JPS61170237A - Filter device - Google Patents

Filter device

Info

Publication number
JPS61170237A
JPS61170237A JP60010214A JP1021485A JPS61170237A JP S61170237 A JPS61170237 A JP S61170237A JP 60010214 A JP60010214 A JP 60010214A JP 1021485 A JP1021485 A JP 1021485A JP S61170237 A JPS61170237 A JP S61170237A
Authority
JP
Japan
Prior art keywords
parallel resonant
filter device
shunt
series
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60010214A
Other languages
Japanese (ja)
Inventor
正和 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60010214A priority Critical patent/JPS61170237A/en
Publication of JPS61170237A publication Critical patent/JPS61170237A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は直流回路に含まれる高調波電圧を吸収するだ
めの直流フィルタ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a DC filter device for absorbing harmonic voltages contained in a DC circuit.

〔従来の技術〕[Conventional technology]

直流フィルタ装置は「三菱電鉄変電所用シリコン整流器
」リーフレットL−31387D(図4内のろ波器)に
記載の如く第1図の様に構成される。
The DC filter device is constructed as shown in FIG. 1 as described in the "Silicon Rectifier for Mitsubishi Electric Railway Substation" leaflet L-31387D (filter in FIG. 4).

図において、(1)は高調波の発生源である変換装置、
(2)は直列リアクトル、(3)は並列共振分路である
In the figure, (1) is a conversion device that is a source of harmonics;
(2) is a series reactor, and (3) is a parallel resonant shunt.

並列共振分路(3)はりアクドル(インダクタンスL〔
H〕)、及びコンデンサ(静電容量C[li’) )か
ら構成され、直流回路中から除去したい高調波の周波数
ている。一方直列すアクドル(2)は変換装置(1)か
ら並列共振分路(3)に流入する高調波電流を適当な値
に抑制するだめのものである。
Parallel resonant shunt (3) Beam axle (inductance L [
H]), and a capacitor (electrostatic capacitance C[li')), which corresponds to the frequency of the harmonics to be removed from the DC circuit. On the other hand, the series axle (2) serves to suppress the harmonic current flowing from the converter (1) into the parallel resonant shunt (3) to an appropriate value.

さて、電鉄変電所等では列車負荷の増加にあわせ変換装
置(1)を逐次増加させていく事がよく行われるが、第
2図の様に単に増設しただけでは2台の並列共振分路の
実効抵抗の比によって高調波電流が分流するため2台間
の電流アンバランスは非常に大きく、最悪の場合片方の
みにしか流れない事もあシうる。これは並列共振分路の
、その中でも特にリアクトルの、実効抵抗を正確に管理
して製作する事が非常に困難な為である。第2図におい
て(1) 、 (10は変換装置、(2) 、(ホ)は
直列リアクトル、(3) 、 C11は並列共振分路を
示している。その為、従来は、変換装置を増設する場合
、並列共振分路を変換装置の台数にあわせた電流容量の
ものに製作し直すか、あるいは将来の増設計画を考慮し
て最初から大電流用の並列共゛振分路を設置しておくと
いう様に非常に不経済な方法しかとり得なかった。
Now, in electric railway substations, etc., it is common to increase the number of converters (1) one after another in accordance with the increase in train load, but simply adding converters (1) as shown in Figure 2 is not enough. Because the harmonic current is divided depending on the ratio of effective resistances, the current imbalance between the two devices is very large, and in the worst case, it may flow only to one side. This is because it is extremely difficult to manufacture a parallel resonant shunt, especially the reactor, while accurately controlling its effective resistance. In Fig. 2, (1) and (10 are converters, (2) and (e) are series reactors, and (3) and C11 are parallel resonant shunts. Therefore, conventionally, converters were added. If so, either remanufacture the parallel resonant shunt to one with a current capacity that matches the number of converters, or install a high-current parallel resonant shunt from the beginning in consideration of future expansion plans. The only option was to leave it in place, which was extremely uneconomical.

〔発明の概要〕[Summary of the invention]

この発明は上記の様な従来のものの欠点を除去するため
になされたもので、並列共振分路の増設の際は共振分路
のりアクドルLとコンデンサCの直列体回路中に、高調
波各法数における失効抵抗が各並列共振分路において等
しくなる様な、しかも所定のフィルタ効果を保つ様な抵
抗器を追加する事によシミ流バランスをはかり経済的な
設備投資が行える様にする事を目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above. When adding a parallel resonant shunt, harmonics are By adding resistors such that the lapse resistance in terms of number is equal in each parallel resonant shunt and maintaining the specified filter effect, the stain flow can be balanced and economical capital investment can be made. The purpose is

なおここで、抵抗器の抵抗値を大きくすればする程並列
共振分路間の電流バランスは良くなるがフィルタ効果は
悪くなっていくので所定のフィルタ効果(高調波低減率
)が保てる様な定数の選定が必要である事は1うまでも
ない。
Note that as the resistance value of the resistor increases, the current balance between the parallel resonant shunts improves, but the filtering effect worsens, so the constant must be set so that the specified filtering effect (harmonic reduction rate) can be maintained. It goes without saying that it is necessary to select the

〔発明の実施例〕[Embodiments of the invention]

第3図は本発明の一実施例を並列共振5〕路の部分のみ
について詳細に示したものである。図において(5o)
 、 (6o)は2台の並列共振分路、(51)、(6
1)は本発明による抵抗器である。なお、本図中rT、
、rCはそれぞれリアクトルおよびコンデンサの実効抵
抗を示している。
FIG. 3 shows an embodiment of the present invention in detail with respect to only the parallel resonant path 5]. In the figure (5o)
, (6o) are two parallel resonant shunts, (51), (6
1) is a resistor according to the present invention. In addition, in this figure, rT,
, rC indicate the effective resistance of the reactor and capacitor, respectively.

従来の方法における問題点は(rLl + rcl)と
(rL2+ rC2)を比較した場合装置によって極端
に値が異なっていたため並列弁振分Wj(50)および
(60)の電流が大きく違ってきたという事である。
The problem with the conventional method is that when comparing (rLl + rcl) and (rL2 + rC2), the values were extremely different depending on the device, so the currents of parallel valve distribution Wj (50) and (60) were greatly different. That's a thing.

−力木発明の様に(rLl +rC1+R1)−(rL
2 +rC2+R2)となるできるだけ小さいR1、R
2を選び、これを各共振分路に追加する事により電流ア
ンバランスの問題が解決する訳である。
-Like the invention of power tree (rLl +rC1+R1) -(rL
2 +rC2+R2) as small as possible.
By selecting 2 and adding it to each resonant shunt, the problem of current imbalance is solved.

なお実際には、フィルタ効果をできるだけ良くするため
にR1獣はR2のいずれか小さい方が零になる様に抵抗
値を選定する、つまり実効抵抗の小さい方の分路にのみ
抵抗器を追加するのが得策である。
In fact, in order to make the filter effect as good as possible, the resistance value of R1 is selected so that the smaller of R2 becomes zero, that is, a resistor is added only to the shunt with the smaller effective resistance. It is a good idea to

なお上記の例では並列共振分路の並列数を2台としたが
、3台以上となった場合も同様の効果がある0 〔発明の効果〕 以上のようにこの発明によれば並列共振分路の分流の問
題をなくす様に構成したのでフィルタ装置を小形で安価
なものとする効果があシ、特にフィルタ装置dの増設の
時に本発明の特長が発揮される。
In the above example, the number of parallel resonant shunts in parallel is two, but the same effect can be obtained even if there are three or more. [Effect of the Invention] As described above, according to the present invention, the parallel resonant shunt Since the filter device is configured to eliminate the problem of branching of the flow, the filter device can be made compact and inexpensive, and the advantages of the present invention are particularly exhibited when the filter device d is expanded.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はフィルタ装置の回路構成を示す図、第2図は第
1図の設備を2台並列にした図、第3図は本発明の一実
施例を特に並列共振分路部分についてのみ示した回路図
である0 (1) 、 (10・・・変換装置、(2)、に)・・
・直列リアクトル、(3)’ t’ C([ト・・並列
共振分路、(5o)、(ao)・・・並列共振分路(詳
細図)、(51)、(61)・・・抵抗器なお、図中同
一符号は同−又は相当部分を示す。
Fig. 1 is a diagram showing the circuit configuration of a filter device, Fig. 2 is a diagram in which two units of the equipment shown in Fig. 1 are connected in parallel, and Fig. 3 shows an embodiment of the present invention, especially only the parallel resonant shunt portion. The circuit diagram is 0 (1), (10...conversion device, (2),)...
・Series reactor, (3)'t' C ([t... Parallel resonant shunt, (5o), (ao)... Parallel resonant shunt (detailed diagram), (51), (61)... Resistor Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] リアクトルとキャパシタとの直列体からなり、この直列
体を直流回路の両極に接続してこの直流回路中に含まれ
る高調波成分を吸収させるフィルタを複数個接続したフ
ィルタ装置において、上記直列体の少なくとも一つの直
列体に直列に抵抗器を挿入したことを特徴とするフィル
タ装置。
In a filter device comprising a series body of a reactor and a capacitor, and a plurality of filters connected to both poles of a DC circuit to absorb harmonic components contained in the DC circuit, at least one of the series bodies is connected to a plurality of filters. A filter device characterized in that a resistor is inserted in series in one series body.
JP60010214A 1985-01-21 1985-01-21 Filter device Pending JPS61170237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60010214A JPS61170237A (en) 1985-01-21 1985-01-21 Filter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60010214A JPS61170237A (en) 1985-01-21 1985-01-21 Filter device

Publications (1)

Publication Number Publication Date
JPS61170237A true JPS61170237A (en) 1986-07-31

Family

ID=11744015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60010214A Pending JPS61170237A (en) 1985-01-21 1985-01-21 Filter device

Country Status (1)

Country Link
JP (1) JPS61170237A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114865A (en) * 1989-04-07 1992-05-19 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a solid-state image sensing device having an overflow drain structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114865A (en) * 1989-04-07 1992-05-19 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a solid-state image sensing device having an overflow drain structure

Similar Documents

Publication Publication Date Title
US5124904A (en) Optimized 18-pulse type AC/DC, or DC/AC, converter system
Manias et al. An AC-to-DC converter with improved input power factor and high power density
Senini et al. Hybrid active filter for harmonically unbalanced three phase three wire railway traction loads
US5751563A (en) HVDC transmission
EP0663115A1 (en) Hvdc transmission
EP0472267B1 (en) Optimized, 18-pulse type AC/DC, or DC/AC, converter system
US20080129122A1 (en) Controllable board-spectrum harmonic filter (CBF) for electrical power systems
Hill et al. A frequency domain model for 3 kV DC traction DC-side resonance identification
JPS61170237A (en) Filter device
US5565713A (en) High-voltage filter
DE19736614A1 (en) Inverter
US4406991A (en) High power resonance filters
JPS614419A (en) Filter unit
LaForest et al. Modeling of the DC converter equipment in the carrier band
US4602166A (en) Transformer driving network with primary current limiting means
US5926382A (en) Power electronic circuit arrangement
SU920982A1 (en) Ripple filter
JPH0419994Y2 (en)
SU729750A1 (en) Filtering-balancing device
DE2832229A1 (en) Thyristor controlled power system - has compensation capacitor with choke on DC side of thyristor bridge circuit
Dastagiri Reddy Direct Current Power Supply
SU864978A1 (en) Reciprocal sequence voltage filter
JPH0453160Y2 (en)
DE4307607C2 (en) Circuit arrangement for uniform current distribution when connecting partial rectifier groups in parallel
SU764037A1 (en) Filter balancing device