JPS6116944B2 - - Google Patents

Info

Publication number
JPS6116944B2
JPS6116944B2 JP16866980A JP16866980A JPS6116944B2 JP S6116944 B2 JPS6116944 B2 JP S6116944B2 JP 16866980 A JP16866980 A JP 16866980A JP 16866980 A JP16866980 A JP 16866980A JP S6116944 B2 JPS6116944 B2 JP S6116944B2
Authority
JP
Japan
Prior art keywords
latex
antibody
serum
antigen
reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16866980A
Other languages
Japanese (ja)
Other versions
JPS5793256A (en
Inventor
Toichi Yamada
Satoshi Obana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP16866980A priority Critical patent/JPS5793256A/en
Publication of JPS5793256A publication Critical patent/JPS5793256A/en
Publication of JPS6116944B2 publication Critical patent/JPS6116944B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は抗原又は抗体を検出するラテツクス試
薬の製造法に関する。体液中のホルモンや蛋白質
等の微量の生体成分を検出するために、近時ラテ
ツクス試薬が一般に使用されるに至つた。ラテツ
クスとしては合成樹脂ラテツクス、とりわけ粒径
が0.1ないし1ミクロンのものが一般に用いられ
ている。これらラテツクス試薬は測定対象の抗
原、抗体に対応する抗体、抗原が該ラテツクス表
面に吸着されており、特異的な反応である抗原・
抗体反応によりラテツクスの凝集が生じる様にな
されている。しかし、単に抗体(又は抗原)をラ
テツクスの表面に吸着させただけでは抗原・抗体
の特異的な反応以外の因子に起因する非特異的凝
集を起こすことが避けられず、実用性のあるラテ
ツクス試薬は得られない。なぜなら測定対象であ
る体液中には各種の蛋白等が混在し、これらの成
分が非特異的にラテツクスへ吸着し凝集を生じさ
せるためである。 この欠点を除くため、現在までに種々の工夫が
なされて報告されているが、その代表的方法は抗
原・抗体反応に関与しない不活性蛋白質を用いて
処理する方法である。例えば特公昭43−12741号
には微細な固体の担体に抗原又は抗体を吸着せし
めた免疫化学的測定試薬において、担体粒子が不
活性で抗原抗体反応に関与しない蛋白質で予め被
覆され、次いで抗体又は抗原で被覆されているこ
とを特徴とするラテツクス試薬の提案がなされて
いる。また特公昭49−11407号には微粒固体担体
表面に抗体を吸着せしめ、次いでこれを不活性な
蛋白質の0.1%以下の濃度の溶液で処理すること
を特徴とするラテツクス試薬の製法が提案されて
いる。これらの2つの発明においては操作手順の
差はあるが、抗原抗体の免疫化学的反応に関与し
ない不活性蛋白質で処理することが基本的な方法
となつている。この不活性蛋白質としては、例え
ば牛血清アルブミン、卵白アルブミン、ラクトア
ルブミン等のアルブミンがあげられている。しか
しながらアルブミン処理を施したラテツクス試薬
においては、正常ウサギ血清、正常モルモツト血
清中の蛋白質と著しい非特異反応を生じて凝集す
る。また、アルブミンの性質に起因するラテツク
ス自己凝集もあるため測定感度は低い。当然、ヒ
トのガンマグロブリン、ヒトのアルブミン、ヒト
のフイブリノーゲンとも非特異反応を起こすため
感度は低く、予め抗体を加えてインヒビツシヨン
テスト(一種の確認テスト)をしなければならな
くなることが多い。また、測定感度すなわち検出
下限濃度について、HBs抗原(B型肝炎ウイルス
表面抗原)検出用のラテツクス試薬を例にとる
と、通常のアルブミン処理方法で製造したラテツ
クス試薬では、10μg(10-5g/c.c.)程度以上の
HBs抗原しか検出できないのが現状であり、さら
に高のものが要望されている。 又、前記抗原・抗体反応にもとづくラテツクス
試薬の凝集現象を肉眼で判別して診断する以外に
ラテツクス試薬に検体を適用した際の濁度の減少
を可視光、近赤外光、レーザーなどを用いて光学
的に読み取り、あらかじめ既知濃度の抗原又は抗
体を用いて作成しておいた標準曲線より測定対象
の抗原又は抗体を測定する方法が知られており、
例えば特開昭53−24015号、同54−108693号など
には近赤外光を用いる測定方法が開示されている
のであるが、この様な光学的測定方法において
も、前述の非特異反応による凝集や感度が低い等
の問題点が同様に存する。 本発明は上記の様な従来のラテツクス試薬の欠
点にかんがみ、非特異的凝集がなく、かつ感度に
すぐれたラテツクス試薬を提供することを目的と
してなされたものであり、その要旨はスチレンと
一般式が (ここでR1はH又はCH3,R2はH又はCH3であ
り、x,y,zはそれぞれ正の整数にしてこれら
の間には次の)〜)のいずれかの関係が成り
立つ 1≦x≦100,y=0,x=0 1≦y≦100,x=0,z=0 1≦x≦50,1≦y≦50, 1≦z≦50,x+y+z≦100) で表わされる化合物とを乳化剤の不存在下で水溶
性ラジカル重合開始剤を用いて水中で共重合する
ことによつて得られるラテツクスに抗体を感作
し、次いでこの抗体感作ラテツクスを、上記と同
じ抗体を含む血清を含有する液中に分散させたの
ち該液から分離することにより処理することを特
徴とするラテツクス試薬の製造方法に存する。 前記一般式で示される化合物としては、ポリエ
チレンオキシドのアクリル酸又はメタクリル酸エ
ステル、ポリプロピレンオキシドのアクリル酸又
はメタクリル酸エステル、エチレンオキシドとプ
ロピレンオキシドとのブロツク共重合体のアクリ
ル酸又はメタクリル酸エステル等があげられ、具
体的には などが好適な例としてあげられる。これらの化合
物はスチレンとの共重合成分であると同時に、通
常公知の乳化重合法における乳化剤の機能をも果
すものであり、スチレンに対する使用割合は0.1
ないし70重量%であるが、好ましくは1ないし50
重量%、より好ましくは3ないし30重量%であ
る。前述のx,y,zの関係式においてx,y,
z>100の場合は、スチレンとこれらの化合物と
の共重合性が低下して、安定にしてしかも粒径が
よく揃つたラテツクスが得られない。 又、本発明における水溶性ラジカル重合開始剤
としては、過硫酸カリウム、過硫酸アンモニウ
ム、過硫酸ナトリウム等の過硫酸塩、2′−2アゾ
ビス(2−アミジノプロパン)鉱酸塩、アゾビス
シアノプアレリン酸及びそのアルカリ金属塩及び
アンモニウム塩等のアゾ化合物、酒石酸−過酸化
物、ロンガリツト−過酸化物、アスコルビン酸−
過酸化物等のレドツクス系開始剤等があげられ、
過硫酸塩が好適に用いられる。 これらの重合開始剤のモノマー全体に対する割
合は0.01ないし1重量%の範囲が好ましい。本発
明方法によりラテツクス製造のための共重合を行
うには水が仕込まれた反応器内にスチレンに前記
一般式で表わされる化合物の少くとも何れか1種
類および前記開始剤を加えて撹拌しながら加熱す
ればよく、その際の重合反応温度は通常50ないし
100℃で、好ましくは60ないし85℃の範囲とする
のがよい。又、重合反応に要する時間はモノマー
組成、モノマー濃度、開始剤濃度等の条件により
変わるが通常5ないし50時間の範囲である。なお
本発明においてはラテツクスの製造において通常
用いられる乳化剤は一切用いられない。 又、本発明においては、上記の共重合に際して
無水珪酸の超微粒子を共存させることが可能であ
り、この場合は生成するラテツクスの均一な分散
性により好ましい結果を与える。しかして上記無
水珪酸の超微粒子としては、粒径が5〜50mμ程
度の超微粒子になさねた無水珪酸が用いられ、例
えばアエロジル(商品名、日本アエロジル(株)社
製)が好適に用いられる。また、該超微粒子状無
水珪酸を水中に分散させたコロイド溶液、例えば
スノーテツクス(商品名、日産化学工業(株)社製)
も好適に用いられる。そしてこの超微粒子状無水
珪酸の使用量はスチレンに対して0.01〜10重量%
の割合とするのがよいが、0.05〜5重量%とくに
0.08〜2重量%とするのが好ましい。 又、上記コロイド溶液として用いる場合は、無
水珪酸含有量が35重量%以下、酸化ナトリウム含
有量0.6重量%以下、粘度が10センチポイズ以下
にしてPH8〜10のものを用いるのが好ましい。 本発明において上記の如くして共重合を行うこ
とにより、平均粒径が0.05ないし2ミクロンで粒
径のバラ付きが変動係数(粒径の標準偏差/平均
粒径)で表わして0.05以下である粒径が非常によ
く揃つた単分散ラテツクスを得ることができる。
上記によつて得られるラテツクスは極めて安定で
粒径は非常によく揃つており、そして該ラテツク
スは従来において得られたラテツクスのように乳
化剤が遊離の状態で存在していることがないの
で、免疫血清学的診断試薬としていわゆる非特異
的凝集反応を起こすことのないものである。 次に本発明においては上記により得られたラテ
ツクスに抗体を感作させるのであるが、この抗体
を感作させる方法は特に限定されず、従来より知
られている方法を適宜に採用することができる。
例えば、ラテツクス粒子と抗体をPHが約7〜8.6
の緩衝液、生理食塩水、水等の適宜の水性溶剤
中、約20〜37℃の温度で適宜時間接触させる。こ
の際、必要ならば撹拌したり、振とうしたりす
る。こうして得た感作ラテツクスは、更に必要な
らば、水性溶剤で洗滌したり、或いは遠心分離に
より、ラテツクス粒子に吸着されていない抗体
(又は抗原)が除去される。 本発明においては上記で用意した感作ラテツク
スを、上記と同じ抗体を含む血清を含有する液中
に分散させたのち該液から分離することにより処
理するのであるが、該処理は上記感作ラテツクス
を抗体を含む血清、すなわち抗血清を至適濃度で
含有する緩衝液中に加えて短時間懸濁撹拌して血
清処理し、余剰の血清を除去したのち、緩衝液に
好ましくは0.5〜3重量%濃度に再懸濁すること
により行うことが出来る。そして、上記血清を含
有する緩衝液における該血清の濃度は0.1〜20重
量%であり、従つて抗体の濃度は1〜1000μg/
c.c.程度であることが好ましい。また該感作の際の
温度及び時間は抗体感作の場合と同様でよい。 上記の如くに、本発明にもとずいて製造された
ラテツクス試薬は、従来法にもとずいて抗体感作
したラテツクスを抗体・抗原反応に関与しない不
活性タンパク質で処理したラテツクス試薬とは異
なり、感作した抗体を含む血清にて処理されたも
のであり、これによつて驚くべきことに、ラテツ
クス試薬の非特異的凝集反応をよく除去すると共
に、測定感度を飛躍的に高め得たのであり、後述
する実施例にも示す様に、肉眼や光学的測定装置
による凝集反応の測定において極めて低濃度の抗
原に対しても正確な診断を下すことが可能となつ
たのである。 例えばHBs抗原(B型肝炎ウイルス表面抗原)
検出用のラテツクス試薬を例にとると、従来のア
ルブミン処理方法で製造したラテツクス試薬では
10μg(10-5g/c.c.)程度以上のHBs抗原しか検
出できないのに対し、本発明にもとずいて製造し
たラテツクス試薬では10ng(10-8g/c.c.)程度
の抗原量まで検出できることが判明しており、こ
の場合は実に1000倍も感度が高いことになる。 叙上の如く、本発明によれば非特異的凝集がな
く、しかも感度の著しく高いラテツクス試薬を容
易に得ることが出来るのである。 以下本発明の実施例について説明する。 実施例 1 スチレンモノマー65g で表わされる化合物4.5g、過硫酸カリウム0.05
g、イオン交換水450gを反応容器に仕込み、容
器を窒素ガスで置換し反応温度70℃で30時間共重
合した。このようにして得られたラテツクスの平
均粒径は0.59ミクロン、粒径のバラツキは変動係
数で表わして0.05であつた。 本ラテツクスをPH7.4のリン酸緩衝液に分散さ
せ固型分2%としたもの1容と、モルモツトの産
生したHBsモノスペシフイツク抗体(セフアロー
ズ4Bに固定した抗原のカラムに2回通液したア
フイニテイークロマトグラフイーによる精製品)
を同じくリン酸緩衝液中に40μg/c.c.の濃度に溶
解したもの1容とを混合し、37℃で2時間インキ
ユベートして本ラテツクスに抗体を結合させた。
次にこの感作ラテツクスを15000rpm、15分間で
遠心分離し、末吸着の抗体を除去した。この上清
中の抗体価はPHA(受身赤血球凝集反応)によ
り測定されたが、少くとも99.5%以上の抗体は本
ラテツクスに吸着している。 次いで、この沈降したラテツクスにHBs抗原で
免疫されたモルモツトの抗血清から抗ヒト蛋白抗
体をカラムで吸収済のモルモツト抗血清を0.1〜
5%加えリン酸緩衝液1容を加える感作ラテツク
スをよく分散させ、37℃で10分間撹拌した。この
モルモツト抗血清を含むリン酸緩衝液中、抗HBs
抗体は約1〜50μg/c.c.含まれている。 その後、12000回転で遠心分離し上清を捨て、
沈降した処理後の感作ラテツクスをPH7のリン酸
緩衝液に再分散してラテツクス試薬の調製を終了
した。このようにして調製したラテツクス試薬を
用い種々の濃度のHBs抗原を含むヒト血清に対す
る凝集の強さを測定したところ次表の結果を得
た。
The present invention relates to a method for producing a latex reagent for detecting antigens or antibodies. Recently, latex reagents have come into general use to detect trace amounts of biological components such as hormones and proteins in body fluids. As the latex, synthetic resin latex, especially one with a particle size of 0.1 to 1 micron, is generally used. In these latex reagents, antibodies and antigens corresponding to the antigens and antibodies to be measured are adsorbed on the surface of the latex, and a specific reaction occurs between antigens and antibodies.
The antibody reaction causes latex aggregation. However, simply adsorbing antibodies (or antigens) to the surface of latex inevitably causes non-specific agglutination due to factors other than the specific reaction of antigens and antibodies. cannot be obtained. This is because the body fluid to be measured contains various proteins, etc., and these components non-specifically adsorb to the latex and cause aggregation. In order to eliminate this drawback, various efforts have been made and reported so far, but the representative method is a method of treatment using an inactive protein that does not participate in antigen-antibody reactions. For example, Japanese Patent Publication No. 43-12741 describes an immunochemical measurement reagent in which an antigen or antibody is adsorbed onto a fine solid carrier. Latex reagents characterized by being coated with antigens have been proposed. In addition, Japanese Patent Publication No. 11407/1983 proposed a method for producing a latex reagent, which is characterized by adsorbing antibodies onto the surface of a fine solid carrier and then treating this with a solution of an inactive protein at a concentration of 0.1% or less. There is. Although there are differences in the operating procedures in these two inventions, the basic method is to treat with an inactive protein that does not participate in the immunochemical reaction of antigens and antibodies. Examples of this inactive protein include albumins such as bovine serum albumin, ovalbumin, and lactalbumin. However, latex reagents treated with albumin cause significant non-specific reactions with proteins in normal rabbit serum and normal guinea pig serum, resulting in agglutination. Furthermore, the measurement sensitivity is low due to latex self-aggregation due to the properties of albumin. Naturally, the sensitivity is low because non-specific reactions occur with human gamma globulin, human albumin, and human fibrinogen, and it is often necessary to perform an inhibition test (a type of confirmation test) by adding an antibody in advance. . Regarding the measurement sensitivity, that is, the detection limit concentration, using a latex reagent for detecting HBs antigen (hepatitis B virus surface antigen) as an example, a latex reagent manufactured by a normal albumin treatment method has a concentration of 10 μg (10 -5 g/ cc) degree or higher
Currently, only HBs antigen can be detected, and something even higher is desired. In addition to visually identifying and diagnosing the agglutination phenomenon of latex reagents based on the antigen-antibody reaction, it is also possible to use visible light, near-infrared light, laser, etc. to detect the reduction in turbidity when a sample is applied to latex reagents. A method is known in which the antigen or antibody to be measured is measured using a standard curve prepared in advance using known concentrations of antigen or antibody.
For example, JP-A-53-24015 and JP-A-54-108693 disclose measurement methods using near-infrared light, but even in such optical measurement methods, the aforementioned non-specific reaction There are similar problems such as aggregation and low sensitivity. In view of the above-mentioned drawbacks of conventional latex reagents, the present invention has been made with the aim of providing a latex reagent that is free from non-specific aggregation and has excellent sensitivity. but (Here, R 1 is H or CH 3 , R 2 is H or CH 3 , and x, y, and z are each positive integers, and one of the following relationships holds true between them: 1≦x≦100, y=0, x=0 1≦y≦100, x=0, z=0 1≦x≦50, 1≦y≦50, 1≦z≦50, x+y+z≦100) The antibody is sensitized to a latex obtained by copolymerizing the same compound as described above in water using a water-soluble radical polymerization initiator in the absence of an emulsifier. A method for producing a latex reagent, which comprises dispersing it in a liquid containing serum containing serum and treating it by separating it from the liquid. Examples of the compound represented by the above general formula include acrylic or methacrylic esters of polyethylene oxide, acrylic or methacrylic esters of polypropylene oxide, and acrylic or methacrylic esters of block copolymers of ethylene oxide and propylene oxide. Specifically, etc. are given as suitable examples. These compounds are copolymerization components with styrene, and at the same time they also function as emulsifiers in commonly known emulsion polymerization methods, and the ratio of use to styrene is 0.1.
from 1 to 70% by weight, preferably from 1 to 50% by weight
% by weight, more preferably 3 to 30% by weight. In the above relational expression of x, y, z, x, y,
When z>100, the copolymerizability of styrene and these compounds decreases, making it impossible to obtain a stable latex with well-uniformed particle sizes. In addition, as the water-soluble radical polymerization initiator in the present invention, persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate, 2'-2 azobis(2-amidinopropane) mineral acid salt, and azobiscyanopoule are used. Azo compounds such as phosphoric acid and its alkali metal salts and ammonium salts, tartaric acid peroxide, Rongarit peroxide, ascorbic acid
Examples include redox initiators such as peroxides,
Persulfates are preferably used. The proportion of these polymerization initiators to the total monomers is preferably in the range of 0.01 to 1% by weight. To carry out copolymerization for producing latex by the method of the present invention, at least one of the compounds represented by the above general formula and the above initiator are added to styrene in a reactor filled with water, and the mixture is stirred. All you need to do is heat, and the polymerization reaction temperature at that time is usually 50 to 50℃.
The temperature is preferably 100°C, preferably in the range of 60 to 85°C. The time required for the polymerization reaction varies depending on conditions such as monomer composition, monomer concentration, and initiator concentration, but is usually in the range of 5 to 50 hours. Note that in the present invention, no emulsifier that is commonly used in the production of latex is used. Further, in the present invention, it is possible to coexist ultrafine particles of silicic anhydride during the above-mentioned copolymerization, and in this case, more favorable results are obtained due to the uniform dispersibility of the produced latex. Therefore, as the ultrafine particles of silicic anhydride, silicic anhydride formed into ultrafine particles with a particle size of about 5 to 50 mμ is used, and for example, Aerosil (trade name, manufactured by Nippon Aerosil Co., Ltd.) is preferably used. . In addition, a colloidal solution in which the ultrafine particulate silicic anhydride is dispersed in water, such as Snowtex (trade name, manufactured by Nissan Chemical Industries, Ltd.)
is also suitably used. The amount of ultrafine silicic anhydride used is 0.01 to 10% by weight based on styrene.
It is preferable to use a proportion of 0.05 to 5% by weight, especially
It is preferably 0.08 to 2% by weight. When used as the above-mentioned colloidal solution, it is preferable to use one having a silicic anhydride content of 35% by weight or less, a sodium oxide content of 0.6% by weight or less, and a viscosity of 10 centipoise or less and a pH of 8 to 10. In the present invention, by carrying out the copolymerization as described above, the average particle size is 0.05 to 2 microns, and the variation in particle size is 0.05 or less expressed as the coefficient of variation (standard deviation of particle size/average particle size). A monodisperse latex with very uniform particle size can be obtained.
The latex obtained by the above method is extremely stable and has a very uniform particle size, and unlike conventionally obtained latexes, the emulsifier does not exist in a free state, so it is highly immunizable. As a serological diagnostic reagent, it does not cause so-called non-specific agglutination reactions. Next, in the present invention, the latex obtained as described above is sensitized with an antibody, but the method of sensitizing this antibody is not particularly limited, and conventionally known methods can be adopted as appropriate. .
For example, latex particles and antibodies have a pH of about 7 to 8.6.
Contact is carried out in an appropriate aqueous solvent such as a buffer solution, physiological saline, water, etc. at a temperature of about 20 to 37° C. for an appropriate time. At this time, stir or shake if necessary. The sensitized latex thus obtained is further washed with an aqueous solvent or centrifuged, if necessary, to remove antibodies (or antigens) that are not adsorbed to the latex particles. In the present invention, the sensitized latex prepared above is treated by dispersing it in a liquid containing serum containing the same antibodies as above and then separating it from the liquid. is added to a buffer solution containing antibody-containing serum, i.e., antiserum, at an optimal concentration, suspended and stirred for a short time to treat the serum, and after removing excess serum, add preferably 0.5 to 3 weight of antiserum to the buffer solution. % concentration. The concentration of the serum in the buffer solution containing the serum is 0.1 to 20% by weight, and therefore the concentration of the antibody is 1 to 1000 μg/
It is preferable that it is about cc. Further, the temperature and time during the sensitization may be the same as those for antibody sensitization. As mentioned above, the latex reagent produced according to the present invention is different from the latex reagent produced by treating antibody-sensitized latex with an inert protein that does not participate in the antibody-antigen reaction based on the conventional method. It was treated with serum containing sensitized antibodies, and surprisingly, this treatment successfully removed the nonspecific agglutination reaction of the latex reagent and dramatically increased the measurement sensitivity. As shown in the Examples described below, it has become possible to make accurate diagnoses even for extremely low concentrations of antigens by measuring agglutination reactions with the naked eye or with an optical measuring device. For example, HBs antigen (hepatitis B virus surface antigen)
Taking latex reagents for detection as an example, latex reagents produced using conventional albumin treatment methods are
Whereas only HBs antigen of approximately 10 μg (10 -5 g/cc) or more can be detected, the latex reagent produced based on the present invention can detect antigen amounts of approximately 10 ng (10 -8 g/cc). In this case, it is actually 1000 times more sensitive. As described above, according to the present invention, it is possible to easily obtain a latex reagent that is free from non-specific agglutination and has extremely high sensitivity. Examples of the present invention will be described below. Example 1 Styrene monomer 65g 4.5g of the compound represented by, potassium persulfate 0.05
g and 450 g of ion-exchanged water were charged into a reaction vessel, the vessel was purged with nitrogen gas, and copolymerization was carried out at a reaction temperature of 70°C for 30 hours. The average particle size of the latex thus obtained was 0.59 microns, and the variation in particle size was 0.05 expressed as a coefficient of variation. One volume of this latex was dispersed in phosphate buffer at pH 7.4 with a solid content of 2%, and the solution was passed twice through a column containing HBs monospecific antibody produced by guinea pigs (antigen immobilized on Sepharose 4B). (purified product by affinity chromatography)
was mixed with 1 volume of the same solution dissolved in phosphate buffer at a concentration of 40 μg/cc and incubated at 37° C. for 2 hours to bind the antibody to this latex.
Next, this sensitized latex was centrifuged at 15,000 rpm for 15 minutes to remove the adsorbed antibodies. The antibody titer in this supernatant was measured by PHA (passive hemagglutination), and at least 99.5% of the antibodies were adsorbed to this latex. Next, guinea pig antiserum from guinea pigs immunized with HBs antigen and anti-human protein antibodies which have been absorbed in a column was added to the precipitated latex at a concentration of 0.1 to 0.1%.
The sensitized latex was well dispersed by adding 5% and 1 volume of phosphate buffer, and stirred at 37°C for 10 minutes. Anti-HBs in phosphate buffer containing this guinea pig antiserum.
The antibody is contained at approximately 1-50 μg/cc. Then, centrifuge at 12,000 rpm and discard the supernatant.
The precipitated treated sensitized latex was redispersed in a phosphate buffer solution of pH 7 to complete the preparation of the latex reagent. Using the latex reagent thus prepared, the agglutination strength of human serum containing various concentrations of HBs antigen was measured, and the results shown in the following table were obtained.

【表】 次にリバーセイア(HBs抗原検出EIAキツト、
山の内製薬)を用いて、血清中HBs抗原が0.4n
g/c.c.以下であることの判明している1000人の正
常人血清について同様のテストをした。1000検体
中偽陽性はわずか1件であつた。また、HBs抗体
を含有する100人の偽陽性は1件もなかつた。 比較例 1 実施例におけるHBs抗体含有モルモツト血清に
よる処理を正常モルモツトによる処理に変えに他
は、実施例1と全く同様にして調製した抗HBs抗
体感作ラテツクスを用いて同じ試験をしたところ
次表の結果を得た。
[Table] Next, Riverseia (HBs antigen detection EIA kit,
Serum HBs antigen was 0.4n using Yamanouchi Pharmaceutical)
A similar test was conducted on 1,000 normal human serum samples known to be below g/cc. There was only one false positive out of 1000 samples. Additionally, there were no false positives among the 100 people who contained HBs antibodies. Comparative Example 1 The same test was conducted using an anti-HBs antibody sensitized latex prepared in exactly the same manner as in Example 1, except that the treatment with guinea pig serum containing HBs antibody in Example 1 was replaced with treatment with normal guinea pigs. I got the result.

【表】 また、実施例と同様の1000検体の正常人血清に
ついて偽陽性は9件、また抗体を含有する100人
の血清との反応では4件の偽陽性があつた。すな
わち、本法では非特異反応はそれほどでもない
が、検出感度が実施例に比し約1000分の1とな
る。 実施例 2 実施例1で得られたラテツクスに家兎の産生し
たアルフア−フエトプロテインの抗体(アフイニ
テイークロマトグラフイーにより精製したモノス
ペシフイツク抗体)を感作し、人血清中のアルフ
ア−フエトプロテインとの凝集反応を調べた。ラ
テツクス試薬の調製法は実施例1と同称であり、
本実施例では家兎の抗血清1%を含有するリン酸
緩衝液で処理をした。 その結果を次表に示す。
[Table] In addition, there were 9 false positives for 1000 normal human serum samples similar to those in the example, and 4 false positives for the reaction with 100 human serum containing antibodies. That is, although the non-specific reaction is not so great in this method, the detection sensitivity is about 1/1000 times lower than in the example. Example 2 The latex obtained in Example 1 was sensitized with an antibody to alpha-fetoprotein produced by domestic rabbits (a monospecific antibody purified by affinity chromatography), and alpha-fetoprotein in human serum was sensitized to the latex obtained in Example 1. The agglutination reaction with fetoprotein was investigated. The preparation method of the latex reagent is the same as in Example 1,
In this example, treatment was performed with a phosphate buffer containing 1% rabbit antiserum. The results are shown in the table below.

【表】 また、正常人の血清1000検体の偽陽性は2例に
すぎなかつた。 比較例 2 実施例2と同じくアルフア−フエトプロテイン
の抗体を実施例1で得られたラテツクスに感作
し、牛血清アルブミン1%を含有するリン酸緩衝
液で洗浄し、ラテツクス試薬を調製した。 人血清中のアルフア−フエトプロテインとの凝
集反応は次表の通りであつた。
[Table] In addition, there were only 2 false positives among 1000 normal human serum samples. Comparative Example 2 As in Example 2, the latex obtained in Example 1 was sensitized with alpha-fetoprotein antibody and washed with a phosphate buffer containing 1% bovine serum albumin to prepare a latex reagent. . The agglutination reaction with alpha-fetoprotein in human serum was as shown in the table below.

【表】 この比較例では実施例2に比し1000分の1しか
検出感度を有しないことが明らかである。また、
正常人の血清1000検体中の偽陽性は130件にもの
ぼつた。すなわち、アルブミン処理法では非特異
凝集の反応がきわめて著しい。 実施例 3 実施例1と同様にして調整した抗HBsラテツク
ス試薬0.5c.c.を小試験管にとり、これにリン酸緩
衝液0.5c.c.を加え、さらに下記の表に示す濃度の
HBs抗原溶液1c.c.を加えて20秒間振とうして混合
したのち、回転子を備えたアクリル樹脂製のセル
(光路長1cm)に入れ、直ちに毎分200回転の速さ
で撹拌しつつ吸光度の時間変化の記録を行つた。
測定波長は950nmを用いた。次にこの吸光度の時
間変化の記録図上において、記録開始後のなるべ
く早い時間で近似的に直線である部分に沿つて直
線を引き、その直線の傾きを計算したものが、下
記第5表の「速さ」の欄の数字であり、吸光度の
変化をABS/minで示してある。
[Table] It is clear that this comparative example has a detection sensitivity of only 1/1000 of that of Example 2. Also,
There were as many as 130 false positives out of 1,000 serum samples from normal people. That is, in the albumin treatment method, the reaction of non-specific aggregation is extremely significant. Example 3 Take 0.5 cc of the anti-HBs latex reagent prepared in the same manner as in Example 1 into a small test tube, add 0.5 cc of phosphate buffer, and then add 0.5 cc of the anti-HBs latex reagent prepared in the same manner as in Example 1, and then add 0.5 cc of the phosphate buffer solution to the solution at the concentration shown in the table below.
Add 1 c.c. of HBs antigen solution and mix by shaking for 20 seconds, then put into an acrylic resin cell equipped with a rotor (light path length 1 cm) and immediately stir at a speed of 200 revolutions per minute. Changes in absorbance over time were recorded.
The measurement wavelength used was 950 nm. Next, on this record of absorbance changes over time, a straight line is drawn along the approximate straight line as soon as possible after the start of recording, and the slope of the straight line is calculated as shown in Table 5 below. This is the number in the "Speed" column, which shows the change in absorbance in ABS/min.

【表】 比較例 3 実施例3におけるHBs抗体含有モルモツト血清
による処理を正常モルモツト血清による処理に変
えた他は実施例3と全く同様にして調整した抗
HBsラテツクス試薬を用い、抗原抗体反応を光学
的に測定したところ、5μg/c.c.の抗原量以上し
か検出できず、しかも非特異凝集が起つた。 実施例 4 (1) 抗α−フエトプロテイン(α−FP)抗体感
作ラテツクス(抗α−FPラテツクス)試薬の
調製、実施例1で得られたのと同じラテツクス
に家兎の産生したα−FPの抗体(アフイニテ
イークロマトグラフイーにより精製したモノス
ペシフイツク抗体)を感作した。ラテツクス試
薬調製法は実施例1と同様であり、家兎の抗血
清1%含有のリン酸緩衝液で処理した。 (2) ラテツクス凝集反応の光学的測定 上記(1)で調製した抗α−FPラテツクス試薬
を用い、650nmの可視光を用いる他は実施例3
と全く同様にして第6表の結果を得た。
[Table] Comparative Example 3 Antibodies prepared in exactly the same manner as in Example 3 except that the treatment with guinea pig serum containing HBs antibody in Example 3 was changed to treatment with normal guinea pig serum.
When the antigen-antibody reaction was optically measured using the HBs latex reagent, only an antigen amount of 5 μg/cc or more could be detected, and non-specific agglutination occurred. Example 4 (1) Preparation of anti-α-phetoprotein (α-FP) antibody sensitized latex (anti-α-FP latex) reagent, injecting rabbit-produced α into the same latex obtained in Example 1. - Sensitized with FP antibody (monospecific antibody purified by affinity chromatography). The latex reagent preparation method was the same as in Example 1, and the latex reagent was treated with a phosphate buffer containing 1% rabbit antiserum. (2) Optical measurement of latex agglutination reaction Example 3 except that the anti-α-FP latex reagent prepared in (1) above was used and visible light of 650 nm was used.
The results shown in Table 6 were obtained in exactly the same manner.

【表】【table】

【表】 比較例 4 実施例4におけるα−FP抗体含有家兎血清に
よる処理を牛血清アルブミンによる処理に変える
他は実施例4と全く同様にして調整した抗α−
FPラテツクス試薬を用い、抗原抗体反応を光学
的に測定したところ7μg/c.c.の抗原量以上しか
検出できず、しかも非特異凝集が起こつた。
[Table] Comparative Example 4 Anti-α-
When the antigen-antibody reaction was optically measured using the FP Latex reagent, only an antigen amount of 7 μg/cc or more could be detected, and non-specific agglutination occurred.

Claims (1)

【特許請求の範囲】 1 スチレンと一般式が (ここでR1はH又はCH3,R2はH又はCH3であ
り、x,y,zはそれぞれ正の整数にしてこれら
の間には次の)〜)のいずれかの関係が成り
立つ 1≦x≦100,y=0,x=0 1≦y≦100,x=0,z=0 1≦x≦50,1≦y≦50, 1≦z≦50,x+y+z≦100) で表わされる化合物とを乳化剤の不存在下で水溶
性ラジカル重合開始剤を用いて水中で共重合する
ことによつて得られるラテツクスに抗体を感作
し、次いでこの抗体感作ラテツクスを、上記と同
じ抗体を含む血清を含有する液中に分散させたの
ち該液から分離することにより処理することを特
徴とするラテツクス試薬の製造方法。 2 共重合が無水珪酸の超微粒子の共存下に行わ
れるものである第1項記載のラテツクス試薬の製
造方法。
[Claims] 1. Styrene and the general formula are (Here, R 1 is H or CH 3 , R 2 is H or CH 3 , and x, y, and z are each positive integers, and one of the following relationships holds true between them: 1≦x≦100, y=0, x=0 1≦y≦100, x=0, z=0 1≦x≦50, 1≦y≦50, 1≦z≦50, x+y+z≦100) The antibody is sensitized to a latex obtained by copolymerizing the same compound as described above in water using a water-soluble radical polymerization initiator in the absence of an emulsifier. 1. A method for producing a latex reagent, which comprises dispersing the serum in a liquid containing serum, and then separating the latex reagent from the liquid. 2. The method for producing a latex reagent according to item 1, wherein the copolymerization is carried out in the coexistence of ultrafine particles of silicic anhydride.
JP16866980A 1980-11-29 1980-11-29 Manufacture of latex reagent Granted JPS5793256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16866980A JPS5793256A (en) 1980-11-29 1980-11-29 Manufacture of latex reagent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16866980A JPS5793256A (en) 1980-11-29 1980-11-29 Manufacture of latex reagent

Publications (2)

Publication Number Publication Date
JPS5793256A JPS5793256A (en) 1982-06-10
JPS6116944B2 true JPS6116944B2 (en) 1986-05-02

Family

ID=15872292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16866980A Granted JPS5793256A (en) 1980-11-29 1980-11-29 Manufacture of latex reagent

Country Status (1)

Country Link
JP (1) JPS5793256A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994015216A1 (en) * 1992-12-23 1994-07-07 Niyazmatov Agzamdzhan Akhtamov Process for obtaining a diagnostic reagent for detecting antigens and antibodies of infectious and other illnesses

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224068A (en) * 1984-04-20 1985-11-08 Sekisui Chem Co Ltd Method for deciding pathogenic bacterium in opportunistic infection
KR20000063268A (en) * 2000-06-13 2000-11-06 김형순 Model Colloid for Diagnostic Usage, and Method for Producing Thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994015216A1 (en) * 1992-12-23 1994-07-07 Niyazmatov Agzamdzhan Akhtamov Process for obtaining a diagnostic reagent for detecting antigens and antibodies of infectious and other illnesses

Also Published As

Publication number Publication date
JPS5793256A (en) 1982-06-10

Similar Documents

Publication Publication Date Title
US4656144A (en) Immunoparticles and process for preparing same
US4060597A (en) Serological reagent and preparation thereof
JPS6314783B2 (en)
US4945146A (en) Dispersion polymers processes for their preparation and their use
AU608753B2 (en) Dispersion polymers, processes for their preparation and their use
EP0158443B1 (en) A latex for immunoserological tests and a method of producing the same
JPH0527064B2 (en)
JPH0810224B2 (en) A latex for immobilizing a physiologically active substance and a latex reagent using this latex
JPS6116944B2 (en)
EP0064275B1 (en) Immunochemical reagent
Quesada et al. A simple kinetic model of antigen-antibody reactions in particle-enhanced light scattering immunoassays
JPS6116942B2 (en)
JPS5850646B2 (en) Method for producing latex for serological diagnostic reagents
JP2682697B2 (en) Immunoassay reagents and immunoassays
JPS6116941B2 (en)
JPS6116943B2 (en)
JPS6352708B2 (en)
JPS6352707B2 (en)
JPS6352706B2 (en)
JPH0145028B2 (en)
EP0286687B1 (en) Carrier latex for diagnostic reagent
JPS6343412B2 (en)
JPS60235061A (en) Diagnostic reagent
JPS6293663A (en) Method for measuring concentration of antigen or antibody
JPH0564744B2 (en)