JPS61171034A - Highly-efficient helix traveling-wave tube - Google Patents

Highly-efficient helix traveling-wave tube

Info

Publication number
JPS61171034A
JPS61171034A JP1010985A JP1010985A JPS61171034A JP S61171034 A JPS61171034 A JP S61171034A JP 1010985 A JP1010985 A JP 1010985A JP 1010985 A JP1010985 A JP 1010985A JP S61171034 A JPS61171034 A JP S61171034A
Authority
JP
Japan
Prior art keywords
circuit
wave
period
slow
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1010985A
Other languages
Japanese (ja)
Inventor
Kunio Tsutaki
蔦木 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1010985A priority Critical patent/JPS61171034A/en
Publication of JPS61171034A publication Critical patent/JPS61171034A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
    • H01J23/24Slow-wave structures, e.g. delay systems
    • H01J23/26Helical slow-wave structures; Adjustment therefor

Abstract

PURPOSE:To provide speed inclinations which enable the suppression of backward wave oscillation and the realization of a high efficiency not lower than that of a helix traveling-wave tube of relatively low electricity consumption. CONSTITUTION:An electron beam 3 emitted from an electron gun 1 interacts with electromagnetic waves entered through an electromagnetic wave input portion 5, so that the electromagnetic waves are amplified, and the electron beam advances to a collector 2 while being modulated. In a part extending from an input-side wave delay circuit 7 to an output-side wave delay circuit 8 and having a circuit period P1, the phase velocity of the electromagnetic waves is increased so as to improve the phase distortion of a helix traveling- wave tube and suppress the dispersion of the speed of the electron beam 3. In a speed inclination part following the above-mentioned part, many electrons are uniformly synchronized with the electromagnetic waves to serve to improve the efficiency of the helix traveling-wave tube. The speed inclination in the input-side wave delay circuit 7 serves to suppress backward wave oscillation, while that in the output-side wave delay circuit 8 serves to improve the efficiency and suppress backward wave oscillation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ヘリックス進行波管に関し、特に効率改善と
後進波発振制のための速度テーパを設けたヘリックス遅
波回路式関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a helical traveling wave tube, and particularly to a helical slow wave circuit type provided with a velocity taper for improving efficiency and suppressing backward wave oscillation.

〔従来の技術〕[Conventional technology]

周知のとうり、ヘリックス進行波管は電子ビームを射出
するための電子銃部と、電子ビームと電磁波が相互作用
するヘリックス遅波回路部と、電磁波との相互作用を終
了した電子を捕集するためのコレクタ部、電磁波を遅波
回路に導びくための電磁波入力部と電磁波を外部回路に
とり出すための電磁波取り出し部と、遅波回路において
電子と−ムを所定のビーム径に集束するための磁界装置
から構成される。この中で、ヘリックス遅波回路は電磁
波の位相速度を、電子ビームとほぼ同じ速度まで落とし
、両者の同期関係を保持することにより増幅作用を得る
ものである。
As is well known, a helix traveling wave tube consists of an electron gun section for emitting an electron beam, a helix slow wave circuit section where the electron beam and electromagnetic waves interact, and a helix slow wave circuit section that collects the electrons that have finished interacting with the electromagnetic waves. an electromagnetic wave input section for guiding electromagnetic waves to a slow wave circuit, an electromagnetic wave extraction section for taking out electromagnetic waves to an external circuit, and a collector section for focusing electrons and beams to a predetermined beam diameter in the slow wave circuit. Consists of a magnetic field device. Among these, the helix slow wave circuit obtains an amplification effect by reducing the phase velocity of the electromagnetic wave to approximately the same velocity as that of the electron beam and maintaining a synchronous relationship between the two.

ヘリックス進行波管は、結合空胴形進行波管やその他の
進行波管と比較して、その構造が簡率であることから、
比較的小電力または中電力の高周波増幅管としてすでに
広く使用されているが、近年、通信容量の増加や固体素
子の台頭等に伴い、さらに高出力化の要求がろる。
Helix traveling wave tubes have a simpler structure than coupled cavity traveling wave tubes and other traveling wave tubes.
Although they are already widely used as high-frequency amplifier tubes with relatively low or medium power, in recent years, with the increase in communication capacity and the rise of solid-state devices, there has been a demand for even higher output.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ヘリックス形進行波管を高出力化する場合、ヘリックス
形遅波回路を伝搬する電磁波の中で、       J
(n=−1)次の空間高調波と電子ビームが結合するこ
とによって発生する後進波発振が最も太きな問題である
。発明者は、先にこの後進波発振を抑制するための方法
として、回路の中央に回路周期の変化の小さい速度テー
パを設ける方法を提案している。(特願昭54−101
450.特願昭54−167840)を提案している。
When increasing the output of a helical traveling wave tube, J
The most serious problem is backward wave oscillation caused by the coupling of the (n=-1) order spatial harmonic and the electron beam. The inventor previously proposed a method of providing a speed taper in the center of the circuit with a small change in circuit period as a method for suppressing this backward wave oscillation. (Special application 1977-101
450. Patent Application No. 167840/1972) is proposed.

従って、この方法を用いれば後進波発振の抑制された高
出力ヘリックス進行波管が可能となるが、効率について
は、従来とほぼ同程度のものであった。
Therefore, if this method is used, a high-power helical traveling wave tube with suppressed backward wave oscillation can be produced, but the efficiency is approximately the same as that of the conventional tube.

一方、ヘリックス形進行波管を高効率化するためには、
ビーム効率を改善するために速度テーパを適用する方法
(特願昭52−50375 )とコレクタ効率を改善す
るために多段電位低下コレクタを適用する2つの方法が
ある。通常、この2つの方法は並用され、総合的に高効
率なヘリックス進行波管が実現されている。しかしなが
ら、この効′率改善のための速度テーパは、電磁波取り
出し部にごく近い領域で、相互作用によって低下した電
子の速度に合わせて回路波の位相速度を低下させるため
、前述の後進波発振の問題があり、その適用範囲は、比
較的小電力のヘリックス進行波管に限定されていた。
On the other hand, in order to improve the efficiency of the helical traveling wave tube,
There are two methods: applying a velocity taper to improve beam efficiency (Japanese Patent Application No. 52-50375) and applying a multi-stage potential drop collector to improve collector efficiency. Normally, these two methods are used in parallel to realize a highly efficient helical traveling wave tube. However, this speed taper for improving efficiency reduces the phase speed of the circuit wave in the region very close to the electromagnetic wave extraction part in accordance with the speed of the electrons reduced by the interaction, which reduces the backward wave oscillation mentioned above. Problems have limited its applicability to relatively low power helical traveling wave tubes.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、高出力ヘリックス進行波管において、後進波
発振を抑制し、しかも前記の比較的小電力のヘリックス
進行波管に適用されている効率改善だけを目的とした速
度テーパとほぼ同程度以上の高効率を実現できる速度テ
ーパを提供するものである。
The present invention suppresses backward wave oscillation in a high-power helical traveling wave tube, and moreover has a velocity taper that is approximately the same level or higher than the velocity taper for the sole purpose of improving efficiency, which is applied to the above-mentioned relatively low-power helical traveling wave tube. This provides a speed taper that can achieve high efficiency.

本発明による速度テーパは、電磁波減衰器と電磁波取り
出し部の間の出力側遅波回路を、電磁波入力部と電磁波
減衰器の間の入力側遅波回路の電磁波入力部側の回路周
期(P6)より大きい回路周期(P1)の遅波回路と小
さい回路周期(P2)の遅波回路と、大きい回路周期か
ら小さい回路周期に変化する速度テーパ部の3つの部分
で構成し、速度テーパ部における軸方向位置2での回路
周期(P(Z))は、速度テーパ開始点の軸方向位置を
zlとして、 p (z) = p 、 e−a I z−z1)  
     (l)(aは、P、 、 P、 、速度テー
パ部の長さをlTによって決まる定&) であジ、速度テーパ部の回路長(lT)の、大きい回路
周期の遅波回路の回路長(l1)と速度テーパ部の回路
長と小さい回路周期の遅波回路の回路長(l2)との和
(L)に対する比(Lr/L )がの領域にあシ、P、
とP、の比(Pt/Pt >は、の領域にあり、出力側
遅波回路の全長(L)に対する回路周期がP!の遅波回
路の長さく4)の比(−+h/L)は、 であることを特徴とし、高効率でしかも後進波発振の抑
制された高出力へリックス進行波管を提供するものであ
る。
The speed taper according to the present invention changes the output side slow wave circuit between the electromagnetic wave attenuator and the electromagnetic wave extraction part to the electromagnetic wave input part side circuit period (P6) of the input side slow wave circuit between the electromagnetic wave input part and the electromagnetic wave attenuator. It consists of three parts: a slow wave circuit with a larger circuit period (P1), a slow wave circuit with a smaller circuit period (P2), and a speed taper section that changes from a larger circuit period to a smaller circuit period. The circuit period (P(Z)) at direction position 2 is p (z) = p, e-a I z-z1), where zl is the axial position of the speed taper starting point.
(l) (a is a constant determined by P, , P, , the length of the speed taper section by lT), and the circuit length of the speed taper section (lT) is a slow wave circuit with a large circuit period. The ratio (Lr/L) to the sum (L) of the length (l1), the circuit length of the speed taper section, and the circuit length (l2) of the slow wave circuit with a small circuit period is in the region of P,
The ratio (Pt/Pt > of The present invention provides a high-output helix traveling wave tube with high efficiency and suppressed backward wave oscillation.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す。1は電子銃、2はコ
レクタ、3は電子ビーム、4は電磁波減衰器、5は電磁
波入力部、6は電磁波取り出し部、7は入力側遅波回路
、8は出力側遅波回路である。
FIG. 1 shows an embodiment of the invention. 1 is an electron gun, 2 is a collector, 3 is an electron beam, 4 is an electromagnetic wave attenuator, 5 is an electromagnetic wave input section, 6 is an electromagnetic wave extraction section, 7 is an input side slow wave circuit, and 8 is an output side slow wave circuit.

遅波回路の回路周期の全体構成は、入力側遅波回路7の
電磁波入力$5側の回路周期をPoとし、入力側遅波回
路7の電磁波減衰器4側と出力側遅波回路8の電磁波減
衰器4側の回路周期P1はP。工9大きく、出力側遅波
回路8の電磁波取り出し部6側の回路周期P、はPoよ
り小さく設定される。
The overall configuration of the circuit period of the slow wave circuit is as follows: The circuit period of the electromagnetic wave input $5 side of the input side slow wave circuit 7 is Po, and the circuit period of the electromagnetic wave attenuator 4 side of the input side slow wave circuit 7 and the output side slow wave circuit 8. The circuit period P1 on the electromagnetic wave attenuator 4 side is P. The circuit period P on the electromagnetic wave extraction section 6 side of the output slow wave circuit 8 is set smaller than Po.

また、入力側遅波回路の速度テーパは直線テーパであり
、出力側遅波回路の速度テーパは式(l)で4見られる
指数関数テーパになっている。
Further, the speed taper of the input side slow wave circuit is a linear taper, and the speed taper of the output side slow wave circuit is an exponential function taper as shown in equation (l).

図において、電子銃1から生成・射出された電子ビーム
3は、電磁波入力部5全通して入ってきた電磁波と相互
作用を行い、電磁波は増幅され、電子ビーム3は変調さ
れながらコレクタ2側に進行する。途中、電磁波は電磁
波減衰器4によってほとんど減衰するが、出力側遅波回
路8の減衰器      J側端部で、変調された電子
ビームにより、誘起され、再び電磁波は電子ビーム3と
相互作用を行いなからコレクタ2側に進行し、増幅され
、最後に電磁波取り出し部6を通して外部に取り出され
る。
In the figure, the electron beam 3 generated and emitted from the electron gun 1 interacts with the electromagnetic waves that have entered through the electromagnetic wave input section 5, the electromagnetic waves are amplified, and the electron beam 3 is modulated and sent to the collector 2 side. proceed. On the way, most of the electromagnetic waves are attenuated by the electromagnetic wave attenuator 4, but at the J side end of the attenuator of the output slow wave circuit 8, the electromagnetic waves are induced by the modulated electron beam, and the electromagnetic waves interact with the electron beam 3 again. The electromagnetic wave then proceeds to the collector 2 side, is amplified, and finally is extracted to the outside through the electromagnetic wave extraction section 6.

このとき、入力側遅波回路7から出力側遅波回路8にか
けての回路周期がP、の部分は、電磁波の位相速度が速
くなっておp1ヘソックス進行波管の位相歪の改善と電
子ビームの速度分散を抑制し、続く速度テーパ部で多く
の電子が一様に電磁波と同期して効率改善に寄与するよ
うに作用する。また、2つの速度テーパのうちで、入力
側遅波回路7のそれは、後進波発振抑制のために、出力
側遅波回路8のそれは、効率改善と後進波発振抑制のた
めに作用する。出力側遅波回路8の速度テーパは、軸方
向位置2での回路周期P (z)がs”+tテーパ開始
点の位置として、次式 %式% テーパの長さt−1から決まる定数)(l)のように指
数関数で変化し、電子ビームの速度低下に合わせて回路
波の位相速度が低下し、高い効率が得られる。
At this time, in the part where the circuit period is P from the input side slow wave circuit 7 to the output side slow wave circuit 8, the phase velocity of the electromagnetic wave becomes faster, improving the phase distortion of the P1 Hessox traveling wave tube and improving the electron beam. Velocity dispersion is suppressed and many electrons uniformly synchronize with electromagnetic waves in the subsequent velocity taper section, contributing to efficiency improvement. Of the two speed tapers, that of the input slow wave circuit 7 acts to suppress backward wave oscillation, and that of the output slow wave circuit 8 acts to improve efficiency and suppress backward wave oscillation. The speed taper of the output side slow wave circuit 8 is determined by the following formula, where the circuit period P (z) at the axial position 2 is s''+t as the position of the taper start point (a constant determined from the taper length t-1) It changes with an exponential function as shown in (l), and the phase velocity of the circuit wave decreases as the electron beam velocity decreases, resulting in high efficiency.

発明者は、以上の本発明の構成について、計算機シミュ
レーションを行い、後進波発振が抑制され、しかも高い
効率が得られることを確認するとともに、高効率を得る
ための最適な寸法関係を見い出し友。
The inventors performed computer simulations on the configuration of the present invention as described above, confirmed that backward wave oscillation was suppressed and high efficiency was obtained, and discovered the optimal dimensional relationship for obtaining high efficiency.

第2図は、ヘリックス電圧7kV、コレクタ電流120
mAの12 GHz帝へリックス進行波管を例にとり、
本発明の構成で、出力側遅波回路の全長(ハ)に対する
速度テーパ部の長tTの比(lT/L)横軸とし小信号
同期の回路周期より高い回路周期(P1)に対する低い
回路周期(P2)の比(Pt/Pt) t−九て軸とし
て、効率28チ以上が得られる領域を示す。ここで、L
は、通常の場合、出力側遅波回路の利得が26 dB以
上になるように設定される。
Figure 2 shows a helix voltage of 7 kV and a collector current of 120 kV.
Taking a 12 GHz imperial helix traveling wave tube with mA as an example,
In the configuration of the present invention, the horizontal axis represents the ratio (lT/L) of the length tT of the speed taper part to the total length (c) of the output side slow wave circuit, and the lower circuit period is expressed as the ratio of the length tT of the speed taper section to the total length (c) of the output side slow wave circuit. Ratio of (P2) (Pt/Pt) The t-9 axis indicates a region where an efficiency of 28 cm or more can be obtained. Here, L
is normally set so that the gain of the output side slow wave circuit is 26 dB or more.

図から、効率28%以上が得られる領域は、であり、ま
た、 である。
From the figure, the region where efficiency of 28% or more can be obtained is and .

第3図の(a) 、 (b)は、第2図の領域内の入点
ての遅波回路構成とそのときの計算機シミュレーション
による効率の軸方向変化を示す。図において、実線が本
発明による遅波回路構成の場合であり、点線が一様な回
路周期の場合である。図の(b)から、本発明による遅
波回路構成の場合のビーム効率は29.4%であり、一
様回路周期の場合の15゜8チと比べて、1.86倍も
改善されている。また、囚の(a)と(b)t一対比し
て見れば、出力取り出し部側の回路周期がP、の部分が
、高い効率を得るために必要であることがわかる。その
長さは、設計条件よって多少異なるが、はとんどの場合
、 の領域内で効率最大が得られた。さらに、(a)に示す
遅波回路構成での後進波発振の発振開始電流の計算機シ
ミュレーションによる結果は5QQmAであゃ、動作電
流120mAに対して、十分抑制されている。
3(a) and 3(b) show the slow-wave circuit configuration at every point of entry within the region of FIG. 2 and the axial change in efficiency according to a computer simulation at that time. In the figure, the solid line represents the case of a slow wave circuit configuration according to the present invention, and the dotted line represents the case of a uniform circuit period. From (b) in the figure, the beam efficiency in the case of the slow wave circuit configuration according to the present invention is 29.4%, which is an improvement of 1.86 times compared to the 15°8 inch in the case of the uniform circuit period. There is. Furthermore, if we compare (a) and (b) t, it can be seen that a portion with a circuit period of P on the output extraction section side is necessary in order to obtain high efficiency. The length differs somewhat depending on the design conditions, but in most cases the maximum efficiency was obtained within the range of . Furthermore, the computer simulation result of the oscillation starting current of backward wave oscillation in the slow wave circuit configuration shown in (a) is 5QQmA, which is sufficiently suppressed compared to the operating current of 120mA.

以上の12 GHz帯ヘリックス進行波管の解析結果か
ら得られた条件値)〜(l2)は、通常のヘリックス進
行波管において、一般的に成立することは明らかである
It is clear that the condition values ) to (l2) obtained from the analysis results of the 12 GHz band helical traveling wave tube described above generally hold true in a normal helical traveling wave tube.

なお、本実施例では、電磁波減衰器が1カ所に存在する
2分割形のヘリックス進行波管について説明したが、2
力所以上存在する場合にも成立することは明かである。
In this example, a two-segment helical traveling wave tube in which the electromagnetic wave attenuator is located in one place has been described.
It is clear that this also holds true when there is more than a force.

ただし、このとき回路周期P0は、出力側遅波回路の前
の遅波回路の電磁波人力部側の回路周期とする。
However, at this time, the circuit period P0 is the circuit period on the electromagnetic wave manual section side of the slow wave circuit before the output side slow wave circuit.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明は、出力側遅波回路を入力側遅
波回路の電磁波入力部側の回路周期(P0〕より、大き
い回路周期(P2)の遅波回路と小さい回路周期(P2
)の遅波回路と大きい回路周期から小さい回路周期に変
化する速度テーパ部の3つの部分で構成し、速度テーバ
における軸方向に対する回路周期の変化は、式(l)で
与えられ、この構成の谷部の寸法関係は、弐〇)〜式(
l2)で与えられるこ     Jとを特徴とし、高効
率でしかも後進波発振の抑制された高出力へワックス進
行波管を提供するものである。
As explained above, the present invention provides a slow wave circuit with a larger circuit period (P2) and a circuit period with a smaller circuit period (P2) than the circuit period (P0) on the electromagnetic wave input section side of the input slow wave circuit.
) and a speed taper section that changes from a large circuit period to a small circuit period, and the change in circuit period in the axial direction in the speed taper is given by equation (l), The dimensional relationship of the valley is expressed by the formula 2〇)~(
The wax traveling wave tube is characterized by the characteristics given by 12) and provides a wax traveling wave tube that is highly efficient and produces high output with suppressed backward wave oscillation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のへリックス形進行波管の模式図と遅波
回路の構成図、第2@JはtT/Lを横軸に、Pt1P
sをたて軸にとって効率最大が得られる領域を示す特性
図、第3図(a)は計算に用いた本発明による遅波回路
構成図、第3図(b)は軸方向距離に対するビーム効率
の変化を示す特性図である。 1・・・・・・電子銃、2・・・・・・コレクタ、3・
・・・・・電子ビーム、4・・・・・・電磁波減衰器、
5・・・・・・電磁波入力部、6・・・・・・電磁波取
り出し部、7・・・・・・入力側遅波回路、8・・・・
・・出力側遅波回路。 代理人 弁理士  内 原   晋 7.・\1ご、 
 、“−゛ 茅 2 回 (α) (b) 第 3 酊
Fig. 1 is a schematic diagram of a helical traveling wave tube of the present invention and a configuration diagram of a slow wave circuit.
A characteristic diagram showing the region where the maximum efficiency is obtained with s as the vertical axis. Figure 3 (a) is a diagram of the slow wave circuit configuration of the present invention used for calculation. Figure 3 (b) is the beam efficiency versus axial distance. FIG. 1...Electron gun, 2...Collector, 3.
...electron beam, 4...electromagnetic wave attenuator,
5... Electromagnetic wave input section, 6... Electromagnetic wave extraction section, 7... Input side slow wave circuit, 8...
...Output side slow wave circuit. Agent: Susumu Uchihara, patent attorney 7.・\1,
, “−゛茅 2 times (α) (b) 3rd drunkenness

Claims (1)

【特許請求の範囲】 1、電子銃とコレクタと電磁波入力部と電磁波取り出し
部と、途中で電磁波減衰器により高周波的に分割された
ヘリックス形遅波回路とを有する進行波管において、前
記電磁波減衰器と前記電磁波取り出し部の間の遅波回路
を、前記電磁波入力部と前記電磁波減衰器の間の遅波回
路の前記電磁波入力部側の回路周期(P_0)より大き
い回路周期(P_1)の遅波回路部と小さい回路周期(
P_2)の遅波回路部と、大きい回路周期から小さい回
路周期に変化する速度テーパ部の3つの部分で構成し、
速度テーパ部における軸方向位置zでの回路周期P(z
)は、速度テーパ開始点の軸方向位置をz_1として、 P(z)=P_1e^−^a^(^z^−^z^_^0
^)(aは、P_1とP_2と速度テーパ部の長さをl
_Tから決まる定数)であり、速度テーパ部の回路長(
lT)の、前記大きい回路周期の遅波回路の回路長(l
_1)と前記速度テーパ部の回路長(l_T)と前記小
さい回路周期の遅波回路の回路長(l_2)との和(L
)に対する比([l_T]/L)が 0.24≦(l_T)/L≦0.5 であることを特徴とするヘリックス形進行波管。 2、前記大きい回路周期(P_1)に対する前記小さい
回路周期(P_1)に対する前記小さい回路周期(P_
2)の比([P_2]/[P_1])が、0.7≦(P
_2)/(P_1)≦0.9 であることを特徴とする特許請求の範囲第1項記載のヘ
リックス形進行波管。 3、前記出力側遅波回路の全長(L)に対する前記小さ
い回路周期(P_2)の遅波回路の回路長l_2の比(
l_2/L)が 0.07≦(l_2)/L≦0.24 であることを特徴とする特許請求の範囲第1項記載のヘ
リックス進行波管。 4、前記出力側遅波回路の全長(L)に対する前記小さ
い回路周期(P_2)の遅波回路の回路長(l_2)の
比(l_2/L)が 0.07≦(l_2)/L≦0.24 であることを特徴とする特許請求の範囲第2項記載のヘ
リックス進行波管。
[Scope of Claims] 1. In a traveling wave tube having an electron gun, a collector, an electromagnetic wave input section, an electromagnetic wave extraction section, and a helical slow wave circuit divided in high frequency by an electromagnetic wave attenuator in the middle, the electromagnetic wave attenuation The slow wave circuit between the electromagnetic wave input section and the electromagnetic wave attenuator is configured to have a circuit period (P_1) larger than the circuit period (P_0) on the electromagnetic wave input section side of the slow wave circuit between the electromagnetic wave input section and the electromagnetic wave attenuator. Wave circuit section and small circuit period (
It consists of three parts: the slow wave circuit part of P_2) and the speed taper part that changes from a large circuit period to a small circuit period,
The circuit period P(z
) is the axial position of the speed taper starting point as z_1, and P (z) = P_1e^-^a^(^re^-^^re^_^0
^) (a is P_1, P_2 and the length of the speed taper part l
_T (constant determined from T), and the circuit length of the speed taper section (
The circuit length (lT) of the slow wave circuit with the large circuit period is
_1), the sum (L_T) of the speed tapered portion and the circuit length (l_2) of the slow wave circuit with the small circuit period.
), the ratio ([l_T]/L) of 0.24≦(l_T)/L≦0.5. 2. The small circuit period (P_1) with respect to the small circuit period (P_1) with respect to the large circuit period (P_1)
2) ratio ([P_2]/[P_1]) is 0.7≦(P
_2)/(P_1)≦0.9. The helical traveling wave tube according to claim 1. 3. The ratio of the circuit length l_2 of the slow wave circuit with the small circuit period (P_2) to the total length (L) of the output side slow wave circuit (
The helical traveling wave tube according to claim 1, characterized in that l_2/L) satisfies 0.07≦(l_2)/L≦0.24. 4. The ratio (l_2/L) of the circuit length (l_2) of the slow-wave circuit with the small circuit period (P_2) to the total length (L) of the output-side slow-wave circuit is 0.07≦(l_2)/L≦0 .24. The helical traveling wave tube according to claim 2, characterized in that: .24.
JP1010985A 1985-01-23 1985-01-23 Highly-efficient helix traveling-wave tube Pending JPS61171034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1010985A JPS61171034A (en) 1985-01-23 1985-01-23 Highly-efficient helix traveling-wave tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1010985A JPS61171034A (en) 1985-01-23 1985-01-23 Highly-efficient helix traveling-wave tube

Publications (1)

Publication Number Publication Date
JPS61171034A true JPS61171034A (en) 1986-08-01

Family

ID=11741145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1010985A Pending JPS61171034A (en) 1985-01-23 1985-01-23 Highly-efficient helix traveling-wave tube

Country Status (1)

Country Link
JP (1) JPS61171034A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03192918A (en) * 1989-12-22 1991-08-22 Toshiba Corp Pulse generator
US8514476B2 (en) 2008-06-25 2013-08-20 View, Inc. Multi-pane dynamic window and method for making same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03192918A (en) * 1989-12-22 1991-08-22 Toshiba Corp Pulse generator
US8514476B2 (en) 2008-06-25 2013-08-20 View, Inc. Multi-pane dynamic window and method for making same
US8749870B2 (en) 2008-06-25 2014-06-10 View, Inc. Multi-pane dynamic window and method for making same
US9110345B2 (en) 2008-06-25 2015-08-18 View, Inc. Multi-pane dynamic window and method for making same

Similar Documents

Publication Publication Date Title
US4389593A (en) Active dielectric waveguide amplifier or oscillator using a high density charged particle beam
US5469022A (en) Extended interaction output circuit using modified disk-loaded waveguide
US2733305A (en) Diemer
JP3020478B2 (en) High efficiency collector for traveling wave tubes with high pervianance beam
JPS61171034A (en) Highly-efficient helix traveling-wave tube
JP3492915B2 (en) Efficient highly linear traveling wave tube
JP2792347B2 (en) Helix traveling wave tube
JP2809155B2 (en) Helix type traveling wave tube
CN113871277A (en) High-frequency structure
US5162697A (en) Traveling wave tube with gain flattening slow wave structure
JPS6226137B2 (en)
JP2970560B2 (en) Multi-stage collector potential drop type traveling wave tube
JPS60218741A (en) Helix type traveling-wave tube
US4107572A (en) Traveling-wave tube having phase velocity tapering means in a slow-wave circuit
JP2714282B2 (en) Cavity coupled traveling wave tube
CA1219672A (en) Linearized traveling wave amplifier with hard limiter characteristics
JPS6336103B2 (en)
JPS6110938B2 (en)
JPS6134219B2 (en)
US3278792A (en) Apparatus for suppression of backward wave oscillation in traveling wave tubes having bifilar helical wave structure
Zhang et al. A low reflection folded waveguide slow wave structure for millimeter wave traveling wave tube
JPH05225922A (en) Helix type travelling-wave tube
JPS60119058A (en) Gyrotron
Lawson et al. A novel hybrid slow-wave/fast-wave traveling-wave amplifier
Nalos PRESENT STATE OF ART IN HIGH POWER TRAVELING-WAVE TUBES.