias current was supplied from terminals 5 and 6, and this state was maintained for 4 hours. Note that while the bias current In was being supplied, the temperature of the soft magnetic film was set at 250° C., including Joule heat caused by this.

上記、アニール工程の後、端子5及び6を除去し、ビッ
タ−法により磁区観察を行ったところ、軟磁性膜パター
ンの全域で前記、バイアス電流よりの通路とは直交方向
に磁壁が観察され、磁化容易軸がバイアス電流IBの通
路と直交方向に生成されていることが確認された。
After the above annealing process, terminals 5 and 6 were removed and magnetic domains were observed using the Bitter method. As a result, domain walls were observed throughout the soft magnetic film pattern in a direction perpendicular to the bias current path. It was confirmed that the axis of easy magnetization was generated in a direction perpendicular to the path of the bias current IB.

(比較例) 尚、比較のため、上記実施例と全く同一構造を有するが
、本発明によるアニール工程を施していない軟磁性膜パ
ターンの磁区観察を行ったところ、パターンの全域でパ
ックリングドメイン等の不規則な磁壁のならびが見られ
た。
(Comparative Example) For comparison, we observed the magnetic domains of a soft magnetic film pattern that had exactly the same structure as the above example but had not been subjected to the annealing process according to the present invention. An irregular arrangement of domain walls was observed.

次に、上記実施例、比較例ともに、馬蹄形パターンを囲
む様にフォトリングラフィ技術を用いてコイルを形成し
、前記馬蹄形パターンの両端が信号磁束の流出入端とな
る様な磁気変換器を作製したところ、比較例においては
、数百kHz以下の信号磁界周波数では比較的大きな信
号出力が得られるものの、極めて雑音が多く、しかも、
信号磁界周波数が高くなるにつれ、信号出力の急減が見
られた。一方、本発明による実施例においては、雑音が
小さく、低周波から10 MHz以上の高周波にわたっ
て一様な信号出力が得られ、優れた高周波特性を有して
いることが確認された。
Next, in both the above examples and comparative examples, a coil was formed using photolithography technology so as to surround the horseshoe pattern, and a magnetic transducer was fabricated such that both ends of the horseshoe pattern became input and output ends of the signal magnetic flux. As a result, in the comparative example, although a relatively large signal output was obtained at a signal magnetic field frequency of several hundred kHz or less, it was extremely noisy.
As the signal magnetic field frequency increased, a sharp decrease in signal output was observed. On the other hand, in the example according to the present invention, it was confirmed that the noise was small and a uniform signal output was obtained from low frequencies to high frequencies of 10 MHz or more, and that it had excellent high frequency characteristics.

(発明の効果) 以上、説明した様に、本発明では軟磁性薄膜を非磁性薄
膜を介した2嗜構成lこし、これにバイアス電流を供給
することにより発生する磁界中でアニール処理を施こし
ているため、バイアス電流の方向に磁化困難軸を有する
一軸異方性を生成することができる。従って、バイアス
電流の方向に信号磁束の径路を一致せしめることにより
1曲線状パターンであっても周波数特性の優れたしかも
、バルクハウゼンノイズが少ない軟磁性薄膜が提供でき
る。
(Effects of the Invention) As explained above, in the present invention, a soft magnetic thin film is formed into a two-layer structure with a non-magnetic thin film interposed therebetween, and annealing treatment is performed in a magnetic field generated by supplying a bias current to the soft magnetic thin film. Therefore, it is possible to generate uniaxial anisotropy with the axis of hard magnetization in the direction of the bias current. Therefore, by aligning the path of the signal magnetic flux with the direction of the bias current, a soft magnetic thin film with excellent frequency characteristics and less Barkhausen noise can be provided even with a single curve pattern.

しかも、−軸異方性の方向は軟磁性薄膜の形状に応じて
決定されるため、一括大量製造する際の磁気特性のバラ
ツキが極めて小さく、歩留の高い軟磁性薄膜が提供でき
る・
Furthermore, since the direction of the -axis anisotropy is determined according to the shape of the soft magnetic thin film, variations in magnetic properties are extremely small when mass-produced at once, making it possible to provide soft magnetic thin films with high yields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法の実施例を説明するための概
略斜視図、第2図は本発明の他の製造方法の実施例を説
明するための平面図である。 図において、 1・・・第1の軟磁性薄膜、2・・・非磁性薄膜、3・
・・第2の軟磁性薄膜、5.6・・・端子、7・・・軟
磁性薄膜パターン。 蛎   憾 第2図
FIG. 1 is a schematic perspective view for explaining an embodiment of the manufacturing method of the present invention, and FIG. 2 is a plan view for explaining an embodiment of another manufacturing method of the present invention. In the figure, 1... first soft magnetic thin film, 2... nonmagnetic thin film, 3...
...Second soft magnetic thin film, 5.6...Terminal, 7...Soft magnetic thin film pattern. Hajime 2nd figure

Claims (1)

【特許請求の範囲】[Claims] 第1及び第2の軟磁性薄膜を非磁性薄膜を介して静磁気
的結合を行い得る間隔で積層する工程と、非磁性薄膜、
第1及び第2の軟磁性薄膜のうち少くなくとも一つにバ
イアス電流を供給しこのバイアス電流が発生させる磁界
中で軟磁性薄膜をアニールする工程とを備えたことを特
徴とする軟磁性薄膜の製造方法。
a step of laminating first and second soft magnetic thin films at intervals that allow magnetostatic coupling via the nonmagnetic thin film;
A soft magnetic thin film characterized by comprising a step of supplying a bias current to at least one of the first and second soft magnetic thin films and annealing the soft magnetic thin film in a magnetic field generated by the bias current. manufacturing method.
JP1193185A 1985-01-25 1985-01-25 Manufacture of soft magnetic thin film Pending JPS61171114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1193185A JPS61171114A (en) 1985-01-25 1985-01-25 Manufacture of soft magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1193185A JPS61171114A (en) 1985-01-25 1985-01-25 Manufacture of soft magnetic thin film

Publications (1)

Publication Number Publication Date
JPS61171114A true JPS61171114A (en) 1986-08-01

Family

ID=11791418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1193185A Pending JPS61171114A (en) 1985-01-25 1985-01-25 Manufacture of soft magnetic thin film

Country Status (1)

Country Link
JP (1) JPS61171114A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02181402A (en) * 1988-08-03 1990-07-16 Digital Equip Corp <Dec> Thin-film magnetic device widening signal magnetic flux
JP2002158112A (en) * 2000-09-12 2002-05-31 Memscap Fine element of type such as minute inductor and minute transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02181402A (en) * 1988-08-03 1990-07-16 Digital Equip Corp <Dec> Thin-film magnetic device widening signal magnetic flux
JP2002158112A (en) * 2000-09-12 2002-05-31 Memscap Fine element of type such as minute inductor and minute transformer

Similar Documents

Publication Publication Date Title
US5920979A (en) Method of forming an inductive magnetic head with approximate zero magnetostriction
JPH061729B2 (en) Magnetic film and magnetic head using the same
JPH0668422A (en) Magnetic pole structure of high densidy thin film recording head
JPH11110717A (en) Thin film single magnetic pole head
JP2001176028A (en) Thin film magnetic head and method of producing the same
JP2001155313A (en) Thin film magnetic head and its manufacturing method
JP2007335788A (en) Magnetic shield and manufacturing method thereof, and thin-film magnetic head
JPS61171114A (en) Manufacture of soft magnetic thin film
JPS61178710A (en) Thin film magnetic head and manufacture thereof
JPS58171709A (en) Thin film magnetic head
JPH0950612A (en) Magnetoresistive effect film, magnetoresistive effect element, magnetic head and magnetic recording and reproducing device
JP2502965B2 (en) Thin film magnetic head
JPH06195637A (en) Thin film magnetic head
JP3130407B2 (en) Manufacturing method of magnetic film and thin film magnetic head
JP3375009B2 (en) Thin film magnetic head
JP3399899B2 (en) Thin film magnetic device
JPS6233413A (en) Manufacture of soft magnetic thin film core
JPS618904A (en) Soft magnetic multilayer film
JPH09180135A (en) Magnetoresistive head
JP2000331310A (en) Thin film magnetic head and its manufacture
JPH0498608A (en) Magnetic head
JPS63138512A (en) Thin film magnetic head and its production
JPH03108112A (en) Production of magneto-resistance effect head
JP2000200403A (en) Multilayered film magnetic body, magnetic head and production of magnetic head using the same, and magnetic reproducing device using this magnetic head
JPS6333206B2 (en)