JPS61169784A - Determination for position of artificial satellite - Google Patents

Determination for position of artificial satellite

Info

Publication number
JPS61169784A
JPS61169784A JP60010183A JP1018385A JPS61169784A JP S61169784 A JPS61169784 A JP S61169784A JP 60010183 A JP60010183 A JP 60010183A JP 1018385 A JP1018385 A JP 1018385A JP S61169784 A JPS61169784 A JP S61169784A
Authority
JP
Japan
Prior art keywords
satellite
artificial satellite
straight line
artificial
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60010183A
Other languages
Japanese (ja)
Inventor
Mari Yuzawa
湯澤 眞理
Kazunori Igarashi
五十嵐 一則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60010183A priority Critical patent/JPS61169784A/en
Publication of JPS61169784A publication Critical patent/JPS61169784A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PURPOSE:To enable the determination of the position of an artificial satellite though it is invisible from the earth station while reducing the amount of work at the earth station, by receiving a beacon radio wave with an RF sensor from two reference satellites with the known orbit and position factors thereof while the distance is measured with a laser radar to determine the position of the artificial satellite. CONSTITUTION:Beacon radio wave 9a and 9b from first and second reference satellites 16 and 17 are received with RF sensors 1a and 1b and the distances of an artificial satellite from the reference satellites is measured with laser radars 2a and 2b to determine R and DELTAlambda from the position data of the reference satellites and the relative distance from the reference satellites with a signal processor 4 and the mean is calculated from data for one day. From the results, the sum of the velocity in changing at the angle lambda between the straight lines 20 and 21, the mean at the angle DELTAlambda between the straight lines 21 and 22 and the angle lambda is calculated to determine the position of the artificial satellite 18.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、軌道位置要素が既に明らかになっている第
1及び第2の人工衛星(以下基準衛星と呼ぶ。)からの
ビーコン電波と、レーザレーダによる上記基準衛星に対
する距離測定結果とによって、第3の衛星の位置決定を
オンボードで行うことのできる人工衛星の位置決定装置
に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention provides beacon radio waves from first and second artificial satellites (hereinafter referred to as reference satellites) whose orbital position elements have already been determined; The present invention relates to an artificial satellite position determination device that can determine the position of a third satellite on-board based on the results of distance measurement with respect to the reference satellite using a laser radar.

〔従来の技術〕[Conventional technology]

第4図は、従来の人工衛星の位置決定方法を説明する図
で9図においてazは地球、 (13は雄心、αSは位
置決定をしようとしている第3の人工衛星。
Fig. 4 is a diagram explaining the conventional method of determining the position of an artificial satellite. In Fig. 9, az is the earth, (13 is the male center, and αS is the third artificial satellite whose position is to be determined.

α■家上記人工衛星舖の軌道、  18は地上局である
In the orbit of the above artificial satellite, 18 is the ground station.

このような構成において、従来人工衛星ttsの位置を
決定する場合、地上局BSから送信された電波を人工衛
星a8が受信し、そして、それを地上局gsに送シ返す
ことKよ汎 人工衛星の位置データを取得し、このデー
タを地上局BSで処理することKより行われていた。
In such a configuration, when determining the position of the conventional artificial satellite TTs, the artificial satellite A8 receives radio waves transmitted from the ground station BS, and then transmits them back to the ground station GS. This was done by acquiring the position data of the ground station and processing this data at the ground station BS.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の人工衛星の位置決定においては9次
の様な問題点があった。すなわち、従来の方法で全ての
人工衛星に対して9位置決定を行おうとすると、地上局
BSの作業量が膨大になるという問題点がある。また0
人工衛星aSが、地上局Esから見えない位置にある時
は、地上局E8と9人工衛星a秒との間の距離の測定が
できないため、結果的には1位置決定のためのデータが
取れないという問題点があった。
In the conventional positioning of artificial satellites as described above, there are problems of the ninth order. That is, if an attempt is made to determine the nine positions of all the artificial satellites using the conventional method, there is a problem in that the amount of work for the ground station BS becomes enormous. 0 again
When the artificial satellite aS is in a position that cannot be seen from the ground station Es, it is not possible to measure the distance between the ground station E8 and the 9th artificial satellite a seconds, and as a result, data for determining the position cannot be obtained. The problem was that there was no.

この発明は、このようなm星の位置決定方法の問題点を
改善するためになされたものである。
This invention was made in order to improve the problems of such a method of determining the position of m stars.

〔問題点を解決するための手段〕[Means for solving problems]

この発明において、軌道1位置要素が既に明らかKなっ
ている二つの人工qI#星を位置決定のための基準衛星
と見なし、その基準衛星からのビーコン電波をRFセン
ナで受信するとともに、 前記基準衛星までの距離を、
レーザレーダで測定して位置を決定しようとする人工衛
星の位置決定を、オンボードで行うようにしたものであ
る。
In this invention, two artificial qI# stars whose orbit 1 position element is already clearly K are considered as reference satellites for position determination, and the beacon radio waves from the reference satellites are received by an RF sensor, and the reference satellite The distance to
This system is designed to determine the position of an artificial satellite on-board by measuring it with a laser radar.

〔作用〕[Effect]

この発明においては、レーザレーダと、  RFセンサ
によシ第1と第2の基準衛星に対する距離と方向を、測
定するととKよシ基準衛星に対する相対位置を求め位i
の決定をしようとする人工衛星の位置決定をオンボード
で行う。
In this invention, when the distance and direction to the first and second reference satellites are measured using a laser radar and an RF sensor, the relative position with respect to the reference satellite is determined by K and the position i.
Perform on-board positioning of the satellite that is attempting to determine the location of the satellite.

このため、地上局の作業量が減り、さらに人工衛星が地
上局から見えない場合でも9位置決定をすることができ
る。
Therefore, the amount of work at the ground station is reduced, and even when the artificial satellite is not visible from the ground station, the position can be determined.

〔実施例〕〔Example〕

第1図、第2図は、この発明を説明する為の人工衛星本
体上の構成機器、及び基準衛星との位置関係を示してい
る。
FIGS. 1 and 2 show the components on the satellite body and their positional relationship with a reference satellite for explaining the present invention.

第1図において−(1a)、  (1b)は基準衛星か
らのビーコン電波を受信するRFセンサ、  (2a)
、 (2b)は基準衛星までの距離を計測するレーザレ
ーダ。
In Figure 1, (1a) and (1b) are RF sensors that receive beacon radio waves from the reference satellite; (2a)
, (2b) is a laser radar that measures the distance to the reference satellite.

(5a)、 (3b)は、レーザレーダよシ発射される
レーザ・ビーム、(4)は前記RFセンサによる受信信
号。
(5a) and (3b) are laser beams emitted by the laser radar, and (4) are signals received by the RF sensor.

及びレーザレーダによる計測結果を処理する信号処理装
置、(5)は前記信号処理装#(4)による処理信号を
もとにして0位置計算を行う位置計算装置。
and a signal processing device that processes the measurement results by the laser radar, and (5) a position calculation device that calculates the zero position based on the signal processed by the signal processing device #(4).

(6)はヨー軸、(7)はロール軸、(8)はピッチ軸
、  (9a)。
(6) is the yaw axis, (7) is the roll axis, (8) is the pitch axis, (9a).

(9b)は第2図に示す。第1および第2の基準衛星そ
れぞれからのビーコン電波、a・はその線上に前記二つ
のRFセンサがあ凱かつロール軸(7)と平行な直ML
 aυは基準衛星からのビーコン電波(9a)。
(9b) is shown in FIG. The beacon radio waves from each of the first and second reference satellites, a., are the lines on which the two RF sensors are located, and the direct ML parallel to the roll axis (7).
aυ is the beacon radio wave (9a) from the reference satellite.

(9b)と、ロール軸(7)と平行な前記の直線−とが
なす角である。
(9b) and the above-mentioned straight line parallel to the roll axis (7).

第2図において、azは地球、a3は他心、al家グリ
ニッチ(Greenwich ) 、  a5は地球自
転勇足、aBは第1の基準衛友、鰭は第2の基準衛星、
 allは前記の位置を決定しようとしている第3の人
工9#星。
In Figure 2, az is the earth, a3 is the other center, AL family Greenwich, a5 is the earth's rotation foot, aB is the first reference satellite, fin is the second reference satellite,
all are the third artificial 9# stars whose positions are being determined.

+1’Jは人工衛Ha・の軌道、anは赤道面上におい
【グリニッチ子午線と堆石a3とを結ぶ直線、anは堆
石a3と第1の基準l#星とを結ぶ直線、123は堆石
(13と人工衛星(Illとを結ぶ直線、@は堆石a3
と第2の基準衛星とを結ぶ直線、斜は人工衛星0aと第
10基準衛星とを結ぶ直線、@は人工衛星−と、第2の
基準衛星とを結ぶ直線、(至)は人工衛星0が図示の位
置にあるときの、この位置での軌道の接線、鰭は直線■
と直線onのなす角λ、@は直線aS1と直線@のなす
角Δλ、@は直線@と直m(2)のなす角α。
+1'J is the orbit of the satellite Ha, an is the straight line connecting the Greenwich meridian and the moraine a3 on the equatorial plane, an is the straight line connecting the moraine a3 and the first reference l# star, 123 is the A straight line connecting stone (13 and satellite (Ill), @ is moraine a3
and the second reference satellite, the diagonal is the straight line that connects the satellite 0a and the 10th reference satellite, @ is the straight line that connects the satellite - and the second reference satellite, (to) is the straight line that connects the satellite 0a and the 10th reference satellite. When is in the position shown, the tangent to the trajectory at this position, the fin is a straight line■
and the angle λ between the straight line on, @ is the angle Δλ between the straight line aS1 and the straight line @, and @ is the angle α between the straight line @ and the straight line m(2).

(至)は直線(支)と直線(ハ)のなす角β、 onは
直@QIJと直線■のなす角θ、  B8は地上局であ
る。
(to) is the angle β between the straight line (branch) and the straight line (c), on is the angle θ between the straight line @QIJ and the straight line ■, and B8 is the ground station.

第3図は、第1図で示した構成機器間の接続。FIG. 3 shows the connections between the component devices shown in FIG.

及び信号の流れを示すものである。この様な構成におい
て、第1および第2の基準衛JiLae、aηからのビ
ーコン電波(9a)、 (9b)をRFセンサ(1a)
、 (tb)で受信し、さらにレーザレーダ(za)t
 (2b) Kよシ基準衛星との距離を測定し、前記R
Fセンサ(’ a)m(1b)とレーザレーダ(2a)
、 (2b)の出力を信号処理装置(41K与え、以下
の数式に従い計算する。まず基準衛星の位置データ、及
び基準衛星との相対距離KJt)■とOを求める。なお
、第2図のような相対関係において、三角関数の公式か
ら以下の(3)式が成シ立つ。
and shows the flow of signals. In such a configuration, the beacon radio waves (9a) and (9b) from the first and second reference satellites JiLae and aη are transmitted to the RF sensor (1a).
, (tb), and further received by laser radar (za)t
(2b) Measure the distance between K and the reference satellite, and
F sensor ('a) m (1b) and laser radar (2a)
, (2b) is given to the signal processing device (41K) and calculated according to the following formula.First, the position data of the reference satellite and the relative distance to the reference satellite KJt) and O are determined. In addition, in the relative relationship as shown in FIG. 2, the following formula (3) holds true from the trigonometric formula.

r12 :== R,2+■2−2R1■cos Q・
・・・・・(1)R12=r12+■2−2r1■co
s a  −−(21R22=r22−1−■2−2r
2■cosβ −−−−−・・・・(31第(1)式、
第(2)式より R12−R22=r12−r22+2■(r2cosβ
−rlcosa )・・・・・・・・・ (4) よって■は9次式によシ求められる。
r12 :== R, 2+■2-2R1■cos Q・
...(1) R12=r12+■2-2r1■co
s a --(21R22=r22-1-■2-2r
2 ■ cos β --------... (31st formula (1),
From equation (2), R12-R22=r12-r22+2■(r2cosβ
-rlcosa)... (4) Therefore, ■ can be found using the 9th order equation.

また、第(11式よシ Oは と表わせる。Also, No. 11, O is It can be expressed as

これらから、λの変化速度λと以下で定義される■を計
算する。
From these, calculate the rate of change λ of λ and ■ defined below.

λ=f(■)    ・・・・・・・・・・・・・・・
・・・・・・(7)■=λ+O・・・・・・・・・・・
・・・・・・・・・・(8)以上より求められたλと■
より1人工衛星の位置が決定される。この結果1人工衛
星位置の計算処理のための時間が短縮されることKなる
λ=f(■) ・・・・・・・・・・・・・・・
・・・・・・(7) ■=λ+O・・・・・・・・・・・・
・・・・・・・・・・・・(8) λ and ■ obtained from the above
From this, the position of one artificial satellite is determined. As a result, the time required to calculate the position of one artificial satellite is shortened.

〔発明の効果〕〔Effect of the invention〕

以上の様にこの発明によれば、二つの基準衛星を用いて
人工衛星の位置計算をオンボードで行うことができ、従
って処理時間と手間を短縮することができる。
As described above, according to the present invention, it is possible to calculate the position of an artificial satellite on-board using two reference satellites, thereby reducing processing time and effort.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の要旨とする部分を備えた人工衛星
を説明する為の図、第2図は位置を決定しようとする人
工衛星、基準衛星および地球との位置関係を示す図、第
3図は、第1図に示す構成機器間の接続、及び信号の流
れを示す図、第4図は、従来の人工衛星の位置決定方法
を説明する図である。 (1a)、 (1b)は、基準衛星からのビーコン電波
を受信するRFセンサ、  (2a)、 (2b)は基
準衛星までの距離を計測するレーザレーダ、  (3a
)、 (sb)はレーザレーダよシ発射されるレーザビ
ーム、(4)は前記RFセンサによる受信信号、及びレ
ーザレーダによる計測結果を処理する信号処理装置、(
5)は。 前記信号処理装置(4)kよる処理信号をもとにして。 位置計算′を行う位I計算装置、(6)はヨー軸、(7
)はロール軸、(8)はピッチ軸、  (9a)、  
(9b)は第2図に示す第1.及び第2の基準衛星それ
ぞれからのビーコン電波、 atiはその線上に前記二
つのRFセンサがあり、かつロール軸(7)と平行な直
線、aDは基準衛星からのビーコン電波(9a) (9
b)と、ロール軸(7)と平行な前記の直線aノとがな
す角、R2は地球、R3は堆石、 Q4はグIJ ニッ
チ、asは地球自転方向、a@は第1の基準衛星、鰭は
第2の基準衛星、 (IIIは前記の位置を決定しよう
としている第3の人工衛m。 R9は人工衛星aSの軌道、12Gは赤道面上において
。 グリニッチ子午線と堆石a3とを結ぶ直線、aDは堆石
a3と第1の基準衛星とを結ぶ直s、 C10は堆石(
13と人工衛星a9とを結ぶ直線1口は堆石α3と、第
2の基準衛星とを結ぶ直線、@は人工衛星舖と第1の基
準衛星とを結ぶ直線、@は人工衛J!舖と第2の基準衛
星とを結ぶ直線、■は人工衛星錦が図示の位置にあると
きの、この位置での軌道接縁、■は直線■と直線(至)
のなす角λ、@は直線c111と直線(2)のなす角Δ
λ、@は直線@と直線(財)のなす角α。 (至)は直線(2)と直線(2)のなす角β、a力は直
線@と直線■のなす角θ、  BSは地上局である。 なお、各図中同一符号は、同一または相当部分を示す。
Fig. 1 is a diagram for explaining an artificial satellite equipped with the gist of the present invention, Fig. 2 is a diagram showing the positional relationship between the artificial satellite whose position is to be determined, a reference satellite, and the earth; FIG. 3 is a diagram showing connections between the components shown in FIG. 1 and the flow of signals, and FIG. 4 is a diagram explaining a conventional method for determining the position of an artificial satellite. (1a) and (1b) are RF sensors that receive beacon radio waves from the reference satellite; (2a) and (2b) are laser radars that measure the distance to the reference satellite; (3a)
), (sb) is a laser beam emitted by the laser radar, (4) is a signal processing device that processes the received signal by the RF sensor and the measurement result by the laser radar, (
5). Based on the signal processed by the signal processing device (4) k. Position calculation device for position calculation, (6) is the yaw axis, (7
) is the roll axis, (8) is the pitch axis, (9a),
(9b) is the first line shown in FIG. and beacon radio waves from each of the second reference satellites, ati is a straight line on which the two RF sensors are located and parallel to the roll axis (7), aD is a beacon radio wave from the reference satellite (9a) (9
b) and the above-mentioned straight line a parallel to the roll axis (7), R2 is the earth, R3 is the moraine, Q4 is the IJ niche, as is the earth's rotation direction, a@ is the first reference The satellite, fin, is the second reference satellite, (III is the third satellite whose position is being determined. R9 is the orbit of the satellite aS, and 12G is on the equatorial plane. The Greenwich meridian and the moraine a3. aD is the straight line connecting the moraine a3 and the first reference satellite, C10 is the straight line connecting the moraine (
13 and the artificial satellite a9 is a straight line that connects the moraine α3 and the second reference satellite, @ is the straight line that connects the artificial satellite or the first reference satellite, @ is the straight line that connects the artificial satellite J! A straight line connecting Aru and the second reference satellite, ■ is the orbital connection at this position when the artificial satellite Nishiki is at the position shown in the diagram, ■ is the straight line ■ and the straight line (to)
The angle λ formed by is the angle Δ between the straight line c111 and the straight line (2).
λ, @ is the angle α between the straight line @ and the straight line (goods). (to) is the angle β between straight lines (2) and (2), a force is the angle θ between straight lines @ and straight lines ■, and BS is the ground station. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  第1、第2の測距用レーザレーダと、位置を決定しよ
うとする人工衛星のロール軸に対して平行に取付けられ
た第1、第2のビーコン電波受信用のRFセンサと、上
記第1、第2のレーザレーダ及びRFセンサとつながり
、これらセンサによつて得られるデータを基にして、自
己の位置を決定する計算手段とを、位置を決定しようと
する人工衛星に搭載するとともに、上記第1、第2のR
Fセンサで、ビーコン電波発生装置を備え、かつ、軌道
及び位置要素がすでに明らかな第1及び第2の人工衛星
からのビーコン電波を、それぞれ受信し、さらに上記、
第1、第2のレーザレーダを用いて、位置を決定しよう
とする人工衛星から、上記第1、第2の人工衛星までの
距離を計測し、これら第1、第2のRFセンサおよびレ
ーザレーダによる計測結果を、上記計算手段で計算して
、位置を決定しようとする人工衛星の位置を決定するよ
うにしたことを、特徴とする人工衛星の位置決定方法。
first and second ranging laser radars; first and second beacon radio wave receiving RF sensors installed parallel to the roll axis of the artificial satellite whose position is to be determined; , a calculation means that is connected to a second laser radar and an RF sensor and determines its own position based on data obtained by these sensors, is mounted on the artificial satellite whose position is to be determined, and the above-mentioned 1st and 2nd R
The F sensor is equipped with a beacon radio wave generator and receives beacon radio waves from the first and second artificial satellites whose orbits and position elements are already clear, and further includes:
The distances from the satellite whose position is to be determined to the first and second satellites are measured using the first and second laser radars, and the distances between the first and second RF sensors and the laser radars are measured. A method for determining the position of an artificial satellite, characterized in that the position of the artificial satellite whose position is to be determined is determined by calculating the measurement result by the calculation means.
JP60010183A 1985-01-23 1985-01-23 Determination for position of artificial satellite Pending JPS61169784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60010183A JPS61169784A (en) 1985-01-23 1985-01-23 Determination for position of artificial satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60010183A JPS61169784A (en) 1985-01-23 1985-01-23 Determination for position of artificial satellite

Publications (1)

Publication Number Publication Date
JPS61169784A true JPS61169784A (en) 1986-07-31

Family

ID=11743173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60010183A Pending JPS61169784A (en) 1985-01-23 1985-01-23 Determination for position of artificial satellite

Country Status (1)

Country Link
JP (1) JPS61169784A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233073A (en) * 2003-01-28 2004-08-19 Kazuo Machida Position recognition means and position recognition system of flying object
CN108974395A (en) * 2018-06-21 2018-12-11 中国人民解放军战略支援部队航天工程大学 Extraterrestrial target based on the driving of sky-based laser platform becomes rail calculation method and its device
WO2023283867A1 (en) * 2021-07-15 2023-01-19 Qualcomm Incorporated Low-Earth Orbit (LEO) Satellite Position, Velocity, and Time (PVT) Determination for LEO-based Positioning

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233073A (en) * 2003-01-28 2004-08-19 Kazuo Machida Position recognition means and position recognition system of flying object
CN108974395A (en) * 2018-06-21 2018-12-11 中国人民解放军战略支援部队航天工程大学 Extraterrestrial target based on the driving of sky-based laser platform becomes rail calculation method and its device
CN108974395B (en) * 2018-06-21 2019-11-15 中国人民解放军战略支援部队航天工程大学 Extraterrestrial target based on the driving of sky-based laser platform becomes rail calculation method and its device
WO2023283867A1 (en) * 2021-07-15 2023-01-19 Qualcomm Incorporated Low-Earth Orbit (LEO) Satellite Position, Velocity, and Time (PVT) Determination for LEO-based Positioning

Similar Documents

Publication Publication Date Title
EP0462648B1 (en) Method of and apparatus for obtaining vehicle heading information
US4405986A (en) GSP/Doppler sensor velocity derived attitude reference system
US4402049A (en) Hybrid velocity derived heading reference system
US5359332A (en) Determination of phase ambiguities in satellite ranges
EP0870174B1 (en) Improved vehicle navigation system and method using gps velocities
US8686900B2 (en) Multi-antenna GNSS positioning method and system
US6587761B2 (en) Unambiguous integer cycle attitude determination method
US5787384A (en) Apparatus and method for determining velocity of a platform
US5327140A (en) Method and apparatus for motion compensation of SAR images by means of an attitude and heading reference system
AU775676B2 (en) System for determining the heading and/or attitude of a body
US5572217A (en) Compass
US6150979A (en) Passive ranging using global positioning system
CN110823191B (en) Method and system for determining ocean current measurement performance of mixed baseline dual-antenna squint interference SAR
JPS636414A (en) Data processing system for hybrid satellite navigation
JPS61169784A (en) Determination for position of artificial satellite
JPH04283615A (en) Gyroscope apparatus
JP2007225408A (en) Sideslip measuring device of moving body
JPS592870B2 (en) GPS gyroscope
JP2916708B2 (en) Current position measurement device for moving objects
JP2946050B2 (en) Gyro device
CN113820733A (en) Moving carrier navigation method and device based on directional antenna and Doppler information
US11994599B2 (en) Positioning system and positioning method
JP3084533B2 (en) Azimuth angle measurement device
JPH02159590A (en) Measuring apparatus of own position
US20220026584A1 (en) Positioning system and positioning method