JPS61169820A - Orthogonal polarization type optical frequency shifter - Google Patents

Orthogonal polarization type optical frequency shifter

Info

Publication number
JPS61169820A
JPS61169820A JP949385A JP949385A JPS61169820A JP S61169820 A JPS61169820 A JP S61169820A JP 949385 A JP949385 A JP 949385A JP 949385 A JP949385 A JP 949385A JP S61169820 A JPS61169820 A JP S61169820A
Authority
JP
Japan
Prior art keywords
light
polarized
polarized light
acousto
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP949385A
Other languages
Japanese (ja)
Inventor
Osamu Koike
修 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP949385A priority Critical patent/JPS61169820A/en
Priority to GB08601506A priority patent/GB2170321A/en
Publication of JPS61169820A publication Critical patent/JPS61169820A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/002Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light using optical mixing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PURPOSE:To eliminate the need for a quarter-wavelength plate and facilitate an optical axis adjustment and to use laser light which has two polarized light components by transmitting the P polarized light component of the laser light and reflecting the S polarized light component, and diffracting the transmitted light by an acousto-optic element. CONSTITUTION:The laser light 30 is made incident on a polarization beam splitter 20, which transmits its P polarized beam 31 and reflects its S polarized beam 32. The beam 32 passes through the acousto-optic element 21 to become diffracted light 33, which is reflected by a mirror 24 and transmitted through the 2nd polarization beam splitter 25 as the P polarized light. The beam 32 becomes diffracted light 34 through the 2nd acousto-optic element 27 and the light is reflected by the beam splitter 25 as the S polarized light, thus obtaining two light beams 35 having a slight difference in frequency. Therefore, no quarter-wavelength plate is required and temperature dependency is eliminated; and the number of optical system parts is small, the optical path is easily adjusted, and the incident laser light having the P and S polarized light components is usable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、音響光学素子(ブラックセル)内の進行超音
波の波面で入射レーザ光を回折し、ドツプラー効果によ
りレーザ光の周波数をシフトする効果を利用して、検出
したい光信号に対して一定の周波数差を有する光を発生
する装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention diffracts an incident laser beam on the wavefront of a traveling ultrasound in an acousto-optic element (black cell), and shifts the frequency of the laser beam by the Doppler effect. The present invention relates to a device that generates light having a certain frequency difference with respect to an optical signal to be detected by utilizing the effect.

特に、成る光周波数を有するレーザ光を光周波数の僅か
に異なる互いに直交した2つの直線偏波成分を有するレ
ーザ光に変換する装置に関し、この装置を直交偏波型光
周波数シフタという。ここで、直交した2つの直線偏波
成分のうち、何れか一方を検出したい光信号とし、他方
を局部発振出力の光信号として利用する。なお、光周波
数差(例:1MHz>を検出するには、例えば、直交偏
波型光周波数シフタの出射光ビームを45°の偏光子に
透過させて、光検出器を通して行われる。
In particular, this device is referred to as an orthogonal polarization type optical frequency shifter. Here, one of the two orthogonal linearly polarized components is used as an optical signal to be detected, and the other is used as an optical signal of local oscillation output. Note that in order to detect an optical frequency difference (eg, 1 MHz), the output light beam of the orthogonal polarization type optical frequency shifter is transmitted through a 45° polarizer and then passed through a photodetector.

最近、光の性質を利用して高精度、非接触の光応用計測
が注目され、光波の干渉における縞端数(干渉縞の位相
情報)の測定分解能を高め、かつこれを自動測定するた
めに光ヘテロゲイン検波法が利用されている。この光ヘ
テロゲイン検波法は、ラジオのヘテロゲイン受信と同様
、検出したい信号に局部発振出力信号を混合して差の周
波数を有する中間波信号(ビート信号)を発生して、信
号処理を行う方法である。、N気通信では局部発振出力
信号を得るために、完全に独立した発振器を使用するが
、光波干渉測定の場合には、中間波信号の周波数がゆら
ぎのない程度に安定した独立の光発振器を製作すること
は困難である。そのため、検出したい光信号に対して一
定の周波数差を有するレーザ光を発生させ、参照用の光
路を通して受信端に送り、これを局部発振出力信号とし
て利用する。
Recently, high-precision, non-contact optical measurement that takes advantage of the properties of light has attracted attention. A hetero gain detection method is used. This optical heterogain detection method is similar to radio heterogain reception, in which a local oscillation output signal is mixed with the signal to be detected, an intermediate wave signal (beat signal) having a difference frequency is generated, and signal processing is performed. . In N-air communication, a completely independent oscillator is used to obtain the local oscillation output signal, but in the case of optical interference measurement, an independent optical oscillator whose frequency of the intermediate wave signal is stable to the extent that there is no fluctuation is used. It is difficult to produce. Therefore, a laser beam having a certain frequency difference with respect to the optical signal to be detected is generated, sent to the receiving end through a reference optical path, and used as a local oscillation output signal.

〔従来の技術〕[Conventional technology]

従来、直交偏波型光周波数シフタとして、第2図に示す
ような構成のものがあり、にrイオンガスレーザ1(波
長;  647.1nl、光周波数f、=463.61
H7)から出射されたレーザ光2は紙面に対して垂直な
電界成分を有する直線偏光(S偏光)を出射して、ハー
フミラ−3により2本の光ビーム、すなわち透過光ビー
ム4と反射光ビーム5に分離される。透過光ビーム4は
、音響光学素子6にブラック条件に適合する角度θB 
(ブラック角)で入射する。この音響光学素子6は、駆
動回路7からの高周波信号(例えば、中心周波数42M
Hz )により、トランスジューサ8を励振して、この
媒体本体内に超音波信号を伝搬していることから、前述
した透過光ビーム4は媒体本体内に入射後、直進する0
次光と前記超音波信号の、波面に対して角度θBで回折
する回折光9に分れて送出し、ここでは回折光9を利用
する。この回折光9は音響光学素子6の中心周波数42
14Hzだけ光信号の周波数をシフトし、光周波数はf
、 +42MHzとなる。
Conventionally, an orthogonal polarization type optical frequency shifter has a configuration as shown in Fig. 2, in which an ion gas laser 1 (wavelength: 647.1 nl, optical frequency f, = 463.61
The laser beam 2 emitted from H7) emits linearly polarized light (S-polarized light) having an electric field component perpendicular to the paper surface, and is converted into two light beams by the half mirror 3, namely a transmitted light beam 4 and a reflected light beam. It is separated into 5 parts. The transmitted light beam 4 is applied to the acousto-optic element 6 at an angle θB that meets the black condition.
(Black angle). This acousto-optic element 6 receives a high frequency signal (for example, a center frequency of 42M) from a drive circuit 7.
Hz) to excite the transducer 8 and propagate the ultrasonic signal within the medium body, so that the transmitted light beam 4 described above travels straight after entering the medium body.
The second light and the ultrasonic signal are sent out after being separated into diffracted light 9 that is diffracted at an angle θB with respect to the wavefront, and the diffracted light 9 is used here. This diffracted light 9 has a center frequency 42 of the acousto-optic element 6.
Shifting the frequency of the optical signal by 14Hz, the optical frequency is f
, +42MHz.

次に、この回折光9は、ミラー10により反射され、光
学軸が光ビームの進行方向(光軸)のまわりに45°回
転して設置された172波長板11を透過する。
Next, this diffracted light 9 is reflected by a mirror 10 and transmitted through a 172-wave plate 11 whose optical axis is rotated by 45° around the traveling direction (optical axis) of the light beam.

この透過光ビーム12は紙面に対して平行な電界成分を
有する直線偏光(P偏光)となり、偏光ビームスプリッ
タ13を透過する。
This transmitted light beam 12 becomes linearly polarized light (P-polarized light) having an electric field component parallel to the plane of the paper, and is transmitted through the polarizing beam splitter 13.

一方、ハーフミラ−3による反射光ビーム5は、音響光
学素子14に、前述した音響光学素子6の作用と同様、
ブラック条件に適合する角度θBで入射して、送出する
0次光と回折光16のうち、後者の回折光16を利用す
る。なお、駆動回路7からトランスジューサ15に供給
される高周波信号の中心周波数は、音響光学素子6の中
心周波数42)IHzに対して本例ではIMHzだけ高
い4314H2にしていることから、この回折光16は
音響光学素子14の中心周波数43MHzだけ光信号の
周波数をシフトし、光周波数はf(、+43MHzとな
る。次に、この回折光16は、ミラー17により反射さ
れ、前述した偏光ビームスプリッタ13に入射する。こ
の入射回折光16は元々S偏光であることから、この偏
光ビームスプリッタ13で反射される。
On the other hand, the reflected light beam 5 from the half mirror 3 acts on the acousto-optic element 14 in the same way as the acousto-optic element 6 described above.
Of the zero-order light and the diffracted light 16 that are incident at an angle θB that meets the black condition and sent out, the latter diffracted light 16 is used. Note that the center frequency of the high-frequency signal supplied from the drive circuit 7 to the transducer 15 is 4314H2, which is higher by IMHz than the center frequency 42) IHz of the acousto-optic element 6 in this example, so that this diffracted light 16 The frequency of the optical signal is shifted by the center frequency of 43 MHz of the acousto-optic element 14, and the optical frequency becomes f(, +43 MHz. Next, this diffracted light 16 is reflected by the mirror 17 and enters the polarizing beam splitter 13 described above. Since this incident diffracted light 16 is originally S-polarized light, it is reflected by this polarizing beam splitter 13.

このようにして、前述したP偏光の透過光ビーム12と
S偏光の回折光16が偏光ビームスプリッタ13をそれ
ぞれ透過し、反射することから、この偏光ビームスプリ
ッタ13の出射光ビームは、成分として光周波@ (f
o+4214Hz >のP偏光と光周波数(f6 +4
3MHz )のS偏光を開−光路上に有する。そして、
相互の周波数差がIMHzとなる2木の光ビームが得ら
れる。
In this way, the P-polarized transmitted light beam 12 and the S-polarized diffracted light 16 are transmitted and reflected by the polarized beam splitter 13, so that the emitted light beam of the polarized beam splitter 13 has a light component as a component. Frequency @ (f
o+4214Hz > P polarization and optical frequency (f6 +4
3MHz) S-polarized light is placed on the open optical path. and,
Two optical beams with a mutual frequency difference of IMHz are obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の直交偏波型光周波数シフタは、光路上に172波
長板11を挿入する必要がある。この172波長板は石
英などの複屈折性を有する材料を所定の厚さに研摩して
製作されるが、その厚さ精度はサブミクロンオーダを要
することから、その製作は非常に難しい。更に、視屈折
性は温度により影響を受けて変化することから、複屈折
性の温度変化による極性が互いに逆の2枚の石英板を貼
り合わせるなどの温度補償手段が必要であった。それ故
、172波長板は実用上、使用可能なものに製作した場
合、非常に高価になってしまう問題点があった。
The conventional orthogonal polarization type optical frequency shifter requires a 172-wave plate 11 to be inserted on the optical path. This 172-wavelength plate is manufactured by polishing a birefringent material such as quartz to a predetermined thickness, but manufacturing is extremely difficult because the thickness accuracy requires submicron order. Furthermore, since the visual refraction changes depending on temperature, a temperature compensation means such as bonding together two quartz plates whose polarities are opposite to each other due to temperature changes in birefringence is required. Therefore, if a 172-wavelength plate were manufactured to be usable for practical use, it would be extremely expensive.

本発明の第1の目的は、上記したような問題点を有する
172波長板を使用することなく、直交偏波型光周波数
シフタを提供することである。本発明の第2の目的は、
従来品では入射レーザ光がS偏光に限定されていたが、
P偏光及びS偏光の各成分を有する入射レーザ光を使用
することのできる直交偏波型光周波数シフタを提供する
ことである。そして、本発明の第3の目的は、従来品と
比較して光学系部品の個数を少なくして、光軸、調整作
業を容易にした直交偏波型光周波数シフタを提供するこ
とである。
A first object of the present invention is to provide an orthogonal polarization type optical frequency shifter without using a 172-wave plate having the above-mentioned problems. The second object of the present invention is to
In conventional products, the incident laser beam was limited to S-polarized light, but
An object of the present invention is to provide an orthogonal polarization type optical frequency shifter that can use incident laser light having P-polarized light and S-polarized light components. A third object of the present invention is to provide an orthogonal polarization type optical frequency shifter that has fewer optical system components than conventional products and that facilitates optical axis adjustment work.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成させるためになされたもので
あり、第1の発明は、P偏光及びS偏光の各成分を有す
るレーザ光を入射してP偏光及びS偏光にそれぞれ分離
して出射する第1偏光ビームスプリッタと、前記第1偏
光ビームスプリッタより出射するP偏光及びS偏光の各
ビームのうち一方のビームを入射して回折光ビームを出
射する音響光学素子と、他方のビーム及び前記回折光ビ
ームを入射してP偏光及びS偏光の合成光ビームを出射
する第2偏光ビームスプリッタ又は無偏光ビームスプリ
ッタとを具備することを特徴とする直交偏波型光周波数
シックであり、第2の発明は、P偏光及びS偏光の各成
分を有するレーザ光を入射してP偏光及びS偏光にそれ
ぞれ分離して出射する第1偏光ビームスプリッタと、前
記第1偏光ビームスプリッタより出射するP偏光ビーム
及びS偏光ビームをそれぞれ入射して回折光ビームをそ
れぞれ出射する第1音響光学素子及び第2音費光学素子
と、2本の前記回折光ビームを入射してP偏光及びS偏
光の合成光ビームを出射する第2偏光ビームスプリッタ
又は無偏光ビームスプリッタとを具備することを特徴と
する直交偏波型光周波数シフタである。
The present invention has been made to achieve the above object, and a first aspect of the present invention is to input a laser beam having each component of P-polarized light and S-polarized light, separate it into P-polarized light and S-polarized light, and emit the separated light. an acousto-optic element that receives one of the P-polarized and S-polarized beams emitted from the first polarized beam splitter and emits a diffracted light beam; A second polarization beam splitter or a non-polarization beam splitter that receives a diffracted light beam and outputs a combined light beam of P-polarized light and S-polarized light; The invention includes a first polarizing beam splitter that inputs a laser beam having each component of P-polarized light and S-polarized light, separates it into P-polarized light and S-polarized light, and outputs it, and P-polarized light that is emitted from the first polarized beam splitter. A first acousto-optic element and a second acoustic optical element which receive the beam and the S-polarized beam and respectively output the diffracted light beam; and a composite light of the P-polarized light and the S-polarized light which receives the two diffracted light beams. The present invention is an orthogonal polarization type optical frequency shifter characterized by comprising a second polarization beam splitter or a non-polarization beam splitter that emits a beam.

〔実施例〕〔Example〕

第1図は本発明による直交偏波型光周波数シフタの実施
例を示す構成図であり、同図において、19はHe−M
eガスレーザ(波長;  632.8層m、光周波数f
、 = 474.ITHz ) 、20及び25はそれ
ぞれ第1偏光ビームスプリッタ及び第2偏光ビームスプ
リッタ、21及び27はそれぞれ第1音響光学素子(中
心周波数: 8層MHz )及び第2音響光学素子(中
心周波数; 81MHz ) 、22及び28はそれぞ
れ第1音響光学素子21及び第2音響光学素子27の各
音響光学媒体に設置されたトランスジューサ、23及び
29はそれぞれトランスジューサ22及び28に高周波
信号(80H1lz及び81HH7)を供給する駆動回
路、そして24及び26はミラーである。
FIG. 1 is a configuration diagram showing an embodiment of an orthogonal polarization type optical frequency shifter according to the present invention, and in the same figure, 19 is a He-M
e-gas laser (wavelength: 632.8 layers m, optical frequency f
, = 474. ITHz), 20 and 25 are a first polarizing beam splitter and a second polarizing beam splitter, respectively, and 21 and 27 are a first acousto-optic element (center frequency: 8-layer MHz) and a second acousto-optic element (center frequency: 81 MHz), respectively. , 22 and 28 are transducers installed in each acousto-optic medium of the first acousto-optic element 21 and the second acousto-optic element 27, respectively, and 23 and 29 supply high frequency signals (80H1lz and 81HH7) to the transducers 22 and 28, respectively. A drive circuit, and 24 and 26 are mirrors.

次に、本例の作用について詳述する。He−Neガスレ
ーザ19から出射されたレーザ光30は、紙面上光軸に
対して45°の方位を有する直線偏波光であり、これが
偏光分離機能を有する第1偏光ビームスプリッタ20に
入射して、P偏光のレーザ光ビーム31を透過し、S偏
光のレーザ光ビーム32を反射して、2本の光ビームに
分離する。この第1偏光ビームスプリッタ20は、全体
形状は立方体であって、2つの三角柱形状のガラス基体
の底面(正方形)を互いに誘電体多層膜を介して接合し
たものであり、その誘電体多層膜は硫化亜鉛(屈折率;
2.29 ’)のような高屈折率物質の層(H層)とク
リオライト(屈折率;  1.25 )のような低屈折
率のIt(1層)とを交互に複数(本例;23層)積層
したものである。次に、P偏光のレーザ光ビーム31は
第1音響光学素子21の超音波信号の波面に対してブラ
ック角θBをなして入射する。この音響光学素子21は
、テルライトガラス(HOY^■製:AOT−5)から
なる音響光学媒体の側面に、]・ランスジューサ22 
(Limb 0336°Y板からなる圧電板の両生表面
に電極を付着形成したもの。共振周波数: 80HH2
)を設置して構成され、駆動回路23から高周波信号(
80MHz )をトランスジューサ22に供給して励振
させ、音響光学素子21の媒体内に超音波信号を伝搬さ
せている。その結果、入射したレーザ光ビーム31は、
直進する0次光と前記超音波信号の波面に対して角度θ
Bで回折する回折光33に分れて送出し、ここでは回折
光33を利用する。
Next, the operation of this example will be explained in detail. The laser beam 30 emitted from the He-Ne gas laser 19 is a linearly polarized beam having an orientation of 45 degrees with respect to the optical axis on the paper, and this is incident on the first polarizing beam splitter 20 having a polarization separation function. A P-polarized laser beam 31 is transmitted, and an S-polarized laser beam 32 is reflected and separated into two light beams. The first polarizing beam splitter 20 has a cubic overall shape, and is made by joining the bottom surfaces (squares) of two triangular prism-shaped glass substrates to each other via a dielectric multilayer film. Zinc sulfide (refractive index;
A plurality of layers (H layer) of a high refractive index material such as 2.29') and It (1 layer) of a low refractive index material such as cryolite (refractive index; 1.25') are alternately formed (in this example; 23 layers). Next, the P-polarized laser beam 31 enters the wavefront of the ultrasonic signal of the first acousto-optic element 21 while making a Black angle θB. This acousto-optic element 21 is mounted on the side surface of an acousto-optic medium made of tellurite glass (manufactured by HOY^ ■: AOT-5).
(Limb 0336° Electrodes are formed on the amphibious surface of a piezoelectric plate made of a Y plate. Resonance frequency: 80HH2
), and a high frequency signal (
80 MHz) is supplied to the transducer 22 to excite it, and the ultrasonic signal is propagated within the medium of the acousto-optic element 21. As a result, the incident laser beam 31 is
An angle θ with respect to the wavefront of the 0th-order light traveling straight and the ultrasonic signal
The beam is divided into diffracted light 33 that is diffracted at B, and sent out, and the diffracted light 33 is used here.

この回折光33は音響光学素子21の中心周波数80M
H2だけ光信号の周波数をシフトし、光周波数はf 、
 + 80MHzとなる。次に、この回折光33はミラ
−24により反射され、結合機能を有する第2偏光ビー
ムスプリッタ(構造は第1偏光ビームスプリッタ20と
同一)に入射し、P偏光であることからそのま)透過す
る。
This diffracted light 33 has a center frequency of 80M of the acousto-optic element 21.
Shifting the frequency of the optical signal by H2, the optical frequency is f,
+80MHz. Next, this diffracted light 33 is reflected by a mirror 24, enters a second polarizing beam splitter (the structure is the same as the first polarizing beam splitter 20) having a coupling function, and is transmitted as it is since it is P-polarized light. do.

一方、S偏光のレーザ光ビーム32は、ミラー26によ
り反射され、第2音響光学素子27の超音波信号の波面
に対してブラック角θBをなして入射する。この第2音
響光学素子27は第1音費光学素子21と基本的に同一
構造であり、媒体側面にトランスジューサ28を備え、
これに駆動回路29から高周波信号(81MHz )が
供給されている。ここでも、入射したレーザ光ビーム3
2は、直進する0次光と前記超音波信号の波面に対して
角度θBで回折する回折光34に分れて送出し、回折光
34を利用する。
On the other hand, the S-polarized laser beam 32 is reflected by the mirror 26 and enters the wavefront of the ultrasonic signal of the second acousto-optic element 27 at a Black angle θB. This second acousto-optic element 27 has basically the same structure as the first acoustic optical element 21, and is equipped with a transducer 28 on the side of the medium.
A high frequency signal (81 MHz) is supplied to this from a drive circuit 29. Here again, the incident laser beam 3
2 separates and sends out zero-order light that travels straight and diffracted light 34 that is diffracted at an angle θB with respect to the wavefront of the ultrasound signal, and utilizes the diffracted light 34.

この回折光34も音響光学素子21の中心周波数818
H2だけ光信号をシフトし、光周波数はf、+81H1
lzとなる。そして、この回折光34も前述した第2偏
光ビームスプリッタ25に入射し、S偏光であることか
ら、反射して送出される。この時、第2偏光ビームスプ
リッタ25の出射光ビーム35の成分は、前述した回折
光33のP偏光(光周波数:f1+80MHz )と回
折光34のS偏光(光周波数;f1+81HH2)を同
一光路上に有し、相互の周波数差がI MHzとなる2
本の光ビームが得られる。
This diffracted light 34 also has a center frequency 818 of the acousto-optic element 21.
Shift the optical signal by H2, the optical frequency is f, +81H1
It becomes lz. This diffracted light 34 also enters the second polarization beam splitter 25 described above, and since it is S-polarized light, it is reflected and sent out. At this time, the components of the light beam 35 emitted from the second polarizing beam splitter 25 include the P-polarized light (light frequency: f1+80MHz) of the diffracted light 33 and the S-polarized light (light frequency: f1+81HH2) of the diffracted light 34 on the same optical path. and the mutual frequency difference is I MHz2
You will get a book light beam.

本発明は以上の実施例の他に、第1及び第2の音響光学
系の各中心周波数について、所望する中間波信号の周波
数(例:  0.IMHz )に対して任意に選定され
る(例; 60HH7及び60.1)4Hz )。そし
て、中間波信号の周波数と第1及び第2の音響光学素子
の中心周波数差とが等しいので、音響光学素子の中心周
波数は個々の目的に応じて選定すればよい。実施例では
2個の音響光学素子21及び21を使用したが、何れか
1個のみを使用して、その音響光学素子の中心周波数を
中間波信号の周波数に設定してもよい。第1及び第2の
偏光ビームスプリッタはウォラストンプリズム及びロシ
ョンプリズムなどで構成してもよいし、更に、第2偏光
ビームスプリッタは、光損失が許容できる場合には偏光
状態を実質的に一定に保って出射する無偏光ビームスプ
リッタでもよい。この無偏光ビームスプリッタは、全体
形状が立方体であって、1つの三角柱形状のガラス基体
の底面(正方形)に後記する多層膜を付着形成し、もう
1つの三角柱形状のガラス基体の底面(正方形)を接合
形成したものであり、この多層膜は入射光の偏光状態に
か)わらず、P偏光とS偏光のエネルギ透過率が等しく
、かつP偏光とS偏光のエネルギ反射率が等しくしたも
の(例:エネルギ透過率:41%、エネルギ反射率;4
6%)であり、具体的には硫化亜鉛(屈折率:  2.
29 )のような高屈折率物質層(H層)、クリオライ
ト(屈折率;  1.25 )のような低屈折率物質層
(1層)、前記H層、銀薄膜層、前記Hw!J1前記り
層及び前記H層を順次積層して形成される。レーザ光に
ついてはガスレーザの他に、P偏光及びS偏光の各成分
を有する半導体レーザ、色素レーザ及び固体レーザなど
でもよい。
In addition to the embodiments described above, the present invention provides a method in which each center frequency of the first and second acousto-optic systems is arbitrarily selected relative to the frequency of a desired intermediate wave signal (e.g. 0.IMHz). ;60HH7 and 60.1)4Hz). Since the frequency of the intermediate wave signal and the center frequency difference between the first and second acousto-optic elements are equal, the center frequency of the acousto-optic element may be selected depending on the individual purpose. Although two acousto-optic elements 21 and 21 are used in the embodiment, only one of them may be used and the center frequency of the acousto-optic element may be set to the frequency of the intermediate wave signal. The first and second polarizing beam splitters may be configured with a Wollaston prism, a Rochon prism, etc., and the second polarizing beam splitter may maintain a substantially constant polarization state if optical loss is acceptable. A non-polarizing beam splitter that emits light while maintaining the same polarization may also be used. This non-polarizing beam splitter has a cubic overall shape, with a multilayer film described later being deposited on the bottom surface (square) of one triangular prism-shaped glass substrate, and the bottom surface (square) of the other triangular prism-shaped glass substrate. This multilayer film has equal energy transmittance for P-polarized light and S-polarized light, and equal energy reflectance for P-polarized light and S-polarized light, regardless of the polarization state of the incident light. Example: Energy transmittance: 41%, Energy reflectance: 4
6%), specifically zinc sulfide (refractive index: 2.
29) a high refractive index material layer (H layer), a low refractive index material layer (1 layer) such as cryolite (refractive index; 1.25), the H layer, the silver thin film layer, the Hw! It is formed by sequentially stacking the above layer J1 and the above layer H. As for the laser light, in addition to a gas laser, a semiconductor laser, a dye laser, a solid-state laser, etc. having each component of P-polarized light and S-polarized light may be used.

また、駆動回路は第2図に示したように共用してもよい
Further, the drive circuit may be shared as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、従来品の必須な光学部品
であった172波長板を不用にしたことから、温度依存
性を除去して、かつ比較的安価な偏光ビームスプリッタ
とミラーを使用して直交偏波型光周波数シフタを実現で
きる。また、本発明の構成によれば従来品と比較して光
学系部品個数を1個少なくしていることから、光軸調整
が容易になるのみならず、振動などの外乱の影響度も少
なくすることができる。更にまた、入射レーザ光ビーム
の成分について、P偏光とS偏光の各成分を少なくとも
有しているものならばよいことがら(各成分の光強度は
問わない)、利用分野を広げることができる。
As described above, according to the present invention, the 172-wavelength plate, which was an essential optical component of conventional products, is no longer necessary, so temperature dependence is eliminated, and a relatively inexpensive polarizing beam splitter and mirror are used. Thus, an orthogonal polarization type optical frequency shifter can be realized. Furthermore, according to the configuration of the present invention, the number of optical system components is reduced by one compared to conventional products, which not only facilitates optical axis adjustment but also reduces the influence of disturbances such as vibration. be able to. Furthermore, since the components of the incident laser beam need only have at least each of P-polarized light and S-polarized light (the light intensity of each component does not matter), the field of use can be expanded.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による直交偏波型光周波数シックの実施
例を示す構成図、第2図は従来の直交偏波型光周波数シ
フタ構成図である。 19・・・レーザ光、20・・・第1偏光ビームスプリ
ッタ、21・・・第1音響光学素子、21・・・第2音
響光学素子、25・・・第2偏光ビームスプリッタ
FIG. 1 is a configuration diagram showing an embodiment of an orthogonal polarization type optical frequency shifter according to the present invention, and FIG. 2 is a configuration diagram of a conventional orthogonal polarization type optical frequency shifter. 19... Laser light, 20... First polarizing beam splitter, 21... First acousto-optic element, 21... Second acousto-optic element, 25... Second polarizing beam splitter

Claims (2)

【特許請求の範囲】[Claims] (1)P偏光及びS偏光の各成分を有するレーザ光を入
射してP偏光及びS偏光にそれぞれ分離して出射する第
1偏光ビームスプリッタと、前記第1偏光ビームスプリ
ッタより出射するP偏光及びS偏光の各ビームのうち一
方のビームを入射して回折光ビームを出射する音響光学
素子と、他方のビーム及び前記回折光ビームを入射して
P偏光及びS偏光の合成光ビームを出射する第2偏光ビ
ームスプリッタ又は無偏光ビームスプリッタとを具備す
ることを特徴とする直交偏波型光周波数シフタ。
(1) A first polarizing beam splitter that inputs a laser beam having each component of P-polarized light and S-polarized light, separates it into P-polarized light and S-polarized light, and outputs it; an acousto-optic element that receives one of the S-polarized beams and emits a diffracted light beam; and an acousto-optic element that receives the other beam and the diffracted light beam and emits a combined light beam of P-polarized light and S-polarized light. An orthogonal polarization type optical frequency shifter comprising a two-polarization beam splitter or a non-polarization beam splitter.
(2)P偏光及びS偏光の各成分を有するレーザ光を入
射してP偏光及びS偏光にそれぞれ分離して出射する第
1偏光ビームスプリッタと、前記第1偏光ビームスプリ
ッタより出射するP偏光ビーム及びS偏光ビームをそれ
ぞれ入射して回折光ビームをそれぞれ出射する第1音響
光学素子及び第2音響光学素子と、2本の前記回折光ビ
ームを入射してP偏光及びS偏光の合成光ビームを出射
する第2偏光ビームスプリッタ又は無偏光ビームスプリ
ッタとを具備することを特徴とする直交偏波型光周波数
シフタ。
(2) A first polarizing beam splitter that inputs a laser beam having each component of P-polarized light and S-polarized light, separates it into P-polarized light and S-polarized light, and emits it, and a P-polarized beam that is emitted from the first polarized beam splitter. A first acousto-optic element and a second acousto-optic element each receive a diffracted light beam and emit a diffracted light beam upon receiving the two diffracted light beams, respectively, and a combined light beam of P-polarized light and S-polarized light is produced by receiving the two diffracted light beams. An orthogonal polarization type optical frequency shifter comprising a second polarization beam splitter or a non-polarization beam splitter that emits light.
JP949385A 1985-01-22 1985-01-22 Orthogonal polarization type optical frequency shifter Pending JPS61169820A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP949385A JPS61169820A (en) 1985-01-22 1985-01-22 Orthogonal polarization type optical frequency shifter
GB08601506A GB2170321A (en) 1985-01-22 1986-01-22 Optical frequency shifter for heterodyne measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP949385A JPS61169820A (en) 1985-01-22 1985-01-22 Orthogonal polarization type optical frequency shifter

Publications (1)

Publication Number Publication Date
JPS61169820A true JPS61169820A (en) 1986-07-31

Family

ID=11721757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP949385A Pending JPS61169820A (en) 1985-01-22 1985-01-22 Orthogonal polarization type optical frequency shifter

Country Status (2)

Country Link
JP (1) JPS61169820A (en)
GB (1) GB2170321A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009083854A (en) * 2009-01-30 2009-04-23 Shiroki Corp Door sash
JP2012027161A (en) * 2010-07-21 2012-02-09 National Institute Of Information & Communication Technology Frequency characteristic calibration method of conversion efficiency in photoelectric conversion device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL133616C (en) * 1966-02-16

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009083854A (en) * 2009-01-30 2009-04-23 Shiroki Corp Door sash
JP2012027161A (en) * 2010-07-21 2012-02-09 National Institute Of Information & Communication Technology Frequency characteristic calibration method of conversion efficiency in photoelectric conversion device

Also Published As

Publication number Publication date
GB2170321A (en) 1986-07-30
GB8601506D0 (en) 1986-02-26

Similar Documents

Publication Publication Date Title
US6452682B2 (en) Apparatus to transform two nonparallel propagating optical beam components into two orthogonally polarized beam
US5862164A (en) Apparatus to transform with high efficiency a single frequency, linearly polarized laser beam into beams with two orthogonally polarized frequency components orthogonally polarized
US7375819B2 (en) System and method for generating beams of light using an anisotropic acousto-optic modulator
US6157660A (en) Apparatus for generating linearly-orthogonally polarized light beams
US7372576B2 (en) System and method for generating beams of light using an anisotropic acousto-optic modulator
US5917844A (en) Apparatus for generating orthogonally polarized beams having different frequencies
JPS61169820A (en) Orthogonal polarization type optical frequency shifter
JPS61175619A (en) Orthogonal polarization type optical frequency shifter
JPS61169822A (en) Orthogonal polarization type optical frequency shifter
JPS61169821A (en) Orthogonal polarization type optical frequency shifter
JPS61175621A (en) Orthogonal polarization type optical frequency shifter
JPS61175620A (en) Orthogonal polarization type frequency shifter
CN110244470B (en) Crystal type 90-degree space optical bridge
JP2750903B2 (en) Orthogonal polarization type optical frequency shifter
JPS62178221A (en) Optical frequency shifter
JPS62229118A (en) Optical frequency shifter
JPH10213486A (en) Polarization interferometer
JPH0587519A (en) Differential type interference prism
JPS63188122A (en) Orthogonally polarized wave type optical frequency shifter
JPH0894317A (en) Displacement sensor
JPS62240801A (en) Measuring apparatus for optical path difference
JPH02296102A (en) Integrated laser length measuring device
JPH05302808A (en) Laser interference length measuring device
CN115113410A (en) Multi-wavelength prism type space optical bridge
SU1179170A1 (en) Polarization refractometer of violated complete internal reflection