JPS61169615A - Engine intake device - Google Patents

Engine intake device

Info

Publication number
JPS61169615A
JPS61169615A JP60011514A JP1151485A JPS61169615A JP S61169615 A JPS61169615 A JP S61169615A JP 60011514 A JP60011514 A JP 60011514A JP 1151485 A JP1151485 A JP 1151485A JP S61169615 A JPS61169615 A JP S61169615A
Authority
JP
Japan
Prior art keywords
air
intake
fuel ratio
control valve
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60011514A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yamamoto
博之 山本
Masanori Misumi
三角 正法
Masashi Maruhara
正志 丸原
Tsugio Hatsuhira
次男 服平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP60011514A priority Critical patent/JPS61169615A/en
Publication of JPS61169615A publication Critical patent/JPS61169615A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • F02B31/08Movable means, e.g. butterfly valves having multiple air inlets, i.e. having main and auxiliary intake passages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To improve the output and fuel consumption, in a system where a control valve closable under light load is arranged in heavy load intake path, by correcting the opening of the control valve with correspondence to the air/ fuel ratio thereby regulating the intake air flow speed, intake swirl, etc. with correspondence to variation of the air/fuel ratio. CONSTITUTION:Intake air paths 5, 6 for heavy load and light load are formed in the downstream of a throttle valve 4 in an intake path 3 and communicated through an intake valve 8 to the combustion chamber 2 upon confluence. The heavy load intake path 5 is formed with relatively large diameter while a control valve 9 closable under light load is arranged in the way. While the light load intake path 6 is formed with relatively small diameter to open the downstream end in tangential direction of cylinder 1. Here, the control valve 9 will control the opening through a control unit 12 with correspondence to the engine operating condition while correct the opening with correspondence to the air/fuel ratio to be detected through a lean sensor (air/fuel ratio detecting means) 16.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は低負荷用吸気通路と、制御弁を備えた高負荷用
吸気通路とを有するエンジンの吸気装置の改良に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in an intake system for an engine having a low-load intake passage and a high-load intake passage equipped with a control valve.

(従来技術) 従来から、低負荷用吸気通路と制御弁を備えた高負荷用
吸気通路とを形成し、低負荷時には上記制御弁を閏じて
上記低負荷用吸気通路から吸気を供給することにより、
吸気流速を高めるとともに・ 吸気スワールを生じさせ
て燃焼性を向上し、高負荷時には制御弁を開いて両吸気
通路から吸気を供給することにより、吸気抵抗を軽減す
るとともに吸気スワールを抑制するようにしたエンジン
が知られている。特に吸気流速、吸気スワール等の吸気
供給状態を種々の運転状態において適正に調整するため
、例えば特開昭59−138723号公報に示されるよ
うに、エンジン回転数および負荷等の運転状態と、制御
弁の前後の差圧等の制御弁の開度に関連した信号とをそ
れぞれ検出し、上記差圧等の検出値と記憶装置から読出
した運転状態に適合する目標値とを比較し、上記検出値
が目標値となるように制御弁の開度をフィードバック制
御するようにした装置も知られている。
(Prior art) Conventionally, a low-load intake passage and a high-load intake passage equipped with a control valve are formed, and when the load is low, the control valve is used to supply intake air from the low-load intake passage. According to
In addition to increasing the intake flow velocity, it also creates an intake swirl to improve combustion performance.At high loads, the control valve opens to supply intake air from both intake passages, reducing intake resistance and suppressing intake swirl. The engine that did this is known. In particular, in order to appropriately adjust intake air supply conditions such as intake flow rate and intake swirl in various operating conditions, for example, as shown in Japanese Patent Application Laid-Open No. 59-138723, operating conditions such as engine rotation speed and load, and control Signals related to the opening degree of the control valve, such as the differential pressure before and after the valve, are detected, and the detected value of the differential pressure, etc., is compared with a target value read out from the storage device and adapted to the operating condition, and the above-mentioned detection is performed. A device is also known in which the opening degree of a control valve is feedback-controlled so that the opening value becomes a target value.

ところで、上記のような従来装置では、運転状態に対し
てのみ、制御弁の開度の制御による吸気流速、吸気スワ
ール等の調整が行なわれるようになっているが、エンジ
ンに供給される混合気の空燃比によっても要求される吸
気流速や吸気スワールの強さ等が違ってくる。つまり、
本来的には混合気が理論空燃比(14,5〜15.0)
程度であるとき燃焼速度が最大となって、理論空燃比か
らずれるほど燃焼速度が遅くなる傾向があるため、この
ように燃焼速度が遅くなりがちな空燃比では吸気流速お
よび吸気スワールを高めることが望ましい。しかるに上
記従来の装置では運転状態に応じてIIJtlll弁の
開度を制御しているにすぎないので、同じ運転状態であ
っても空燃比が変化する場合、例えば暖機運転後に混合
気がリーン化される場合等に、それに応じた吸気流速、
吸気スワール等の調整を行うことができなかった。
By the way, in the conventional device as described above, the intake flow velocity, intake swirl, etc. are adjusted by controlling the opening degree of the control valve only depending on the operating condition, but the air-fuel mixture supplied to the engine The required intake flow velocity and strength of intake swirl also vary depending on the air-fuel ratio. In other words,
Originally, the air-fuel mixture was at the stoichiometric air-fuel ratio (14.5 to 15.0)
The combustion speed is at its maximum when the air-fuel ratio is at a certain temperature, and the combustion speed tends to slow down as the combustion speed deviates from the stoichiometric air-fuel ratio. desirable. However, the conventional device described above merely controls the opening degree of the IIJtll valve according to the operating state, so if the air-fuel ratio changes even under the same operating state, for example, the air-fuel mixture becomes lean after warm-up. Inspiratory flow rate, etc.
It was not possible to adjust intake swirl, etc.

(発明の目的) 本発明はこのような事情に鑑み、運転状態に応じて吸気
流速や吸気スワール等を調整するだけでなく、空燃比が
変化したときにもそれに応じて適正に吸気流速や吸気ス
ワール等を調整することができ、異常燃焼や燃焼効率の
低下を確実に防止することができるエンジンの吸気装置
を提供するものである。
(Objective of the Invention) In view of these circumstances, the present invention not only adjusts the intake flow rate and intake swirl according to the operating condition, but also adjusts the intake flow rate and intake swirl appropriately when the air-fuel ratio changes. The present invention provides an engine intake device that can adjust swirl and the like and reliably prevent abnormal combustion and reduction in combustion efficiency.

(発明の構成) 本発明は、スロットル弁下流の吸気通路を低負荷用吸気
通路と低負荷時に閉じる制御弁を介設した高負荷用吸気
通路とにより構成するとともに、運転状態に応じて上記
制御弁の開度を制御する制御手段を備えたエンジンの吸
気装置において、エンジンに供給される混合気の空燃比
を検出する空燃比検出手段と、この空燃比検出手段の出
力を受け、上記空燃比に応じて上記制御弁の開度を補正
する補正手段を設けたものである。
(Structure of the Invention) The present invention comprises an intake passage downstream of the throttle valve consisting of a low-load intake passage and a high-load intake passage interposed with a control valve that closes at low load, and the above-mentioned control according to the operating state. In an engine intake system equipped with a control means for controlling the opening degree of a valve, the air-fuel ratio detection means detects the air-fuel ratio of the air-fuel mixture supplied to the engine; A correction means is provided for correcting the opening degree of the control valve in accordance with the above.

つまり、運転状態が変化した場合だけでなく、同じ運転
状態で空燃比が変化したときにも、それに応じた制御弁
の開度の補正によって吸気流速や吸気スワール等を適正
に1i11!!するようにしている。
In other words, not only when the operating condition changes, but also when the air-fuel ratio changes under the same operating condition, the intake flow rate, intake swirl, etc. can be adjusted appropriately by correcting the opening degree of the control valve accordingly! ! I try to do that.

(実施例) 第1図は本発明装置の全体構造の一実施例を示す。この
図において、エンジンのシリンダ1に形成された燃焼室
2に吸気を供給する吸気通路3には、スロットル弁4の
下流に高負荷用吸気通路5および低負荷用吸気通路6が
形成されており、吸気通路3の下流端は上記燃焼室2に
開口し、その ゛開口部7に吸気弁8が装備されている
。上記高負荷用吸気通路5は通路面積が比較的大きく形
成され、上記開口部7に連通しており、この高負荷用吸
気通路5中には蝶形弁等からなるlIJw弁9が介設さ
れている。さらに吸気弁8の近傍の通路壁に上記開口部
7付近に向けて燃料を噴射する燃料噴射弁10が装備さ
れている。また、低負荷用吸気通路6は、高負荷用吸気
通路5と比べて通路面積が小さく、高負荷用吸気通路5
に沿ってその下方に形成されており、上記1iIJtI
ll弁9の上流の高負荷用吸気通路5から分岐し、下流
端が上記吸気弁8の直上流で高負荷用吸気通路5に開口
している。
(Embodiment) FIG. 1 shows an embodiment of the overall structure of the device of the present invention. In this figure, in an intake passage 3 that supplies intake air to a combustion chamber 2 formed in a cylinder 1 of an engine, a high-load intake passage 5 and a low-load intake passage 6 are formed downstream of a throttle valve 4. The downstream end of the intake passage 3 opens into the combustion chamber 2, and the opening 7 is equipped with an intake valve 8. The high-load intake passage 5 is formed with a relatively large passage area and communicates with the opening 7, and an lIJw valve 9 made of a butterfly valve or the like is interposed in the high-load intake passage 5. ing. Further, a fuel injection valve 10 for injecting fuel toward the vicinity of the opening 7 is provided on a passage wall near the intake valve 8. Furthermore, the low-load intake passage 6 has a smaller passage area than the high-load intake passage 5.
It is formed along and below the above 1iIJtI
It branches from the high-load intake passage 5 upstream of the ll valve 9, and its downstream end opens into the high-load intake passage 5 immediately upstream of the intake valve 8.

上記低負荷用吸気通路6の下流端はシリンダ1の接線方
向に向けて開口し、この低負荷用吸気通路6を通る吸気
を燃焼室2の周方向に供給するようにしている。一方、
上記高負荷用吸気通路5の下流端付近は、吸気通路3に
対してシリンダ1の軸線方向に開口するように屈曲もし
くは湾曲した形状となっている。したがって、上記II
IIIN弁9が閉じられたときには、この制御弁9によ
って高負荷用吸気通路5が遮断された状態で低負荷用吸
気通路6のみから燃焼室2に吸気が供給されることによ
り、吸気流速が高められるとともに燃焼室2内に強い吸
気スワールが生じ、制御弁9が開かれると、高負荷用吸
気通路5から吸気が供給されることにより吸気抵抗が軽
減されるとともに吸気スワールが抑制され、制−弁9の
開度に応じて吸気流速、吸気抵抗および吸気スワールの
強さが調節される構造となっている。
The downstream end of the low-load intake passage 6 opens in the tangential direction of the cylinder 1, and the intake air passing through the low-load intake passage 6 is supplied to the combustion chamber 2 in the circumferential direction. on the other hand,
The vicinity of the downstream end of the high-load intake passage 5 is bent or curved so as to open in the axial direction of the cylinder 1 with respect to the intake passage 3 . Therefore, the above II
When the IIIN valve 9 is closed, intake air is supplied to the combustion chamber 2 only from the low-load intake passage 6 with the high-load intake passage 5 blocked by the control valve 9, thereby increasing the intake flow velocity. At the same time, a strong intake swirl is generated in the combustion chamber 2, and when the control valve 9 is opened, intake air is supplied from the high-load intake passage 5, thereby reducing intake resistance and suppressing the intake swirl. The structure is such that the intake flow rate, intake resistance, and strength of the intake swirl are adjusted according to the opening degree of the valve 9.

上記制御弁9は、運転状態および空燃比に応じて開度が
変化するように、リニアソレノイド等からなるアクチュ
エータ11を介し、マイクロコンピュータ等で構成した
コントロールユニット12により制御されており、低負
荷時には閉じられるようになっている。上記コントロー
ルユニット12には、スロットル弁4下流の吸気負圧を
検出することによって負荷を検出する負圧センサ13と
、エンジン回転数を検出する回転数センサ14と、吸入
空気量を検出するエアフローセンサ15と、エンジンに
供給される混合気の空燃比を検出するリーンセンサ(空
燃比検出手段)16と、エンジンのトルクを検出するト
ルクセンサ17と、スロットル弁4の開度を検出するス
ロットル開度センサ18とからの各検出信号が入力され
ている。
The control valve 9 is controlled by a control unit 12 composed of a microcomputer etc. via an actuator 11 composed of a linear solenoid etc. so that the opening degree changes according to the operating state and the air-fuel ratio. It can be closed. The control unit 12 includes a negative pressure sensor 13 that detects the load by detecting the intake negative pressure downstream of the throttle valve 4, a rotation speed sensor 14 that detects the engine speed, and an air flow sensor that detects the amount of intake air. 15, a lean sensor (air-fuel ratio detection means) 16 that detects the air-fuel ratio of the air-fuel mixture supplied to the engine, a torque sensor 17 that detects the torque of the engine, and a throttle opening that detects the opening of the throttle valve 4. Each detection signal from the sensor 18 is input.

上記コントロールユニット12は、運転状態に応じて上
記制御弁9の開度を制御するi、II @手段としての
機能と、エンジンに供給される混合気の空燃比に応じて
上記制御弁9の開度を補正する補正手段としての機能と
を有し、また前記燃料噴射弁10の制御も行うようにな
っている。つまり上記コントロールユニット12は、リ
ーンセンサ16によって検出される吸入空気口に応じて
燃料噴射弁10からの燃料噴射」を制御するとともに、
負圧センサ13および回転数センサ14によって検出さ
れる運転状態に応じて制御弁9の開度を制御するという
ような基本的な制御に加え、後述するように必要時に空
燃比を変動させ、かつ空燃比に応じて制御弁9の開度を
補正するようにして(Xる。
The control unit 12 functions as i, II@ means for controlling the opening degree of the control valve 9 according to the operating state, and also functions as a means for controlling the opening degree of the control valve 9 according to the air-fuel ratio of the air-fuel mixture supplied to the engine. The fuel injection valve 10 has a function as a correction means for correcting the temperature, and also controls the fuel injection valve 10. In other words, the control unit 12 controls the fuel injection from the fuel injection valve 10 according to the intake air port detected by the lean sensor 16, and
In addition to basic control such as controlling the opening degree of the control valve 9 according to the operating state detected by the negative pressure sensor 13 and the rotation speed sensor 14, the air-fuel ratio is varied when necessary, as will be described later. The opening degree of the control valve 9 is corrected according to the air-fuel ratio (X).

さらに当実施例では、スロットル弁4の開度および点火
時期も空燃比に応じて補正されるようにしてあって、ア
クセルペダル(図示せず)の操作量に応じてスロットル
弁4を作動するとともに、その開度を電気的に調整可能
にしたスロットル弁作動装置19、および点火装置20
も上記コントロールユニット12によって制御されるよ
うにしている。
Furthermore, in this embodiment, the opening degree and ignition timing of the throttle valve 4 are also corrected according to the air-fuel ratio, and the throttle valve 4 is operated according to the operation amount of the accelerator pedal (not shown). , a throttle valve operating device 19 whose opening degree can be electrically adjusted, and an ignition device 20
is also controlled by the control unit 12.

上記コントロールユニット12による空燃比に応じた制
御弁9の開度の補正は第2図に示すように行うこととし
、つまり理論空燃比付近YOでは制御弁9の開度を大き
くし、これよりリーン方向およびリッチ方向のいずれに
空燃比がずれても、本来的には燃焼速度が低下すること
から、制御弁9の開度を小さくして吸気流速および吸気
スワールを高めるようにしている。また、例えば暖機運
転終了後や定常運転状態が所定時間持続した場合等には
、出力を一定にしつつ空燃比をリーン化することが走行
性および経済性の面から望ましく、このような場合には
、第3図に示すように燃料流速、吸入空気量、制御弁9
の開度および点火時期を変化させるようにしている。つ
まり、理論空燃比YOから所定のリーン状態にまで移行
するとき、燃料流量は次第に減少し、吸入空気量は次第
に増加するようにして充填効率を高めることにより出力
低下を補い、また制御弁9の開度は次第に小さくし、点
火時期は次第に進角させることにより、リーン化による
燃焼速度の低下を補うようにし、これらの相乗作用でリ
ーン移行時の出力低下を防止するようにしている。
The control unit 12 corrects the opening degree of the control valve 9 according to the air-fuel ratio as shown in FIG. Even if the air-fuel ratio deviates in either direction or rich direction, the combustion speed inherently decreases. Therefore, the opening degree of the control valve 9 is reduced to increase the intake flow velocity and the intake swirl. In addition, for example, after warm-up or when a steady state of operation continues for a predetermined period of time, it is desirable to lean the air-fuel ratio while keeping the output constant from the viewpoint of driving performance and economy. As shown in Fig. 3, the fuel flow rate, intake air amount, and control valve 9
The opening degree and ignition timing are changed. In other words, when transitioning from the stoichiometric air-fuel ratio YO to a predetermined lean state, the fuel flow rate gradually decreases and the intake air amount gradually increases to compensate for the decrease in output by increasing charging efficiency. The opening degree is gradually reduced and the ignition timing is gradually advanced to compensate for the decrease in combustion speed due to lean engine transition, and the synergistic effect of these actions prevents a decrease in output during lean transition.

このようなリーン移行時の調整は、前記トルクセンサ1
7の出力に応じ、トルク変動を抑制する方向にスロット
ル弁4の開度、制御弁9の開度および点火時期をフィー
ドバック制御することによって行うことができ、その制
御の具体例を第4図にフローチャートで示す。このフロ
ーチャート中では、燃料噴射弁10に出力する燃料パル
スのパルス幅をτ、スロットル弁4の開度をθ、制御弁
9の開度をψ、点火進角度をIgとし、それぞれの初期
値(リーン移行前の値)をτ0.θ0.ψo、Igoと
しており、またこれらを変化させるための演算に用いる
係敬をC1,C2、C3、C4、カウンタをI、J、に
、Lとしている。
Such adjustment during lean transition is performed by the torque sensor 1.
This can be done by feedback controlling the opening of the throttle valve 4, the opening of the control valve 9, and the ignition timing in the direction of suppressing torque fluctuation according to the output of the control valve 7. A specific example of this control is shown in FIG. Shown in a flowchart. In this flowchart, the pulse width of the fuel pulse output to the fuel injection valve 10 is τ, the opening degree of the throttle valve 4 is θ, the opening degree of the control valve 9 is ψ, the ignition advance angle is Ig, and their initial values ( value before lean transition) to τ0. θ0. ψo and Igo, the variables used in calculations for changing these are C1, C2, C3, and C4, and the counters are I, J, and L.

このフローチャートは暖機運転終了時等のり一ン移行さ
れるべき状態となったときスタートしくステップS1)
、ステップS2で各カウンタを1、J、に、LをOとイ
ニシャライズしてから、ステップS3でトルクセンサ1
7の出力を読んでこれを初期出力Toとする。次にステ
ップS4でリーンセンサ16の出力■を読込み、ステッ
プS5で上記出力■とリーン移行のための目標空燃比V
tとの差(IV−Vtl)が所定の微少値ε0より小さ
くなったか否かを調べる。
This flowchart starts when the state where the shift to the first step is to be performed, such as at the end of warm-up operation (step S1).
, initialize each counter to 1, J, and L to O in step S2, and then initialize the torque sensor 1 in step S3.
Read the output of step 7 and set it as the initial output To. Next, in step S4, the output ■ of the lean sensor 16 is read, and in step S5, the output ■ and the target air-fuel ratio V for lean transition are read.
It is checked whether the difference (IV-Vtl) with respect to t has become smaller than a predetermined minute value ε0.

ステップS5での判定結果がNOのときは、リーン移行
のための処理として、カウンタ■を1だけ加算してから
、燃料パルスのパルス幅をτを[τ=τo  (1−C
IXI)]とし、つまり上記パルス幅τを小さくする。
When the determination result in step S5 is NO, as a process for lean transition, the counter ■ is incremented by 1, and the pulse width of the fuel pulse is set to τ [τ=τo (1-C
IXI)], that is, the pulse width τ is made smaller.

そして、後述するステップS♂〜511iの処理を経て
ステップS4に戻るという処理を繰返すことにより、ス
テップSs。
Then, by repeating the process of returning to step S4 through the processes of steps S♂ to 511i, which will be described later, step Ss is obtained.

S7を通る度に、上記パルス幅τによって決る燃料噴r
J4IIiを所定量ずつ減少させる。
Each time S7 is passed, the fuel injection r determined by the above pulse width τ
Decrease J4IIi by a predetermined amount.

ステップSa 、Syに続いて、ステップ88〜S10
では、トルクセンサ17の初期出力Toと現時点出力T
1との差が所定微少値ε1より小さくなるまで、カウン
タJを1ずつ加算するとともにスロットル弁4の開度θ
を[θ=θO(1+C2XJ)]とする処理を繰返し、
つまりスロットル弁4の開度を大きくすることにより充
填効率を高めてトルクを初期値に近付ける。次にステッ
プ811〜813ではトルクセンサ17の初期出力To
と現時点出力T1との差が所定の微少値ε2 (ただし
S2〈S1)より小さくなるまで、カウンタKを1ずつ
加算するとともに制御弁9の開度ψを[ψ−ψo  (
1−C3XK)]とし、つまり制御弁9の開度を小さく
することにより、吸気流速および吸気スワールを高めて
トルクを初期値にさらに近付ける。次にステップS++
〜S taでは、トルクセンサ17の初期出力Toと現
時点出力T1との差が所定の微少値ε3 (ただしS3
くS2)より小さくなるまで、点火進角度Ioをtta
=rGo  (1+C3XL)1とし、つまり点火時期
を ゛進めてトルクを略初期値に戻す。
Following steps Sa and Sy, steps 88 to S10
Now, the initial output To and current output T of the torque sensor 17
The counter J is incremented by 1 until the difference from 1 becomes smaller than a predetermined small value ε1, and the opening degree θ of the throttle valve 4 is
Repeat the process of setting [θ=θO(1+C2XJ)],
In other words, by increasing the opening degree of the throttle valve 4, the charging efficiency is increased and the torque is brought closer to the initial value. Next, in steps 811 to 813, the initial output To of the torque sensor 17 is
The counter K is incremented by 1 and the opening degree ψ of the control valve 9 is increased by [ψ−ψo (
1 - C3 Next step S++
~Sta, the difference between the initial output To of the torque sensor 17 and the current output T1 is a predetermined minute value ε3 (however, S3
S2) Adjust the ignition advance angle Io until it becomes smaller than tta.
=rGo (1+C3XL)1, that is, advance the ignition timing and return the torque to approximately its initial value.

上記ステップS4からステップS16までの処理はリー
ン移行中に繰り返し行なわれ、従って、燃料噴射量が所
定量ずつ次第に減少するに伴い、スロットル弁4の開度
、Ill III弁9の開度および点火時期も同時的に
変化し、リーン移行中もトルクが略一定に保たれること
となる。そして、ステップS5での判定結果がYESと
なれば、リーン移行が終了する(ステップSv)。
The processing from step S4 to step S16 is repeated during the lean transition, and therefore, as the fuel injection amount gradually decreases by a predetermined amount, the opening degree of the throttle valve 4, the opening degree of the Ill III valve 9, and the ignition timing change. The torque also changes at the same time, and the torque is kept approximately constant even during the lean transition. Then, if the determination result in step S5 is YES, the lean transition ends (step Sv).

なお、上記フローチャートではリーン移行時の制御のみ
を示したが、通常の運転状態に応じた制御弁9の開度等
の制御は、従来と同様に行えばよい。
Note that although the above flowchart shows only the control during lean transition, the control of the opening degree of the control valve 9 and the like according to the normal operating state may be performed in the same manner as in the past.

以上のようにして、空燃比が変動したときはそれに応じ
て制御弁9の開度が補正されることにより、吸気流速お
よび吸気スワール等が空燃比の変動に適合するように調
整され、空燃比の変動による燃焼効率の低下や異常燃焼
が防止されることとなる。
As described above, when the air-fuel ratio fluctuates, the opening degree of the control valve 9 is corrected accordingly, so that the intake flow velocity, intake swirl, etc. are adjusted to match the fluctuations in the air-fuel ratio, and the air-fuel ratio This will prevent a decrease in combustion efficiency and abnormal combustion due to fluctuations in

なお、上記実施例では、制御弁9の開度とともにスロッ
トル弁4の開度および点火時期も空燃比に応じて補正し
ているが、スロットル弁4の開度および点火時期の補正
は必ずしも本発明に不可欠のものではなく、少なくとも
制御弁9の開度を空燃比に応じて補正すれば、燃焼効率
等を改善し得るものである。
In the above embodiment, the opening degree of the throttle valve 4 and the ignition timing are corrected in accordance with the air-fuel ratio as well as the opening degree of the control valve 9. However, if the opening degree of the control valve 9 is corrected according to the air-fuel ratio, combustion efficiency, etc. can be improved.

また、本発明は、上記実施例のように低負荷用吸気通路
6の下流端が吸気弁8の直上流の高負荷用吸気通路5に
開口した形式のエンジンに限らず、低負荷用および高負
荷用の両吸気通路が独立してそれぞれ燃焼室に開口し、
その各開口部に吸気弁が装備された形式のエンジンにも
適用し得るものである。
Further, the present invention is not limited to an engine in which the downstream end of the low-load intake passage 6 opens into the high-load intake passage 5 immediately upstream of the intake valve 8 as in the above embodiment; Both load intake passages open independently into the combustion chamber,
It can also be applied to an engine in which each opening is equipped with an intake valve.

(発明の効果) 以上のように本発明は、高負荷用吸気通路に設けられた
制御弁の開度を制御することによって吸気流速および吸
気スワール等を適正に調整し、特に、エンジンに供給さ
れる混合気の空燃比に応じて上記制御弁の開度を補正し
ているので、空燃比の変動に対してもそれに適合するよ
うに吸気流速および吸気スワール等が調整され、燃焼効
率の低下や異常燃焼を確実に防止することができ、これ
によって出力および燃費を向上させることができるもの
である。
(Effects of the Invention) As described above, the present invention appropriately adjusts the intake flow rate, intake swirl, etc. by controlling the opening degree of the control valve provided in the high-load intake passage. Since the opening degree of the control valve is corrected according to the air-fuel ratio of the air-fuel mixture, the intake flow velocity and intake swirl are adjusted to match fluctuations in the air-fuel ratio, thereby preventing a decrease in combustion efficiency or Abnormal combustion can be reliably prevented, thereby improving output and fuel efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一実施例を示す概略図、第2図は
空燃比とそれに応じて補正する制御弁の開度との対応関
係説明図、第3図は出力を一定にしつつ空燃比をリーン
状態に移行させるように制御する場合の燃料流量、吸入
空気聞、制御弁の開度および点火時期の変化を示す説明
図、第4図はリーン状態への移行時のfri制御の具体
例を示すフローチャートである。 3・・・吸気通路、4・・・スロットル弁、5・・・高
負荷用吸気通路、6・・・低負荷用吸気通路、11・・
・アクチュエータ(制御手段および補正手段)、16・
・・リーンセンサ(空燃比検出手段)。 特許出願人    マ ツ ダ 株式会社代 理 人 
   弁理士   小谷悦司同      弁理士  
 長1)正 向      弁理士   板谷康夫 第  1  図 第  2 力し−9 第  3  図 紘*s  / W □ 雪 、77′ : 爆肯 ゝ十ゝ\8、へ 一ン 一一一 −一、−〆
Fig. 1 is a schematic diagram showing an embodiment of the device of the present invention, Fig. 2 is an explanatory diagram of the correspondence between the air-fuel ratio and the opening of the control valve corrected accordingly, and Fig. 3 shows the An explanatory diagram showing changes in fuel flow rate, intake air ratio, control valve opening, and ignition timing when controlling the fuel ratio to shift to a lean state. Fig. 4 shows a specific example of fri control when shifting to a lean state. 3 is a flowchart showing an example. 3... Intake passage, 4... Throttle valve, 5... Intake passage for high load, 6... Intake passage for low load, 11...
・Actuator (control means and correction means), 16.
...Lean sensor (air-fuel ratio detection means). Patent applicant Mazda Co., Ltd. Agent
Patent Attorney Etsushi Kotani Patent Attorney
Long 1) Masayuki Patent Attorney Yasuo Itaya 1st Figure 2 Rikishi-9 3rd Figure Hiro*s / W □ Yuki, 77': Bakuken ゝ1ゝ\8, Hein 111-1, - 〆

Claims (1)

【特許請求の範囲】[Claims] 1、スロットル弁下流の吸気通路を低負荷用吸気通路と
低負荷時に閉じる制御弁を介設した高負荷用吸気通路と
により構成するとともに、運転状態に応じて上記制御弁
の開度を制御する制御手段を備えたエンジンの吸気装置
において、エンジンに供給される混合気の空燃比を検出
する空燃比検出手段と、この空燃比検出手段の出力を受
け、上記空燃比に応じて上記制御弁の開度を補正する補
正手段とを設けたことを特徴とするエンジンの吸気装置
1. The intake passage downstream of the throttle valve is composed of a low-load intake passage and a high-load intake passage in which a control valve that closes at low load is interposed, and the opening degree of the control valve is controlled according to the operating state. In an engine intake system equipped with a control means, the air-fuel ratio detection means detects the air-fuel ratio of the air-fuel mixture supplied to the engine, and the control valve receives the output of the air-fuel ratio detection means and controls the control valve according to the air-fuel ratio. An intake device for an engine, characterized in that it is provided with a correction means for correcting an opening degree.
JP60011514A 1985-01-23 1985-01-23 Engine intake device Pending JPS61169615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60011514A JPS61169615A (en) 1985-01-23 1985-01-23 Engine intake device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60011514A JPS61169615A (en) 1985-01-23 1985-01-23 Engine intake device

Publications (1)

Publication Number Publication Date
JPS61169615A true JPS61169615A (en) 1986-07-31

Family

ID=11780112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60011514A Pending JPS61169615A (en) 1985-01-23 1985-01-23 Engine intake device

Country Status (1)

Country Link
JP (1) JPS61169615A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562433A (en) * 1979-06-22 1981-01-12 Nissan Motor Co Ltd Air-fuel ratio controlling device for diesel engine
JPS5823225A (en) * 1981-08-03 1983-02-10 Toyota Motor Corp Suction device of internal combustion engine
JPS58195048A (en) * 1982-05-11 1983-11-14 Toyota Motor Corp Method for controlling intake-air, air-fuel ratio and ignition timing of internal-combustion engine
JPS59138723A (en) * 1983-01-28 1984-08-09 Mazda Motor Corp Suction device for engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562433A (en) * 1979-06-22 1981-01-12 Nissan Motor Co Ltd Air-fuel ratio controlling device for diesel engine
JPS5823225A (en) * 1981-08-03 1983-02-10 Toyota Motor Corp Suction device of internal combustion engine
JPS58195048A (en) * 1982-05-11 1983-11-14 Toyota Motor Corp Method for controlling intake-air, air-fuel ratio and ignition timing of internal-combustion engine
JPS59138723A (en) * 1983-01-28 1984-08-09 Mazda Motor Corp Suction device for engine

Similar Documents

Publication Publication Date Title
JPH0433381Y2 (en)
JPS61169615A (en) Engine intake device
CA1256568A (en) Double air-fuel ratio sensor system carring out learning control operation
JP4345400B2 (en) Control device for internal combustion engine
JPH03488B2 (en)
JPS62342B2 (en)
JPS6345442A (en) Air-fuel ratio controller for engine
JPS6263128A (en) Fuel controller for engine
JPS62637A (en) Air-fuel ratio control device of internal-combustion engine
JP3331418B2 (en) Engine air-fuel ratio control device
JP2666218B2 (en) Engine air-fuel ratio control device
JPS6263149A (en) Fuel controller for engine
JPS61279744A (en) Fuel flow control device for fuel-injection type engine
JPS62225719A (en) Control device for variable capacity turbocharger
JPH0330601Y2 (en)
JPS60219434A (en) Fuel injection controlling device for engine
JPS61101634A (en) Air-fuel ratio controlling method for internal-combustion engine
JPH0586933A (en) Fuel injection controller for internal combustion engine
JPH02275053A (en) Air-fuel ratio controller for liquefied-petroleum-gas engine
JPH0553932B2 (en)
JPH0526028B2 (en)
JPH01277643A (en) Air-fuel ratio control device for engine
JPS61201838A (en) Fuel control device of engine
JPS62199955A (en) Control of air-fuel ratio learning of lpg engine
JPS6299655A (en) Fuel supply device for engine