JPS61170300A - Controller of variable speed water wheel generator - Google Patents

Controller of variable speed water wheel generator

Info

Publication number
JPS61170300A
JPS61170300A JP60009872A JP987285A JPS61170300A JP S61170300 A JPS61170300 A JP S61170300A JP 60009872 A JP60009872 A JP 60009872A JP 987285 A JP987285 A JP 987285A JP S61170300 A JPS61170300 A JP S61170300A
Authority
JP
Japan
Prior art keywords
command
generation output
power generation
generator
water turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60009872A
Other languages
Japanese (ja)
Inventor
Eiji Haraguchi
原口 英二
Hiroto Nakagawa
博人 中川
Akira Bando
明 阪東
Kenichi Ono
健一 小野
Hisao Kuwabara
尚夫 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP60009872A priority Critical patent/JPS61170300A/en
Publication of JPS61170300A publication Critical patent/JPS61170300A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Water Turbines (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To enhance the stability of a power system by temporarily delaying the variation followed at the rotating speed to the optimum rotating speed command when a generator output command is abruptly varied, and directly controlling the generation output in response to the generation output command. CONSTITUTION:When a generation output command P0 and a water level detection signal H are input to a water wheel characteristic function generator 5, the optimum rotating speed command Na and the optimum guide valve opening command Ya are generated. The command Na is compared by a comparator 10 with the actual rotating speed signal N detected by a rotating speed detector 6, and its deviation DELTAN is input to a calculator 11. The calculator 11 outputs a correction signal DELTAC for correcting the command Ya. The signal DELTAC is added by an adder 13 to the command Ya, and input to a guide valve driver 8. The command P0 is also input to a comparator 15, compared with a generation output signal PG from a generation output detector 16, and its deviation P is input to a power controller 17 and a cycloconverter 3. Thus, the generation output of a wound-rotor type induction generator 1 is smoothly followed to the command P0.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は巻物形誘導発電機を用いたh「変速水車発′幅
装餘の制師装冒に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to the installation of a width-loading system from a variable-speed water turbine using a scroll-type induction generator.

〔発明の背景〕[Background of the invention]

この種可変速水車発電装置の制御装置6′として、第8
図に示すようなものが提案されている。(例えば、特願
昭57−182920号参照)第8図において、1は巻
線形誘導発電機で、その回転子に直結された水車2によ
って回転酬3・hされるとともに、発電機1の二次巻線
1bには、サイクロコンバータ3により発電機1の回転
速度に応じて所定の位相に調整された交流励磁電流が供
給され、発電機1の一次巻線1aからは電力系+Y;!
+。
As a control device 6' for this kind of variable speed water turbine generator, the eighth
Something like the one shown in the figure has been proposed. (For example, see Japanese Patent Application No. 57-182920.) In FIG. The secondary winding 1b is supplied with an AC excitation current adjusted to a predetermined phase according to the rotational speed of the generator 1 by the cycloconverter 3, and from the primary winding 1a of the generator 1, the power system +Y;!
+.

4の足格周波数と等しい一定の周波数の交流電力が出力
されろように、可変速運転が行なわされる。
Variable speed operation is performed so that AC power of a constant frequency equal to the specified frequency of No. 4 is output.

5は水車特性関数発生福で、回転速度検出器6で検出さ
れた回転速度化U、 Nと、外怜Sから与えられる発電
出力指令Poおよび水位検出信号14を入力して、最高
効率で:l1l18転するための最剥旧1転速度指令N
aと最適案内弁開度指令Y、を発生する。7はスリップ
位相恢出用誘41fjJで、その回仏子が光電機IK+
亘結されるとともに、−次巻線7aが発電イ喫1の出力
側に接続され、二次巻曲j7bからスリップ位相信号S
pを出力する。このスリップ位相信号Spと最適回転速
度指令N、はサイクロコンバータ3に与えられ、前記し
たように、発電機1の二次巻線lbK供給する交流励(
+& 電流の位相等を制御し、また最適案内弁開度指令
Y11は案内弁駆動装置8に与えられ、水車出力PTが
M適値になるように、案内弁9の開度を制御する。
5 is a water turbine characteristic function generation function, which inputs the rotational speeds U and N detected by the rotational speed detector 6, the power generation output command Po given from the outside S, and the water level detection signal 14, and calculates the maximum efficiency: Most stripped 1st rotation speed command N for l1l18 rotation
A and the optimum guide valve opening command Y are generated. 7 is a slip phase development guide 41fjJ, and its turntable is Kodenki IK+
At the same time, the negative winding 7a is connected to the output side of the power generation intake 1, and the slip phase signal S is output from the secondary winding j7b.
Output p. This slip phase signal Sp and the optimum rotational speed command N are given to the cycloconverter 3, and as described above, the AC excitation (
+& The phase of the current, etc. is controlled, and the optimum guide valve opening degree command Y11 is given to the guide valve drive device 8, and the opening degree of the guide valve 9 is controlled so that the water turbine output PT becomes an appropriate value M.

このような制御装置において、いま発電出力P。In such a control device, now the power generation output P.

をステップ状に上昇させようとして、発電出力指令P、
を第9図(a) K示すように変化させた場合、発電出
力指令poのステップ状の上列−如伴って最適回転速度
指令N、と最適案内弁開度指令Y、も、第9図(b) 
、 (C)に示す如く、ステップ状に上昇し、案内弁の
開度Yは案内弁駆動装置8により、第9図(d) VC
示すように、順次最適案内弁開度指令Y&の値と一致す
るように制御され、この案内弁9の開度の変化に従って
水車出力PTも、第9しl (e) VC示すように変
化し又、発電出力指令Povc対応した値となる。一方
、発電機10回転速度へを、第9図(f) K示すよう
に上昇させて、最適回転速度指令Na K一致させるた
めfは、その上荷分に見合うだけの発電装置の回転系の
運動エネルギが必要であるが、この−M!l!IIエネ
ルギは水車出力P、か発電機1にかかる電気的負荷、す
なわち発電出力P0のいずれか一方から補ぎなうしか方
法がない。しかし、前記したよ5K、水車出力PTは最
適案内弁開度指令Ya[応−じて変化する案内弁9の開
度Yによって決められているため、早急には上昇しない
。このため、前記運転エネルギを発電出力P。
In an attempt to increase the power generation output command P in a stepwise manner,
When changed as shown in FIG. 9(a) K, the step-like upper row of the power generation output command po - accordingly, the optimum rotational speed command N and the optimum guide valve opening command Y also change as shown in FIG. (b)
, as shown in (C), the opening degree Y of the guide valve is increased by the guide valve driving device 8, as shown in FIG. 9(d) VC.
As shown, the water turbine output PT is sequentially controlled to match the value of the optimum guide valve opening command Y&, and according to the change in the opening of the guide valve 9, the water turbine output PT also changes as shown in the ninth column (e) VC. Also, the value corresponds to the power generation output command Povc. On the other hand, in order to increase the rotational speed of the generator 10 as shown in Fig. 9(f) and match the optimum rotational speed command NaK, f is the rotational speed of the generator set corresponding to the additional load. Kinetic energy is required, but this -M! l! The only way to supplement the II energy is from either the water turbine output P or the electrical load on the generator 1, that is, the power generation output P0. However, as mentioned above, the water turbine output PT is determined by the optimum guide valve opening command Ya [the opening Y of the guide valve 9 which changes accordingly, and therefore does not increase immediately. Therefore, the operating energy is converted into the power generation output P.

から桶ぎなうことになり、第9図(g)に示すように、
上昇させるべき発電出力P11が過渡的に逆に下がって
しまい、電力系統の運転上問題が生じる。この問題は発
電出力P。をステップ状に下げようとする場合にも同僚
ニ生じる。
As shown in Figure 9(g),
The power generation output P11, which should be increased, decreases transiently, causing problems in the operation of the power system. This problem is the power generation output P. It also occurs when you try to lower your level in steps.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記した従来技術の問題点を解決し1
発電効率を低下させることなく、発電出力を発電出力指
令に日清に追従させて、電力系統の安定度を高め得る可
変速水車発電装置の制御装置を提供することKある。
An object of the present invention is to solve the problems of the prior art described above.
It is an object of the present invention to provide a control device for a variable speed water turbine power generation device that can increase the stability of an electric power system by making the power generation output follow the power generation output command without reducing the power generation efficiency.

〔発明の概要〕[Summary of the invention]

この目的を達成するため、本発明は、咎麻形訪4を発電
後の発′市出力を検出する発′山:出力検出器と、この
発′眼出力検出器で検出された発電出力指令と発電出力
指令の偏差に応じて巻線形訪勇9発電機の二次@線に与
える交ぴ0励磁ml電流をfi7制御する成力制御装置
と、水位検出信号と発電出力指令を入力して最適回転速
度指令と最適案内弁開度信号を出力する水垂特性関数発
生器と、最適回転速度指令と回転速度信号の偏差を入力
してこの偏差を岑とするような袖正信刊を出力する修正
演檜器とを(+ti+え、発電出力指令をステップ状に
変化させた場合に1巻線形誘導発電機の回転速度が最適
回転速度指令に追従して変化するのを一時的[遅らせて
、発電出力を発電出力指令に応じて直接的に制肯1する
ようにしたことを特徴とする。
In order to achieve this object, the present invention provides an output detector for detecting the starting output after power generation, and a power generation output command detected by the starting output detector. and a power control device that controls the cross-excitation ml current given to the secondary @ line of the winding type generator according to the deviation of the power generation output command, and the water level detection signal and the power generation output command are input. A Mizutari characteristic function generator that outputs an optimal rotation speed command and an optimal guide valve opening signal, and inputs the deviation between the optimal rotation speed command and rotation speed signal and outputs a signal that takes this deviation as a value. When the power generation output command is changed stepwise, the rotational speed of the single-winding induction generator is temporarily [delayed] from changing in accordance with the optimum rotational speed command. The present invention is characterized in that the power generation output is directly controlled according to the power generation output command.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図示の各実施例について説明する。 Hereinafter, the present invention will be explained with reference to the illustrated embodiments.

第1図は本発明の一実施例に係る制御装置のブロック図
である。なお、第1図中、第8図と同一符号は同一物ま
たは相当物を示す。
FIG. 1 is a block diagram of a control device according to an embodiment of the present invention. In FIG. 1, the same reference numerals as in FIG. 8 indicate the same or equivalent components.

水車特性関数発生器5には発電出力指令POと水位検出
信号Hが入力されて、最適回転速度指令偏差ΔN(=N
、−N)が演算器11に入力される。演舞=器11は比
例要素に1、積分要素に27 s 。
The power generation output command PO and the water level detection signal H are input to the water turbine characteristic function generator 5, and the optimum rotation speed command deviation ΔN (=N
, -N) are input to the arithmetic unit 11. Performance = Instrument 11 has 1 for the proportional element and 27 s for the integral element.

微分要素に、 S および加算器12からなり、前記偏
差ΔNがある限りこれを零にするように最適案内弁開度
指令Y、を補正する補正1ぎ号ΔCを出力する。この補
正信号ΔCは加算器13で最適案内弁開度指令Yaと加
算され、加算器13からの出力、すなわち補正された案
内弁開度指令(Y−+ΔC)が案内弁駆動装置8に入力
される。案内弁駆動装置8は加算器14と積分要系lぐ
。/Sからなり、その出力が加算器14に負帰還されて
いる。
It consists of a differential element S and an adder 12, and outputs a correction signal ΔC that corrects the optimum guide valve opening command Y so as to make the deviation ΔN zero as long as it exists. This correction signal ΔC is added to the optimum guide valve opening command Ya in the adder 13, and the output from the adder 13, that is, the corrected guide valve opening command (Y−+ΔC) is input to the guide valve driving device 8. Ru. The guide valve driving device 8 is connected to an adder 14 and an integral system. /S, the output of which is negatively fed back to the adder 14.

また、前記発電出力指令POは比較器15にも入力され
、他方の入力である発電出力検出器16で検出された実
際の発電出力信号P。と比較されて、その偏差ΔP (
=pO−p、 )が電力制御ii■j装7.17に入力
される。電力制御装置17は比例要素1(5、積分要素
1(。/Sおよび加算器18からなり、その出力がサイ
クロコンバータ3に入力される。
The power generation output command PO is also input to a comparator 15, and the other input is an actual power generation output signal P detected by a power generation output detector 16. The deviation ΔP (
=pO-p, ) is input to the power control device 7.17. The power control device 17 includes a proportional element 1 (5), an integral element 1 (./S), and an adder 18, the output of which is input to the cycloconverter 3.

このように構成された本実施例の制御装置において、い
ま時点もで例えば発電出力P0をステップ状に上昇させ
ようとして、発電出力指令1)0を第2 Cm (a)
 Vc示すようにステップ状に上昇させると、発電機1
の発電出力P。は、第2図<g) K示すように、発電
出力指令P、の変化に追従して上昇する。
In the control device of this embodiment configured in this way, for example, in order to increase the power generation output P0 stepwise, the power generation output command 1)0 is changed to the second Cm (a).
When Vc is raised stepwise as shown, generator 1
Power generation output P. As shown in Fig. 2<g), P increases following the change in the power generation output command P.

すなわち、電力制御装置17に@まれる積分要素に6/
Sと、電力制御装置17、サイクロコンバータ3、発電
機1、発電出力検出器16および比較器15によって構
成される負帰還回路により、偏差ΔP (:=p6−p
o)は次第に減少して定常時にp、=poとなる。一方
、最適案内弁開度指令Y。
In other words, the integral element included in the power control device 17 has 6/
The deviation ΔP (:=p6-p
o) gradually decreases to p,=po at steady state. On the other hand, the optimum guide valve opening command Y.

に対しての案内弁9の開度Yの応答性は、前述の発電出
力指令P、 [対しての発電出力P。の応答性よりも遅
い。このため、発電出力P。よりも水車出力P?の方が
小さくなり、第2図げ)K示すように、回転速度Nは発
電出力指令Poの急変後、一時的に減速され、その後、
時点t1で第2図(d) [示すよ5IC1案内弁開度
Yは最適案内弁開度指令Y、と等くなり、発電出力P0
と水車出力PTがほぼ等しくなるので、回転速度Nの低
下は止む。
The responsiveness of the opening degree Y of the guide valve 9 to the above-mentioned power generation output command P, [power generation output P to. Responsiveness is slower than . Therefore, the power generation output P. Is the water turbine output P? As shown in Figure 2), the rotational speed N is temporarily decelerated after the sudden change in the power generation output command Po, and then,
At time t1, as shown in Fig. 2(d), the 5IC1 guide valve opening Y becomes equal to the optimum guide valve opening command Y, and the power generation output P0
Since the water turbine output PT becomes approximately equal to PT, the rotational speed N stops decreasing.

なお、時点t、では実際の回転速度Nの方が最適回転速
度指令Naよりも低く、偏差ΔN(=N、−N)が正で
、演算器11から出力される補正信号ΔCは正であるか
ら、この補正信号ΔCで補正された案内弁開度指令(’
l’a+ΔC)は最適案内弁開度指令Yaよりも犬とな
り、やがて水車出力PTは発電出力P0よりも犬となる
。したがって、回転速度Nは増大して最適回転速度指令
Na vc近付くとともに、補正信号ΔCも零に近付き
、最終的に案内弁開度Yは最適案内弁開度指令Yaと一
致し、回転速度Nは最適回転速度指令と等しくなる。す
なわち、演算器11に含まれる積分要素に、/Sと、演
算器11、加算器13、案内弁+m勤装置8、案内弁9
、水車2、発電機1、回転速度検出器6および比較器1
0によって構成される負帰還回路により、偏差ΔN(=
Na−N)は次第に減少して定常時KN=Naとなる。
Note that at time t, the actual rotational speed N is lower than the optimum rotational speed command Na, the deviation ΔN (=N, -N) is positive, and the correction signal ΔC output from the calculator 11 is positive. , the guide valve opening command ('
l'a+ΔC) is smaller than the optimum guide valve opening command Ya, and eventually the water turbine output PT becomes smaller than the power generation output P0. Therefore, as the rotational speed N increases and approaches the optimum rotational speed command Na vc, the correction signal ΔC also approaches zero, and finally the guide valve opening Y matches the optimum guide valve opening command Ya, and the rotational speed N It becomes equal to the optimum rotation speed command. That is, the integral element included in the arithmetic unit 11 includes /S, the arithmetic unit 11, the adder 13, the guide valve + m shift device 8, and the guide valve 9.
, water turbine 2, generator 1, rotational speed detector 6 and comparator 1
0, the deviation ΔN (=
Na-N) gradually decreases to KN=Na at steady state.

また、定常時、偏差ΔY(−Y、−Y)=o、すなわち
Y、=Yは次のようにして達成される。(イ)水車特性
関数発生器5から出力される最適案内弁開度指令Y、は
当然のことであるが発電出力指令Po [相当するもの
である。(ロ)前記したように、定常時P。−Poとな
る。(ハ)水車20ランチ、発電機1の回転子等の総て
の回転部の慣性効果は水車出力P?と発電出力P、の差
によってva速されたり、減速されたりするもので、一
種の積分要素とみることができ、しかも前記したように
11,13,8,9,2,1゜6、IOKよって負帰還
回路が構成でれているので、定常時にはPT−Poとな
る。に)案内弁開&Yは水車出力P?に相当するもので
ある。以上(イ)〜に)を総合すれば、偏差ΔY(−Y
、−Y)−〇、すなわちY、=Y  となる。
Further, during steady state, the deviation ΔY(-Y, -Y)=o, that is, Y,=Y, is achieved as follows. (a) The optimum guide valve opening degree command Y output from the water turbine characteristic function generator 5 is, of course, equivalent to the power generation output command Po. (b) As mentioned above, P during steady state. - becomes Po. (c) What is the inertial effect of all rotating parts such as the rotor of the water turbine 20 launch and the generator 1, which is the water turbine output P? It is speeded up or slowed down depending on the difference between the output power and the power generation output P, and can be seen as a kind of integral element. Therefore, since a negative feedback circuit is configured, the state becomes PT-Po during steady state. ) Guide valve open & Y is water turbine output P? This corresponds to If we combine the above (a) ~), we get the deviation ΔY(-Y
, -Y) -〇, that is, Y, =Y.

また、第3図および第4図は本発明の他の各実施例に係
る制御装置のブロック図である。
3 and 4 are block diagrams of control devices according to other embodiments of the present invention.

これらの実施例では、演算器11からのぞIJ正信号Δ
Cが、最適案内弁開度指令Y、に加算される代りに、加
算器19で発電出力指令Poと加算され、あるいは加算
器20で水位検出信号I4と加算されて水車特性関数発
生器5に入力されている。
In these embodiments, the IJ positive signal Δ from the arithmetic unit 11 is
Instead of being added to the optimum guide valve opening command Y, C is added to the power generation output command Po in the adder 19, or added to the water level detection signal I4 in the adder 20, and then sent to the water turbine characteristic function generator 5. It has been entered.

その他の構成は第1図の実施例と同様である。The rest of the structure is the same as the embodiment shown in FIG.

したがって、これらの各実施例によれば、発電出力指令
Poあるいは水位検出信号Hが補正信号ΔCで補正され
て水車特性関数発生器5へ入力され、その出力である最
適案内弁開度指令Yaが、第5図(b)K示すように、
第1図の実施例における案内弁駆動装置8への入力信号
(Y、+ΔC)と同様に増大するので、第1図の実施例
と同様の作用効果が得られる。なお、発電出力指令Po
あるいは水位検出信号Hが補正信号ΔCKよって補正さ
れると、最適回転速度指令N、も変化するが、その変化
率は最適案内弁開度指令Ya (7)変化率に対して小
さいため、殆んどこれを無視することができる。
Therefore, according to each of these embodiments, the power generation output command Po or the water level detection signal H is corrected by the correction signal ΔC and input to the water turbine characteristic function generator 5, and the output thereof, the optimum guide valve opening command Ya, is , as shown in Figure 5(b)K,
Since the signal increases in the same way as the input signal (Y, +ΔC) to the guide valve drive device 8 in the embodiment of FIG. 1, the same effect as in the embodiment of FIG. 1 can be obtained. In addition, the power generation output command Po
Alternatively, when the water level detection signal H is corrected by the correction signal ΔCK, the optimum rotational speed command N also changes, but the rate of change is small compared to the optimum guide valve opening command Ya (7), so it hardly changes. Which can be ignored.

さらに、第6図は本発明のさらに他の実施例に係る制御
装置のブロック図である。
Furthermore, FIG. 6 is a block diagram of a control device according to still another embodiment of the present invention.

この実施例が第1図の実施例と異なる点は、最適回転速
度指令N、と回転速度Nとの偏差ΔNを入力して、その
値が所定値を越えたときに、電力補正信号ΔPcを発生
する電力補正関数発生器21と、この電力補正信号ΔP
cを発電出力指令Poから減じる加算器22が設けられ
ていることである。
This embodiment differs from the embodiment shown in FIG. The power correction function generator 21 that generates and this power correction signal ΔP
An adder 22 that subtracts c from the power generation output command Po is provided.

したがって、この実施例によれば、発電出力指令P、を
ステップ状に上昇させ、最適回転速度指令Naと回転速
度Nの偏差ΔNが所定値を越えた場合に、電力補正関数
発生器21から電力補正信号Δpeが発生し、これが加
算器22に加えられて発電出力指令P、から減じられる
ので、発′屯出力P、は、第7図(g)に示すように、
第2図(g)に比べてゆるやかに発電出力指令Poの変
化に追従して上昇することになる。一方1回転速度Nの
低下は、第7図(f) K示すように、その分だけ抑え
られ、最適回転速度指令Naの変化に対する回転速度N
の応答が早くなる。すなわち、発電出力PQと回転速度
Nを、両者の調和をとりながら発電出力指令P、の変化
に追従させることができる。
Therefore, according to this embodiment, when the power generation output command P is increased in a stepwise manner and the deviation ΔN between the optimum rotational speed command Na and the rotational speed N exceeds a predetermined value, the power correction function generator 21 outputs electric power. A correction signal Δpe is generated, which is added to the adder 22 and subtracted from the power generation output command P, so that the output power P is as shown in FIG. 7(g).
Compared to FIG. 2(g), it increases more slowly following the change in the power generation output command Po. On the other hand, as shown in Fig. 7(f) K, the decrease in the rotational speed N by one rotational speed N is suppressed by that amount, and the rotational speed N with respect to the change in the optimum rotational speed command Na.
response becomes faster. That is, the power generation output PQ and the rotational speed N can be made to follow changes in the power generation output command P while maintaining harmony between the two.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、発電出力指令を
急変させた場合に1巻線形誘導発電機の回転速度が最適
回転速度指令に追従して変化するのを一時的に遅らせて
、発電出力を発電出力指令に応じて直接的に制御するよ
うにしたので、発電出力を発電出力指令に円滑に追従さ
せて、電力系統の安定度を高めることができる。また1
回転速度を最適回転速度指令に追従して変化させるのを
遅らせると、その分発電効率が低下するが、それは極め
て僅かな時間であるから、殆んど無視することができる
As explained above, according to the present invention, when the power generation output command is suddenly changed, the rotational speed of the single-winding induction generator is temporarily delayed from changing in accordance with the optimum rotational speed command, thereby generating power. Since the output is directly controlled according to the power generation output command, the power generation output can be made to smoothly follow the power generation output command, and the stability of the power system can be improved. Also 1
If changing the rotational speed in accordance with the optimum rotational speed command is delayed, the power generation efficiency will be reduced by that amount, but this is for an extremely short period of time and can be almost ignored.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る制御装置のブロック図
、第2図(a)〜(g)は同制御装置の各部における信
号の波形図、第3図および第4図は本発明の他の各実施
例に係る制御装置のブロック図、第5図(a)〜(g)
は同制御装置の各部における信号の波形図、第6図は本
発明のさらに他の実施例に係る制御装置のブロック図、
第7図(a)〜(g)は同制御装置の各部における信号
の波形図、第8図は従来の制御装置の一例を示すブロッ
ク図、第9図(a)〜(g)は同制御装置の各部におけ
る信号の波形図である。 1・・・・・・巻線形誘導発電機、2・・・・・・水車
、3・・・・・・サイクロコンバータ、5・・・・・・
水車特性関数発生器。 6・・・・・・回転速度検出器、7・・・・・・スリッ
プ位相検出用誘導機、8・・・・・・案内弁駆動装置、
9・・・・・・案内弁、10・・・・・・比較器、11
・・・・・・演算器、13・・・・・・加算器、15・
・・・・・比較器、16・・・・・・発電出力検出器、
17・・・・・・′電力制御装置、19.20・・・・
・・加算器、2]・・・・・・電力補正関数発生器、2
2・・・・・・加發器。 第8図 第9図 (型開 lL’l  。 17′+開
FIG. 1 is a block diagram of a control device according to an embodiment of the present invention, FIGS. 2(a) to (g) are waveform diagrams of signals in each part of the control device, and FIGS. 3 and 4 are diagrams of the present invention. Block diagrams of control devices according to other embodiments, FIGS. 5(a) to 5(g)
6 is a waveform diagram of signals in each part of the control device, and FIG. 6 is a block diagram of a control device according to still another embodiment of the present invention.
Figures 7 (a) to (g) are waveform diagrams of signals in each part of the same control device, Figure 8 is a block diagram showing an example of a conventional control device, and Figures 9 (a) to (g) are the same control FIG. 3 is a waveform diagram of signals in each part of the device. 1... Wound induction generator, 2... Water turbine, 3... Cyclo converter, 5...
Water turbine characteristic function generator. 6... Rotation speed detector, 7... Slip phase detection induction machine, 8... Guide valve drive device,
9... Guide valve, 10... Comparator, 11
...... Arithmetic unit, 13... Adder, 15.
... Comparator, 16 ... Power generation output detector,
17...'Power control device, 19.20...
... Adder, 2] ... Power correction function generator, 2
2... Enhancer. Figure 8 Figure 9 (Mold opening lL'l. 17'+opening

Claims (1)

【特許請求の範囲】 1、電力系統に接続された巻線形誘導発電機と、この巻
線形誘導発電機を回転駆動する水車と、この水車に供給
される水量を調整する案内弁と、この案内弁の開度を案
内弁開度指令に応じて制御する案内弁駆動装置と、前記
巻線形誘導発電機の回転速度を検出する回転速度検出器
とを備え、前記回転速度検出器から得られる回転速度信
号と外部から与えられる水位検出信号および発電出力指
令に応じて、前記巻線形誘導発電機の二次巻線に与える
交流励磁電流と前記案内弁の開度を制御し、前記巻線形
誘導発電機を最適回転速度で回転させるとともに、前記
巻線形誘導発電機の一次巻線に電力系統と同一定格周波
数の交流電力を発生させる可変速水車発電装置の制御装
置において、前記巻線形誘導発電機の発電出力を検出す
る発電出力検出器と、この発電出力検出器で検出された
発電出力信号と前記発電出力指令の偏差に応じて前記二
次巻線に与える交流励磁電流を制御する電力制御装置と
、前記水位検出信号と前記発電出力指令を入力して最適
回転速度指令と最適案内弁開度指令を出力する水車特性
関数発生器と、前記最適回転速度指令と前記回転速度指
令の偏差を入力してこの偏差を零とするような補正信号
を出力する修正演算器とを備えたことを特徴とする可変
速水車発電装置の制御装置。 2、特許請求の範囲第1項において、前記補正信号を前
記最適案内弁開度指令に加えて前記案内弁駆動装置に入
力するように構成したことを特徴とする可変速水車発電
装置の制御装置。 3、特許請求の範囲第1項において、前記補正信号を前
記発電出力指令に加えて前記水車特性関数発生器に入力
するように構成したことを特徴とする可変速水車発電装
置の制御装置。 4、特許請求の範囲第1項において、前記補正信号を前
記水位検出信号に加えて前記水車特性関数発生器に入力
するように構成したことを特徴とする可変速水車発電装
置の制御装置。 5、特許請求の範囲第1項において、前記最適回転速度
指令と前記回転速度信号の偏差が所定値を越えたとき、
その偏差に応じて前記発電出力指令を調整して前記電力
制御装置に入力するように構成したことを特徴とする可
変速水車発電装置の制御装置。
[Claims] 1. A wound induction generator connected to an electric power system, a water wheel that rotationally drives the wound induction generator, a guide valve that adjusts the amount of water supplied to the water turbine, and this guide. A guide valve drive device that controls the opening degree of the valve according to a guide valve opening command, and a rotation speed detector that detects the rotation speed of the wound induction generator, and the rotation speed obtained from the rotation speed detector. The alternating current excitation current applied to the secondary winding of the wound induction generator and the opening degree of the guide valve are controlled according to the speed signal, a water level detection signal given from the outside, and a power generation output command. In a control device for a variable speed water turbine generator, which rotates the generator at an optimum rotational speed and generates alternating current power having the same rated frequency as the power system in the primary winding of the wound induction generator, a power generation output detector that detects the power generation output; and a power control device that controls an AC excitation current applied to the secondary winding according to a deviation between the power generation output signal detected by the power generation output detector and the power generation output command. , a water turbine characteristic function generator that inputs the water level detection signal and the power generation output command and outputs an optimum rotation speed command and an optimum guide valve opening degree command; and a water turbine characteristic function generator that inputs the deviation between the optimum rotation speed command and the rotation speed command. 1. A control device for a variable speed water turbine power generator, comprising: a correction calculator that outputs a correction signal that makes the deviation of the lever zero. 2. A control device for a variable speed water turbine generator according to claim 1, characterized in that the correction signal is input to the guide valve driving device in addition to the optimum guide valve opening command. . 3. A control device for a variable speed water turbine power generator according to claim 1, wherein the correction signal is input to the water turbine characteristic function generator in addition to the power generation output command. 4. A control device for a variable speed water turbine power generator according to claim 1, characterized in that the correction signal is input to the water turbine characteristic function generator in addition to the water level detection signal. 5. In claim 1, when the deviation between the optimum rotational speed command and the rotational speed signal exceeds a predetermined value,
A control device for a variable speed water turbine power generation device, characterized in that the power generation output command is adjusted according to the deviation and inputted to the power control device.
JP60009872A 1985-01-24 1985-01-24 Controller of variable speed water wheel generator Pending JPS61170300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60009872A JPS61170300A (en) 1985-01-24 1985-01-24 Controller of variable speed water wheel generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60009872A JPS61170300A (en) 1985-01-24 1985-01-24 Controller of variable speed water wheel generator

Publications (1)

Publication Number Publication Date
JPS61170300A true JPS61170300A (en) 1986-07-31

Family

ID=11732232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60009872A Pending JPS61170300A (en) 1985-01-24 1985-01-24 Controller of variable speed water wheel generator

Country Status (1)

Country Link
JP (1) JPS61170300A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445970A (en) * 1987-08-14 1989-02-20 Hitachi Ltd Control device for variable speed water turbine generating unit
JPS6474096A (en) * 1987-09-11 1989-03-20 Mitsubishi Electric Corp Control method for ac excitation synchronous machine
EP2117112A1 (en) * 2008-05-09 2009-11-11 Honda Motor Co., Ltd. Cycloconverter generator
WO2013078878A1 (en) * 2011-11-29 2013-06-06 国网电力科学研究院 Comprehensive regulation device for small speed-regulator based on integrated hydraulic pressure technology
CN104405574A (en) * 2014-11-25 2015-03-11 无锡科思电子科技有限公司 Water wheel rotating speed monitoring system based on output pulse frequency
CN104775983A (en) * 2014-01-14 2015-07-15 东方电气集团东方电机有限公司 Guide blade delay closing system of water pumping energy storage unit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445970A (en) * 1987-08-14 1989-02-20 Hitachi Ltd Control device for variable speed water turbine generating unit
JPS6474096A (en) * 1987-09-11 1989-03-20 Mitsubishi Electric Corp Control method for ac excitation synchronous machine
EP2117112A1 (en) * 2008-05-09 2009-11-11 Honda Motor Co., Ltd. Cycloconverter generator
US8022562B2 (en) 2008-05-09 2011-09-20 Honda Motor Co., Ltd. Cycloconverter generator
WO2013078878A1 (en) * 2011-11-29 2013-06-06 国网电力科学研究院 Comprehensive regulation device for small speed-regulator based on integrated hydraulic pressure technology
CN104775983A (en) * 2014-01-14 2015-07-15 东方电气集团东方电机有限公司 Guide blade delay closing system of water pumping energy storage unit
CN104405574A (en) * 2014-11-25 2015-03-11 无锡科思电子科技有限公司 Water wheel rotating speed monitoring system based on output pulse frequency

Similar Documents

Publication Publication Date Title
KR940009966B1 (en) Control system for variable speed generator apparatus
US5731669A (en) Control apparatus for electric vehicle
JP2585220B2 (en) Variable speed pumping equipment
JPS61170300A (en) Controller of variable speed water wheel generator
JP3452391B2 (en) Motor control device and control method thereof
US4980629A (en) AC-excited generator/motor apparatus
JP2002204596A (en) Inverter-control type generator
CA2360696C (en) Method of current interaction in an electric motor drive vehicle having a load-dependant current generating system
JPS61173698A (en) Controller of variable speed water wheel generator
JPH0634626B2 (en) Control device for variable speed turbine generator
JP3912911B2 (en) Wind power generator
JP2005039924A (en) Wind power generation system and wind power generation method
CN109981023B (en) Control method and control device of switched reluctance motor
JP3287877B2 (en) Electric vehicle torque control device
JPS6271497A (en) Controller for variable-speed hydraulic turbine generator
JP2526605B2 (en) Variable speed power generation control device
JP2835822B2 (en) Variable speed power generation system
JP2544562Y2 (en) Voltage control device for main shaft drive generator
JPH10174498A (en) Controller for variable speed generator motor unit
JP2512414Y2 (en) Control device for main shaft drive generator
CA1293015C (en) Ac-excited generator/motor apparatus
JP3495140B2 (en) Voltage control device for wound induction machine
JPS6055879A (en) Secondary side winding slip controlling method of wound-rotor type generator motor
JP2816674B2 (en) Hydraulic pump controller
JPS63314193A (en) Method of controlling flux of motor