JPS61170805A - Industrial robot - Google Patents

Industrial robot

Info

Publication number
JPS61170805A
JPS61170805A JP1296385A JP1296385A JPS61170805A JP S61170805 A JPS61170805 A JP S61170805A JP 1296385 A JP1296385 A JP 1296385A JP 1296385 A JP1296385 A JP 1296385A JP S61170805 A JPS61170805 A JP S61170805A
Authority
JP
Japan
Prior art keywords
control loop
speed
value
industrial robot
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1296385A
Other languages
Japanese (ja)
Inventor
Noboru Nakamoto
中本 登
Kenji Sogawa
祖川 憲司
Mikio Hasegawa
幹夫 長谷川
Makoto Doi
誠 土井
Toshitoki Inoue
井上 利勅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1296385A priority Critical patent/JPS61170805A/en
Publication of JPS61170805A publication Critical patent/JPS61170805A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • G05B19/231Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42093Position and current, torque control loop
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42104Loop switch, speed loop then position loop, mode switch

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To switch speed control steplessly to load control only by one command signal by separating a position control loop from a speed control loop in prior to a command signal of a current control loop. CONSTITUTION:A control device of an industrial robot is constituted of a control part 20 for controlling a motor 100, a position comparing part 21 for finding out the difference between a position command signal P and a position feedback signal Pf obtained from a position sensor 13 through a position counter 30, a speed comparing part 22, a change-over switch 31 for separating the speed control loop from the position control loop, a current comparing part 23, a PWM modulating circuit 25, etc. The position of the robot is counted up by the counter 30, and when the counted value reaches a fixed value, the contact of the leading end part of the robot with a substance to be positioned is detected and the positional shift of the substance to be positioned is detected on the basis of the operation of the fixed counted value and the value of a teaching point. The detected value is corrected by the operation of the teaching point and the size can be also measured.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ワークの位置検出およびその補正機能を備え
た産業用ロボットに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an industrial robot equipped with a function of detecting the position of a workpiece and correcting the position of the workpiece.

従来の技術 近年、産業用ロボットは多品種少量生産における生産工
程の柔軟性を発揮をさせる1つの大きな道具として大量
に導入が図られ、生産工程の柔軟性を高めている。これ
らの産業用ロボットは、例えば塗装を行なう塗装ロボッ
トにおいてはワークである被塗装物を一定の位置に正し
く位置決めするだめの位置決め装置が必要であり、また
電子部品等の組立てを行なう場合においても被組立物を
一定の位置に正しく位置決めを行なう必要がある。
BACKGROUND OF THE INVENTION In recent years, industrial robots have been introduced in large quantities as a major tool for making the production process more flexible in high-mix, low-volume production, increasing the flexibility of the production process. These industrial robots, for example, require a positioning device to correctly position the workpiece to be painted at a certain position in the case of a painting robot, and also in the case of assembling electronic parts etc. It is necessary to correctly position the assembly at a certain position.

これらの位置決め装置としては、2次元内での位置決め
を行なう装置が一般的に用いられている。
As these positioning devices, devices that perform positioning in two dimensions are generally used.

これらの装置が必要な要因は、現在の産業用口ボットが
ティーテングプレイバノクロボットと呼ばれるように、
ロボットに作業点を教示するにはあらかじめ作業順序に
従い前記ロボットを動作させながら必要な箇所を教示し
てゆく方法であり、教示した以外の位置決めは行なうこ
とが出来ないためである。そのためあらかじめ教示した
作業点以外の位置で作業を行なわせるために、前記以外
の作業点を産業用ロボットが作業を行なっていない間、
もしくは作業点と作業点の間に新たな作業点を教示する
かあるいは補正する必要がある。
The reason why these devices are necessary is that the current industrial mouth robots are called teaching playback robots.
This is because the method of teaching the robot the work points is to teach the necessary points while operating the robot in advance according to the work order, and positioning other than what has been taught cannot be performed. Therefore, in order to have the industrial robot perform work at a position other than the work point taught in advance, while the industrial robot is not working at the work point other than the above,
Alternatively, it is necessary to teach or correct a new work point between the work points.

これらの装置としては、前記作業点における前記塗装物
や前記被組立−の位置ずれを、例えば視覚認識装置を用
いて検知し、位置ずれ量を補正する方式や、超音波距離
測定器を用いて物体の位置を認識補正する方式が提案さ
れている。
These devices include, for example, a system that uses a visual recognition device to detect the positional deviation of the painted object or the to-be-assembled object at the work point and corrects the amount of positional deviation, and a method that uses an ultrasonic distance measuring device. A method for recognizing and correcting the position of an object has been proposed.

前記視覚認識装置及び前記超音波距離測定器は、前記産
業用ロボットに新たに付加した機能により構成されるの
が一般的な方法である。しかし、前記機能を付加するに
は産業用ロボットに前記装置を結合するだめの入出力装
置を具備する必要があり、また視覚認識装置における前
記補正を行なうだめの視覚認識装置への教示(物体認識
のだめのパターン登録)が必要である。
Generally, the visual recognition device and the ultrasonic distance measuring device are configured by newly added functions to the industrial robot. However, in order to add the above function, it is necessary to equip the industrial robot with an input/output device to connect the above device, and it is also necessary to teach the visual recognition device (object recognition) to perform the above correction in the visual recognition device. Nodame pattern registration) is required.

以下図面を参照しながら、上述した従来の位置検出及び
その補正の一例について説明する。
An example of the above-mentioned conventional position detection and its correction will be described below with reference to the drawings.

第3図は従来の視覚認識装置を用いた場合の位置決め補
正方式の構成略図である。図中、41は産業用ロボット
、42は視覚認識装置、43は検出用カメラ、44は位
置決め装置、46は被位置決め物である0以下にその動
作について説明する。
FIG. 3 is a schematic diagram of the configuration of a positioning correction method using a conventional visual recognition device. In the figure, 41 is an industrial robot, 42 is a visual recognition device, 43 is a detection camera, 44 is a positioning device, and 46 is an object to be positioned.The operation thereof will be explained below.

産業用ロボット41は、被位置決め物46が位置決め装
置44により位置決めされた点においてその状態が教示
される。被位置決め物46は常に−が一定の位置に位置
決めされなければ、前記塗装ロボットでは塗装ムラや塗
装されない箇所が発生     シし、前記組立ロボッ
トでは、はめ合い作業が不可能になる。
The industrial robot 41 is taught its state at the point where the object to be positioned 46 is positioned by the positioning device 44 . If the object to be positioned 46 is not always positioned at a constant position, the coating robot will have uneven coating or uncoated areas, and the assembly robot will be unable to perform fitting work.

しかし、被位置決め物を位置決め装置の上に正しく位置
ずれが発生しないように設置するのはむずかしく、また
精密な位置決め装置を多品種少量生産物に対応して製作
するには極めて困難を要する0 従ってこの位置ずれ量を視覚認識で検出し、位置補正装
置を用いて正しい位置に補正する必要が生じる。
However, it is difficult to correctly place the object to be positioned on the positioning device in a manner that prevents misalignment, and it is extremely difficult to manufacture a precise positioning device that can handle high-mix, low-volume production. It is necessary to detect this positional deviation amount by visual recognition and correct it to the correct position using a position correction device.

このことは(例えば「知能ロボット」オーム社刊などで
すでに明らかにされている。
This has already been made clear (for example, in ``Intelligent Robot'' published by Ohmsha).

発明が解決しようとする問題点 従って被位置決め物を教示した位置に正しく位置決めす
るには精密な位置決め装置あるいは位置補正装置が求め
られていたが、これをロボット自体で行なうことはこれ
までなされていなく、強く待望されていた。
Problems to be Solved by the Invention Therefore, in order to correctly position the object to be positioned at the taught position, a precise positioning device or a position correction device has been required, but this has not been done by the robot itself so far. , was highly anticipated.

本発明は、前記問題点に鑑み、被位置決め物の位置を視
覚認識装置や超音波距離測定器を必要とせずに産業用ロ
ボット白うか具備する位置計数器の値を演算すること姉
より前記被位置決め物の位置補正を自からか行なうこと
ができる産業用ロボットを提供することを目的とするも
のである。
In view of the above-mentioned problems, the present invention aims to calculate the position of an object to be positioned by calculating the value of a position counter equipped with an industrial robot without using a visual recognition device or an ultrasonic distance measuring device. It is an object of the present invention to provide an industrial robot that can self-correct the position of a positioning object.

問題点を解決するだめの手段 上記問題点を解決するために、本発明の産業用ロボット
は、速度制御ループと電流制御ループによりアームの力
制御を行ない、位置制御ループの位置側差値を位置計数
器により検出し、前記位置偏差値により被位置決め物の
位置ずれ量を産業用ロボット自から検出すると共に前記
教示点の値より前記位置ずれ量の加減算を行ない、被位
置決め物の位置ずれ量を補正することにより、前記塗装
及び組立てを行なうことができる産業用ロボットを提供
するものである。
Means for Solving the Problems In order to solve the above problems, the industrial robot of the present invention controls the force of the arm using a speed control loop and a current control loop, and changes the position side difference value of the position control loop to the position. The amount of positional deviation of the object to be positioned is detected by a counter, and the amount of positional deviation of the object to be positioned is detected from the industrial robot itself based on the positional deviation value, and the amount of positional deviation is added or subtracted from the value of the teaching point to determine the amount of positional deviation of the object to be positioned. The present invention provides an industrial robot that can perform the above-mentioned painting and assembly by making corrections.

また、前記位置ずれ量の検出値を前記被組立物の寸法測
定に応用できる。以下図面を参照しながら、上述した従
来の寸法測定の一例について説明する。
Further, the detected value of the amount of positional deviation can be applied to the dimension measurement of the object to be assembled. An example of the conventional dimension measurement mentioned above will be described below with reference to the drawings.

第4図は従来の寸法測定装置を用いた場合の測定方式の
構成略図である。図中50はキ法測定の表示器、51は
カウンター、52は受光素子、53は光源、54はスケ
ールスリット、55は測定子、56は支柱、57は測定
子を上下させる7リンダーである。
FIG. 4 is a schematic diagram of a measuring method using a conventional dimension measuring device. In the figure, 50 is a display for Ki method measurement, 51 is a counter, 52 is a light receiving element, 53 is a light source, 54 is a scale slit, 55 is a measuring tip, 56 is a column, and 57 is a 7-liner for raising and lowering the measuring tip.

以下にその動作について説明する。The operation will be explained below.

被位置決め物45が位置決め装置44により位置決めさ
れるとンリング−57が働き測定子55を被位置決め物
45に接触させるまで移動スリット58を移動させる。
When the object 45 to be positioned is positioned by the positioning device 44, the ring 57 is activated to move the moving slit 58 until the probe 55 comes into contact with the object 45 to be positioned.

移動スリット68は光源53より発光する光を受光素子
52へ明暗の光として伝える。受光素子62は光の明暗
を電気信号ωN−0FF 信号へ変換し、カウンターへ
入力し計数を行なう。カウンターへの入力信号は前記計
数を移動スリット58の移動方向によシブラス方向と、
マイナス方向の切換が出来るように:90度の位相差を
持った信号である。カウンター61の計数は寸法表示器
60によシ移動スリット58の移動量として表示される
。前記移動量を測定子65が位置決め装置44に接触す
るまでの移動量との演算により、被位置決め物45の寸
法を測定することができる。
The moving slit 68 transmits the light emitted from the light source 53 to the light receiving element 52 as bright and dark light. The light receiving element 62 converts the brightness of the light into an electrical signal ωN-0FF, which is input to a counter for counting. The input signal to the counter changes the count in the sibling direction according to the moving direction of the moving slit 58;
To enable switching in the negative direction: Signals with a 90 degree phase difference. The count of the counter 61 is displayed on the dimension display 60 as the amount of movement of the moving slit 58. The dimensions of the object to be positioned 45 can be measured by calculating the amount of movement and the amount of movement of the measuring stylus 65 until it comes into contact with the positioning device 44 .

前記測定を前記産業用ロボットにて位置ずれ量として検
出し、前記寸法測定と同様に被位置決め物の教示点と位
置ずれ量を演算することにより、被位置決め物の寸法を
測定することができる。
The dimensions of the object to be positioned can be measured by detecting the measurement as an amount of positional deviation by the industrial robot and calculating the teaching point and the amount of positional deviation of the object to be positioned in the same way as in the measurement of the dimensions.

作   用 本発明はワークの位置ずれ検出とその補正動作および寸
法測定を第2図のような構成により実現することができ
る。第2図は前記産業用ロボ7)の制御構成図である。
Function: According to the present invention, detection of positional deviation of a workpiece, correction operation thereof, and dimension measurement can be realized by the configuration shown in FIG. FIG. 2 is a control configuration diagram of the industrial robot 7).

前記位置ずれ量は第2図に示す位置センサー13のフィ
ードバック信号を前記位置計数器30にて計数し、その
計数値が一定となったとき前記産業用ロボットの先端部
15が被位置決め物45に接触したことを検知し、前記
教示点の値と前記一定となった計数値との演算により前
記被位置決め物46の位置ずれ量を検出する。前記位置
ずれ量を、前記視覚認識装置等を用いることなく、前記
教示点の値との演算により正しく補正することができる
。また前記教示点と前      −記位置ずれ量との
演算にて前記被位置決め物の寸法測定ができる。
The amount of positional deviation is determined by counting the feedback signal from the position sensor 13 shown in FIG. The contact is detected, and the amount of positional deviation of the object to be positioned 46 is detected by calculating the value of the teaching point and the constant count value. The amount of positional deviation can be correctly corrected by calculation with the value of the teaching point without using the visual recognition device or the like. Further, the dimensions of the object to be positioned can be measured by calculating the teaching point and the amount of positional deviation.

実施例 以下本発明の一実施例の産業用ロボットについて図面を
参照しながら説明する。
EXAMPLE An industrial robot according to an example of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例における産業用ロボットの1関
節を示すものである。第1図において、10は前記関節
をリンク機構により構成したアームであり、11はモー
タ14の保持部、12はモータ14に直結した位置セン
サー13のエンコーダスケール、15は前記関節の先端
部である。
FIG. 1 shows one joint of an industrial robot according to an embodiment of the present invention. In FIG. 1, 10 is an arm in which the joint is configured by a link mechanism, 11 is a holding part for the motor 14, 12 is an encoder scale of the position sensor 13 directly connected to the motor 14, and 15 is the tip of the joint. .

次に前記構成の産業用ロボットの制御装置について第2
図により説明する。この制御装置は、モータ100を制
御する制御部20と、制御部20より出力した位置指令
信号Pと、モータ1oOの位置を検出する位置センサー
13よりの位置フィードバック量を位置計数器30によ
り検知した位置フィードバンク信号Pfの差を取る位置
比較部21と、位置比較部21よりの位置偏差信号ΔP
を増幅する位置アンプへと、位置アンプKpの出力信号
のうちの速度指令信号Vと、モータ10゜の位置センサ
ー13からの信号により速度を検出する速度検出器29
の速度フィードパンク信号vfa差を取る速度比較部2
2と、速度比較部22よりの速度偏差信号ΔVを増幅す
る速度アンプKvの出力信号の電流偏差信号工と、前記
速度検出器の第2の出力vfa、l!:、前記教示点の
値の関数値より演算して得た点より位置制御ループと速
度制御ループを分離したのち制御部20より出力する荷
重指令信号βと、前記速度検出器の出力vf&を荷重比
較部32で比較した荷重偏差信号αと、前記位置制御ル
ープから速度制御ループに分離する切替スイッチ31と
、前記切替スイッチから出力する信号工、と、モータ1
00に流れる電流フィードバック信号I7.差を取る電
流比較部23と、電流比較部23よりの電流偏差信号Δ
Iを増幅する電流アンプKiと、電流信号24をパルス
幅変調(PWM変調)するPWM変調回路26と、変調
信号26のパワーアンプ27より構成されている。
Next, the second section regarding the control device for the industrial robot having the above configuration.
This will be explained using figures. This control device includes a control unit 20 that controls the motor 100, a position command signal P output from the control unit 20, and a position counter 30 that detects the position feedback amount from the position sensor 13 that detects the position of the motor 1oO. A position comparator 21 that takes the difference between the position feed bank signals Pf and a position deviation signal ΔP from the position comparator 21
A speed detector 29 detects the speed based on the speed command signal V of the output signal of the position amplifier Kp and the signal from the position sensor 13 of the motor 10°.
Speed comparator 2 that takes the difference between speed feed puncture signals vfa
2, a current deviation signal generator of the output signal of the speed amplifier Kv that amplifies the speed deviation signal ΔV from the speed comparator 22, and the second output vfa, l! of the speed detector. :, the load command signal β output from the control unit 20 after separating the position control loop and the speed control loop from the point obtained by calculating from the function value of the value of the teaching point and the output vf & of the speed detector are used as the load The load deviation signal α compared by the comparison unit 32, the changeover switch 31 that separates the position control loop into the speed control loop, the signal output from the changeover switch, and the motor 1
Current feedback signal I7. A current comparison section 23 that takes the difference and a current deviation signal Δ from the current comparison section 23
It is composed of a current amplifier Ki that amplifies the current signal I, a PWM modulation circuit 26 that performs pulse width modulation (PWM modulation) on the current signal 24, and a power amplifier 27 for the modulation signal 26.

以上のように構成した産業用ロボットの制御装置につい
て、第1図、第2図に従いその動作を説明する。まず産
業用ロボット41に教示した値により制御部2oより位
置指令信号Pを出力する〇位置指令信号Pはモータ10
0からのフィードバック信号と位置計数器30により計
数した位置フィードバンク信号Pfの差を取る位置偏差
部21より位置偏差信号ΔPとなる。位置偏差信号ΔP
は位置アンプにより増幅し速度指令信号Vとなる。
The operation of the industrial robot control device configured as described above will be explained with reference to FIGS. 1 and 2. First, the control unit 2o outputs the position command signal P according to the value taught to the industrial robot 41. The position command signal P is transmitted to the motor 10.
A position deviation signal ΔP is generated by a position deviation section 21 that takes the difference between the feedback signal from 0 and the position feed bank signal Pf counted by the position counter 30. Position error signal ΔP
is amplified by a position amplifier and becomes a speed command signal V.

速度指令信号■はモータ100の位置センサー13から
の信号により速度を検出する速度検出器29の速度フィ
ードバック信号vfの差を取る速度比較部22により速
度偏差信号Δ■として出力され、速度偏差信号ΔVは速
度アンプKvにより電流指令信号工となる。この電流指
令信号工は位置制御ループ時にはスイッチ31の接点a
より電流比較部23に供給されるが、前記教示点に前記
関節の先端部16が近ずくにつれ、速度制御ループには
制御部2oからの切替信号Sが加えられて接点はbに切
替り、bよシミ流比較部23に供給される。
The speed command signal ■ is output as a speed deviation signal Δ■ by a speed comparator 22 which takes the difference between the speed feedback signal vf of the speed detector 29 which detects the speed based on the signal from the position sensor 13 of the motor 100, and the speed deviation signal ΔV becomes a current command signal by the speed amplifier Kv. This current command signal works at the contact a of the switch 31 during the position control loop.
However, as the distal end portion 16 of the joint approaches the teaching point, the switching signal S from the control unit 2o is added to the speed control loop, and the contact point is switched to b. b is supplied to the stain flow comparison section 23.

前記位置制御ループと速度制御ループへの切替の荷重指
令信号点は次式よシ演算する。
The load command signal point for switching between the position control loop and the speed control loop is calculated according to the following equation.

教示点X速度係数=位置速度ループ切替点・・・・・・
・・・・・・・・・(1)モータ100は荷重指令信号
βと速度フィードバック信号V7.を荷重比較部32で
比較した荷重偏差信号αとして次段に加えるため、前記
先端部16は被位置決め物46の手前より速度制御され
る。前記先端部15が教示点に達すると被位置決め物1
6に接触するため速度フィードバック信号vf&の値は
零となり、荷重指令信号βは電流指令信号になる。その
ため先端部15は今までの速度制御より電流制御に切変
わり被位置決め物に押付力として荷重を加える。この時
、電流フィードバッタ信号Xfを監視する事により荷重
値の確認ができ荷重不足の場合は荷重指令信号βを制御
する事により希望する荷重を被位置決め物46に加える
ことかできる。前記一定荷重を被位置決め物46に加え
た時の位置計数器の値を確認することにより前記教示点
に被位置決め物46が正しく位置決めされているか否か
を検査できる。前記検査によ      lり被位置決
め物45の位置決め誤差や、高さのバラツキ等の寸法を
検査することができる。
Teaching point x speed coefficient = position speed loop switching point...
(1) The motor 100 receives the load command signal β and the speed feedback signal V7. In order to add the result to the next stage as the load deviation signal α compared by the load comparator 32, the speed of the tip 16 is controlled from before the object to be positioned 46. When the tip 15 reaches the teaching point, the object to be positioned 1
6, the value of the velocity feedback signal vf& becomes zero, and the load command signal β becomes a current command signal. Therefore, the tip portion 15 switches from conventional speed control to current control and applies a load as a pressing force to the object to be positioned. At this time, the load value can be confirmed by monitoring the current feedback signal Xf, and if the load is insufficient, a desired load can be applied to the object to be positioned 46 by controlling the load command signal β. By checking the value of the position counter when the constant load is applied to the object to be positioned 46, it can be checked whether the object to be positioned 46 is correctly positioned at the teaching point. Through the above inspection, it is possible to inspect dimensions such as positioning errors and height variations of the object to be positioned 45.

発明の効果 以上のように本発明は、位置制御ループと速度制御ルー
プを電流制御ループの指令信号の前で分離し、速度フィ
ードバック信号と荷重指令信号の偏差を電流指令信号と
して加えるようにしたものであり、1つの指令信号で速
度制御より荷重制御へ無段階的に切替える事ができ、産
業用ロボットの先端部の接触時の衝撃を小さくかつ一定
にすると共に、被位置決め物の位置や、高さ等のバラツ
キに柔軟に対応できるものである。
Effects of the Invention As described above, the present invention separates the position control loop and the speed control loop before the command signal of the current control loop, and adds the deviation between the speed feedback signal and the load command signal as the current command signal. It is possible to steplessly switch from speed control to load control with a single command signal, making the impact when the tip of the industrial robot makes contact small and constant, and controlling the position and height of the object to be positioned. It can flexibly respond to variations in height.

また、被位置決め物を一定の力で一方向に押付た時の位
置ずれ量を、被位置決め物を一方向に押付た基準位置と
前記産業用ロボットの先端部の距離をあらかじめ測定し
て制御に記憶させた値やもしくわ寸法を測定する事に測
定した寸法との演算にて、被位置決め物の寸法を測定す
ることにより新に寸法測定器を用いることなく一定した
寸法の被組立物を選別しながら組立ることが可能である
In addition, the amount of positional deviation when the object to be positioned is pressed in one direction with a constant force can be controlled by measuring in advance the distance between the reference position where the object to be positioned is pressed in one direction and the tip of the industrial robot. By measuring the dimensions of the object to be positioned by calculating the memorized values and the measured dimensions, it is possible to select objects with constant dimensions without using a new dimension measuring device. It is possible to assemble it while

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の産業用ロボットの1関節の
構成図、第2図は本発明の一実施例におP・・・・・・
位置指令信号、P/・・・・・・位置フィードバッタ信
号、ΔP・・・・・・位置偏差信号、Kp曲、、位置ア
ンプ、■・・・・・・速度指令信号、Vl −11a−
・・・・・速度フィードバック信号、ΔV・・・・・・
速度偏差信号、Kv・・・・・・速度アンプ、α・・・
・・・荷重偏差信号、β・・・・・荷重指令信号、S・
・・・・・位置速度切替信号、■・−・・・・電流指令
信号、11 ・・・・・・電流フィードバック信号、Δ
I ・・・・・・電流偏差信号、K・ ・・・・・・電
流アンプ、21・・・・・・位置比較器、22・・・・
・・速度比較器、23・・・・・・電流比較器、31・
・・・・・位置速度切替部、32・・・・・・荷重比較
器、60・・・・・・寸法表示器、61・・・・・・カ
ウンター、52・・・・・・受光素子、63・・・・・
・光源、64・・・・・・スケールスリット、56・・
・・・・測定子、56・・・・・支柱、57・・・・・
・シリンダー、68・・・・・・移動スリット0 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 fO−m−すンク祁(講4アー4 1f−−E−夕1冊音予 12−−一1.yコーヅスプーノし tj−y、9″出巻 f4−−−t−タ t、5−−−た塙邦
Fig. 1 is a configuration diagram of one joint of an industrial robot according to an embodiment of the present invention, and Fig. 2 is a diagram showing the configuration of one joint of an industrial robot according to an embodiment of the present invention.
Position command signal, P/... Position feedback batter signal, ΔP... Position deviation signal, Kp song, Position amplifier, ■... Speed command signal, Vl -11a-
...Speed feedback signal, ΔV...
Speed deviation signal, Kv...Speed amplifier, α...
...Load deviation signal, β...Load command signal, S.
...Position speed switching signal, ■...Current command signal, 11 ...Current feedback signal, Δ
I...Current deviation signal, K...Current amplifier, 21...Position comparator, 22...
...Speed comparator, 23...Current comparator, 31.
...Position speed switching section, 32 ... Load comparator, 60 ... Dimension display, 61 ... Counter, 52 ... Light receiving element , 63...
・Light source, 64...Scale slit, 56...
... Measuring element, 56 ... Prop, 57 ...
・Cylinder, 68...Movement slit 0 Agent's name Patent attorney Toshi Nakao and 1 other person 1st
Figure fO-m-Sunku (Lecture 4A4 1f--E-Evening 1 book 12--1. ---Takanakuni

Claims (1)

【特許請求の範囲】[Claims] (1)位置制御ループと速度制御ループと電流制御ルー
プとからなる制御系と、前記速度制御ループと電流制御
ループとで力制御がなされはアームと、前記位置制御ル
ープの位置偏差値を検出するために、位置制御ループの
制御系内に設けた位置計数器と、アームへ教示信号を送
出する制御部と、前記位置偏差値により前記制御系で制
御するアームが被位置決め物に接触したことを検知する
手段と、前記位置計数器の値が一定となった際前記被位
置決め物の接触検知時の位置計数器の値との演算結果よ
り前記被位置決め物の位置ずれ量を検知し、この位置ず
れ量を補正する補正機構とを備えた産業用ロボット。 2 特許請求の範囲第1項に記載の産業用ロボットにお
いて、位置ずれ量を検知し、この位置ずれ量を補正する
補正機構は位置ずれ補正量と、前記制御部よりアームへ
の教示信号との演算結果より、前記位置決め物のキ法を
計測する計測機能を備えた産業用ロボット。
(1) A control system consisting of a position control loop, a speed control loop, and a current control loop, and a force control is performed by the speed control loop and the current control loop, and a position deviation value of the arm and the position control loop is detected. In order to do this, a position counter provided in the control system of the position control loop, a control unit that sends a teaching signal to the arm, and the position deviation value are used to detect whether the arm controlled by the control system has contacted the object to be positioned. Detecting means detects the amount of positional deviation of the object to be positioned from the calculation result of the value of the position counter at the time of contact detection of the object to be positioned when the value of the position counter becomes constant, and detects the position of the object to be positioned. An industrial robot equipped with a correction mechanism that corrects the amount of deviation. 2. In the industrial robot according to claim 1, the correction mechanism that detects the amount of positional deviation and corrects the amount of positional deviation is based on the correction amount of positional deviation and the teaching signal from the control unit to the arm. An industrial robot equipped with a measurement function that measures the key method of the positioning object based on calculation results.
JP1296385A 1985-01-25 1985-01-25 Industrial robot Pending JPS61170805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1296385A JPS61170805A (en) 1985-01-25 1985-01-25 Industrial robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1296385A JPS61170805A (en) 1985-01-25 1985-01-25 Industrial robot

Publications (1)

Publication Number Publication Date
JPS61170805A true JPS61170805A (en) 1986-08-01

Family

ID=11819906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1296385A Pending JPS61170805A (en) 1985-01-25 1985-01-25 Industrial robot

Country Status (1)

Country Link
JP (1) JPS61170805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1667000A1 (en) * 2004-12-02 2006-06-07 Mitutoyo Corporation Control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957556A (en) * 1972-10-06 1974-06-04
JPS5755413A (en) * 1980-09-19 1982-04-02 Fanuc Ltd Industrial robot having control function of electrically driven motor current
JPS58124907A (en) * 1982-01-20 1983-07-25 Nissan Motor Co Ltd Positioning device for machine tools
JPS59200304A (en) * 1983-04-26 1984-11-13 Murata Mach Ltd Control method of industrial robot
JPS59229608A (en) * 1983-06-10 1984-12-24 Amada Co Ltd Method for returning moving body to original point

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957556A (en) * 1972-10-06 1974-06-04
JPS5755413A (en) * 1980-09-19 1982-04-02 Fanuc Ltd Industrial robot having control function of electrically driven motor current
JPS58124907A (en) * 1982-01-20 1983-07-25 Nissan Motor Co Ltd Positioning device for machine tools
JPS59200304A (en) * 1983-04-26 1984-11-13 Murata Mach Ltd Control method of industrial robot
JPS59229608A (en) * 1983-06-10 1984-12-24 Amada Co Ltd Method for returning moving body to original point

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1667000A1 (en) * 2004-12-02 2006-06-07 Mitutoyo Corporation Control device
US7471056B2 (en) 2004-12-02 2008-12-30 Mitutoyo Corporation Control device

Similar Documents

Publication Publication Date Title
US4447697A (en) Weld gun repositioning system for programmable manipulator
US6070109A (en) Robot calibration system
CA1201823A (en) Multi-lead component manipulator
JPH0351557B2 (en)
EP0963816A3 (en) Method for measuring and compensating kinematic modifications of a robot
JP3191563B2 (en) Automatic correction method for offline teaching data
JPS61170805A (en) Industrial robot
CA1205570A (en) Multi-channel position detection system
JPH01234140A (en) Method and apparatus for removing influence of dead load of tool
WO2002098594A1 (en) Method and device for detecting abrasions of electrodes in staionary welding gun
JPS61118810A (en) Controller of flexible manipulator
JPS646719A (en) Robot hand position controller
JPS62203789A (en) Follow-up controller
GB2081475A (en) Position control process and apparatus for a positioning cylinder drive
JPH0839468A (en) Control system for robot
JPS6311289A (en) Reference-attitude data reading system of robot
JPS61109683A (en) Gripper
JPH09210623A (en) Position deviation measuring device
JPS6427887A (en) Visual positioning device
JPH0263684A (en) Method for profiling weld line
JPS60257982A (en) Robot control device with automatic correcting function of face perpendicularity of welding gun
JPS63192566A (en) Controller for arc welding robot
JPH06782A (en) Position control method for robot
JPH02185383A (en) Control device for robot
JPH0433589B2 (en)