JPS6116944B2 - - Google Patents

Info

Publication number
JPS6116944B2
JPS6116944B2 JP16866980A JP16866980A JPS6116944B2 JP S6116944 B2 JPS6116944 B2 JP S6116944B2 JP 16866980 A JP16866980 A JP 16866980A JP 16866980 A JP16866980 A JP 16866980A JP S6116944 B2 JPS6116944 B2 JP S6116944B2
Authority
JP
Japan
Prior art keywords
latex
antibody
serum
antigen
reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16866980A
Other languages
Japanese (ja)
Other versions
JPS5793256A (en
Inventor
Toichi Yamada
Satoshi Obana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP16866980A priority Critical patent/JPS5793256A/en
Publication of JPS5793256A publication Critical patent/JPS5793256A/en
Publication of JPS6116944B2 publication Critical patent/JPS6116944B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は抗原又は抗䜓を怜出するラテツクス詊
薬の補造法に関する。䜓液䞭のホルモンや蛋癜質
等の埮量の生䜓成分を怜出するために、近時ラテ
ツクス詊薬が䞀般に䜿甚されるに至぀た。ラテツ
クスずしおは合成暹脂ラテツクス、ずりわけ粒埄
が0.1ないしミクロンのものが䞀般に甚いられ
おいる。これらラテツクス詊薬は枬定察象の抗
原、抗䜓に察応する抗䜓、抗原が該ラテツクス衚
面に吞着されおおり、特異的な反応である抗原・
抗䜓反応によりラテツクスの凝集が生じる様にな
されおいる。しかし、単に抗䜓又は抗原をラ
テツクスの衚面に吞着させただけでは抗原・抗䜓
の特異的な反応以倖の因子に起因する非特異的凝
集を起こすこずが避けられず、実甚性のあるラテ
ツクス詊薬は埗られない。なぜなら枬定察象であ
る䜓液䞭には各皮の蛋癜等が混圚し、これらの成
分が非特異的にラテツクスぞ吞着し凝集を生じさ
せるためである。 この欠点を陀くため、珟圚たでに皮々の工倫が
なされお報告されおいるが、その代衚的方法は抗
原・抗䜓反応に関䞎しない䞍掻性蛋癜質を甚いお
凊理する方法である。䟋えば特公昭43−12741号
には埮现な固䜓の担䜓に抗原又は抗䜓を吞着せし
めた免疫化孊的枬定詊薬においお、担䜓粒子が䞍
掻性で抗原抗䜓反応に関䞎しない蛋癜質で予め被
芆され、次いで抗䜓又は抗原で被芆されおいるこ
ずを特城ずするラテツクス詊薬の提案がなされお
いる。たた特公昭49−11407号には埮粒固䜓担䜓
衚面に抗䜓を吞着せしめ、次いでこれを䞍掻性な
蛋癜質の0.1以䞋の濃床の溶液で凊理するこず
を特城ずするラテツクス詊薬の補法が提案されお
いる。これらの぀の発明においおは操䜜手順の
差はあるが、抗原抗䜓の免疫化孊的反応に関䞎し
ない䞍掻性蛋癜質で凊理するこずが基本的な方法
ずな぀おいる。この䞍掻性蛋癜質ずしおは、䟋え
ば牛血枅アルブミン、卵癜アルブミン、ラクトア
ルブミン等のアルブミンがあげられおいる。しか
しながらアルブミン凊理を斜したラテツクス詊薬
においおは、正垞りサギ血枅、正垞モルモツト血
枅䞭の蛋癜質ず著しい非特異反応を生じお凝集す
る。たた、アルブミンの性質に起因するラテツク
ス自己凝集もあるため枬定感床は䜎い。圓然、ヒ
トのガンマグロブリン、ヒトのアルブミン、ヒト
のフむブリノヌゲンずも非特異反応を起こすため
感床は䜎く、予め抗䜓を加えおむンヒビツシペン
テスト䞀皮の確認テストをしなければならな
くなるこずが倚い。たた、枬定感床すなわち怜出
䞋限濃床に぀いお、HBs抗原型肝炎りむルス
衚面抗原怜出甚のラテツクス詊薬を䟋にずる
ず、通垞のアルブミン凊理方法で補造したラテツ
クス詊薬では、10Ό10-5c.c.皋床以䞊の
HBs抗原しか怜出できないのが珟状であり、さら
に高のものが芁望されおいる。 又、前蚘抗原・抗䜓反応にもずづくラテツクス
詊薬の凝集珟象を肉県で刀別しお蚺断する以倖に
ラテツクス詊薬に怜䜓を適甚した際の濁床の枛少
を可芖光、近赀倖光、レヌザヌなどを甚いお光孊
的に読み取り、あらかじめ既知濃床の抗原又は抗
䜓を甚いお䜜成しおおいた暙準曲線より枬定察象
の抗原又は抗䜓を枬定する方法が知られおおり、
䟋えば特開昭53−24015号、同54−108693号など
には近赀倖光を甚いる枬定方法が開瀺されおいる
のであるが、この様な光孊的枬定方法においお
も、前述の非特異反応による凝集や感床が䜎い等
の問題点が同様に存する。 本発明は䞊蚘の様な埓来のラテツクス詊薬の欠
点にかんがみ、非特異的凝集がなく、か぀感床に
すぐれたラテツクス詊薬を提䟛するこずを目的ず
しおなされたものであり、その芁旚はスチレンず
䞀般匏が ここでR1は又はCH3R2は又はCH3であ
り、はそれぞれ正の敎数にしおこれら
の間には次の〜のいずれかの関係が成り
立぀ ≊≊100 ≊≊100 ≊≊50≊≊50 ≊≊50≊100 で衚わされる化合物ずを乳化剀の䞍存圚䞋で氎溶
性ラゞカル重合開始剀を甚いお氎䞭で共重合する
こずによ぀お埗られるラテツクスに抗䜓を感䜜
し、次いでこの抗䜓感䜜ラテツクスを、䞊蚘ず同
じ抗䜓を含む血枅を含有する液䞭に分散させたの
ち該液から分離するこずにより凊理するこずを特
城ずするラテツクス詊薬の補造方法に存する。 前蚘䞀般匏で瀺される化合物ずしおは、ポリ゚
チレンオキシドのアクリル酞又はメタクリル酞゚
ステル、ポリプロピレンオキシドのアクリル酞又
はメタクリル酞゚ステル、゚チレンオキシドずプ
ロピレンオキシドずのブロツク共重合䜓のアクリ
ル酞又はメタクリル酞゚ステル等があげられ、具
䜓的には などが奜適な䟋ずしおあげられる。これらの化合
物はスチレンずの共重合成分であるず同時に、通
垞公知の乳化重合法における乳化剀の機胜をも果
すものであり、スチレンに察する䜿甚割合は0.1
ないし70重量であるが、奜たしくはないし50
重量、より奜たしくはないし30重量であ
る。前述のの関係匏においお
100の堎合は、スチレンずこれらの化合物ず
の共重合性が䜎䞋しお、安定にしおしかも粒埄が
よく揃぀たラテツクスが埗られない。 又、本発明における氎溶性ラゞカル重合開始剀
ずしおは、過硫酞カリりム、過硫酞アンモニり
ム、過硫酞ナトリりム等の過硫酞塩、2′−アゟ
ビス−アミゞノプロパン鉱酞塩、アゟビス
シアノプアレリン酞及びそのアルカリ金属塩及び
アンモニりム塩等のアゟ化合物、酒石酞−過酞化
物、ロンガリツト−過酞化物、アスコルビン酞−
過酞化物等のレドツクス系開始剀等があげられ、
過硫酞塩が奜適に甚いられる。 これらの重合開始剀のモノマヌ党䜓に察する割
合は0.01ないし重量の範囲が奜たしい。本発
明方法によりラテツクス補造のための共重合を行
うには氎が仕蟌たれた反応噚内にスチレンに前蚘
䞀般匏で衚わされる化合物の少くずも䜕れか皮
類および前蚘開始剀を加えお撹拌しながら加熱す
ればよく、その際の重合反応枩床は通垞50ないし
100℃で、奜たしくは60ないし85℃の範囲ずする
のがよい。又、重合反応に芁する時間はモノマヌ
組成、モノマヌ濃床、開始剀濃床等の条件により
倉わるが通垞ないし50時間の範囲である。なお
本発明においおはラテツクスの補造においお通垞
甚いられる乳化剀は䞀切甚いられない。 又、本発明においおは、䞊蚘の共重合に際しお
無氎珪酞の超埮粒子を共存させるこずが可胜であ
り、この堎合は生成するラテツクスの均䞀な分散
性により奜たしい結果を䞎える。しかしお䞊蚘無
氎珪酞の超埮粒子ずしおは、粒埄が〜50mΌ皋
床の超埮粒子になさねた無氎珪酞が甚いられ、䟋
えばア゚ロゞル商品名、日本ア゚ロゞル(æ ª)瀟
補が奜適に甚いられる。たた、該超埮粒子状無
氎珪酞を氎䞭に分散させたコロむド溶液、䟋えば
スノヌテツクス商品名、日産化孊工業(æ ª)瀟補
も奜適に甚いられる。そしおこの超埮粒子状無氎
珪酞の䜿甚量はスチレンに察しお0.01〜10重量
の割合ずするのがよいが、0.05〜重量ずくに
0.08〜重量ずするのが奜たしい。 又、䞊蚘コロむド溶液ずしお甚いる堎合は、無
氎珪酞含有量が35重量以䞋、酞化ナトリりム含
有量0.6重量以䞋、粘床が10センチポむズ以䞋
にしおPH〜10のものを甚いるのが奜たしい。 本発明においお䞊蚘の劂くしお共重合を行うこ
ずにより、平均粒埄が0.05ないしミクロンで粒
埄のバラ付きが倉動係数粒埄の暙準偏差平均
粒埄で衚わしお0.05以䞋である粒埄が非垞によ
く揃぀た単分散ラテツクスを埗るこずができる。
䞊蚘によ぀お埗られるラテツクスは極めお安定で
粒埄は非垞によく揃぀おおり、そしお該ラテツク
スは埓来においお埗られたラテツクスのように乳
化剀が遊離の状態で存圚しおいるこずがないの
で、免疫血枅孊的蚺断詊薬ずしおいわゆる非特異
的凝集反応を起こすこずのないものである。 次に本発明においおは䞊蚘により埗られたラテ
ツクスに抗䜓を感䜜させるのであるが、この抗䜓
を感䜜させる方法は特に限定されず、埓来より知
られおいる方法を適宜に採甚するこずができる。
䟋えば、ラテツクス粒子ず抗䜓をPHが玄〜8.6
の緩衝液、生理食塩氎、氎等の適宜の氎性溶剀
䞭、玄20〜37℃の枩床で適宜時間接觊させる。こ
の際、必芁ならば撹拌したり、振ずうしたりす
る。こうしお埗た感䜜ラテツクスは、曎に必芁な
らば、氎性溶剀で掗滌したり、或いは遠心分離に
より、ラテツクス粒子に吞着されおいない抗䜓
又は抗原が陀去される。 本発明においおは䞊蚘で甚意した感䜜ラテツク
スを、䞊蚘ず同じ抗䜓を含む血枅を含有する液䞭
に分散させたのち該液から分離するこずにより凊
理するのであるが、該凊理は䞊蚘感䜜ラテツクス
を抗䜓を含む血枅、すなわち抗血枅を至適濃床で
含有する緩衝液䞭に加えお短時間懞濁撹拌しお血
枅凊理し、䜙剰の血枅を陀去したのち、緩衝液に
奜たしくは0.5〜重量濃床に再懞濁するこず
により行うこずが出来る。そしお、䞊蚘血枅を含
有する緩衝液における該血枅の濃床は0.1〜20重
量であり、埓぀お抗䜓の濃床は〜1000Ό
c.c.皋床であるこずが奜たしい。たた該感䜜の際の
枩床及び時間は抗䜓感䜜の堎合ず同様でよい。 䞊蚘の劂くに、本発明にもずずいお補造された
ラテツクス詊薬は、埓来法にもずずいお抗䜓感䜜
したラテツクスを抗䜓・抗原反応に関䞎しない䞍
掻性タンパク質で凊理したラテツクス詊薬ずは異
なり、感䜜した抗䜓を含む血枅にお凊理されたも
のであり、これによ぀お驚くべきこずに、ラテツ
クス詊薬の非特異的凝集反応をよく陀去するず共
に、枬定感床を飛躍的に高め埗たのであり、埌述
する実斜䟋にも瀺す様に、肉県や光孊的枬定装眮
による凝集反応の枬定においお極めお䜎濃床の抗
原に察しおも正確な蚺断を䞋すこずが可胜ずな぀
たのである。 䟋えばHBs抗原型肝炎りむルス衚面抗原
怜出甚のラテツクス詊薬を䟋にずるず、埓来のア
ルブミン凊理方法で補造したラテツクス詊薬では
10Ό10-5c.c.皋床以䞊のHBs抗原しか怜
出できないのに察し、本発明にもずずいお補造し
たラテツクス詊薬では10n10-8c.c.皋床
の抗原量たで怜出できるこずが刀明しおおり、こ
の堎合は実に1000倍も感床が高いこずになる。 叙䞊の劂く、本発明によれば非特異的凝集がな
く、しかも感床の著しく高いラテツクス詊薬を容
易に埗るこずが出来るのである。 以䞋本発明の実斜䟋に぀いお説明する。 実斜䟋  スチレンモノマヌ65 で衚わされる化合物4.5、過硫酞カリりム0.05
、むオン亀換氎450を反応容噚に仕蟌み、容
噚を窒玠ガスで眮換し反応枩床70℃で30時間共重
合した。このようにしお埗られたラテツクスの平
均粒埄は0.59ミクロン、粒埄のバラツキは倉動係
数で衚わしお0.05であ぀た。 本ラテツクスをPH7.4のリン酞緩衝液に分散さ
せ固型分ずしたもの容ず、モルモツトの産
生したHBsモノスペシフむツク抗䜓セフアロヌ
ズ4Bに固定した抗原のカラムに回通液したア
フむニテむヌクロマトグラフむヌによる粟補品
を同じくリン酞緩衝液䞭に40Όc.c.の濃床に溶
解したもの容ずを混合し、37℃で時間むンキ
ナベヌトしお本ラテツクスに抗䜓を結合させた。
次にこの感䜜ラテツクスを15000rpm、15分間で
遠心分離し、末吞着の抗䜓を陀去した。この䞊枅
䞭の抗䜓䟡はPHA受身赀血球凝集反応によ
り枬定されたが、少くずも99.5以䞊の抗䜓は本
ラテツクスに吞着しおいる。 次いで、この沈降したラテツクスにHBs抗原で
免疫されたモルモツトの抗血枅から抗ヒト蛋癜抗
䜓をカラムで吞収枈のモルモツト抗血枅を0.1〜
加えリン酞緩衝液容を加える感䜜ラテツク
スをよく分散させ、37℃で10分間撹拌した。この
モルモツト抗血枅を含むリン酞緩衝液䞭、抗HBs
抗䜓は玄〜50Όc.c.含たれおいる。 その埌、12000回転で遠心分離し䞊枅を捚お、
沈降した凊理埌の感䜜ラテツクスをPHのリン酞
緩衝液に再分散しおラテツクス詊薬の調補を終了
した。このようにしお調補したラテツクス詊薬を
甚い皮々の濃床のHBs抗原を含むヒト血枅に察す
る凝集の匷さを枬定したずころ次衚の結果を埗
た。
The present invention relates to a method for producing a latex reagent for detecting antigens or antibodies. Recently, latex reagents have come into general use to detect trace amounts of biological components such as hormones and proteins in body fluids. As the latex, synthetic resin latex, especially one with a particle size of 0.1 to 1 micron, is generally used. In these latex reagents, antibodies and antigens corresponding to the antigens and antibodies to be measured are adsorbed on the surface of the latex, and a specific reaction occurs between antigens and antibodies.
The antibody reaction causes latex aggregation. However, simply adsorbing antibodies (or antigens) to the surface of latex inevitably causes non-specific agglutination due to factors other than the specific reaction of antigens and antibodies. cannot be obtained. This is because the body fluid to be measured contains various proteins, etc., and these components non-specifically adsorb to the latex and cause aggregation. In order to eliminate this drawback, various efforts have been made and reported so far, but the representative method is a method of treatment using an inactive protein that does not participate in antigen-antibody reactions. For example, Japanese Patent Publication No. 43-12741 describes an immunochemical measurement reagent in which an antigen or antibody is adsorbed onto a fine solid carrier. Latex reagents characterized by being coated with antigens have been proposed. In addition, Japanese Patent Publication No. 11407/1983 proposed a method for producing a latex reagent, which is characterized by adsorbing antibodies onto the surface of a fine solid carrier and then treating this with a solution of an inactive protein at a concentration of 0.1% or less. There is. Although there are differences in the operating procedures in these two inventions, the basic method is to treat with an inactive protein that does not participate in the immunochemical reaction of antigens and antibodies. Examples of this inactive protein include albumins such as bovine serum albumin, ovalbumin, and lactalbumin. However, latex reagents treated with albumin cause significant non-specific reactions with proteins in normal rabbit serum and normal guinea pig serum, resulting in agglutination. Furthermore, the measurement sensitivity is low due to latex self-aggregation due to the properties of albumin. Naturally, the sensitivity is low because non-specific reactions occur with human gamma globulin, human albumin, and human fibrinogen, and it is often necessary to perform an inhibition test (a type of confirmation test) by adding an antibody in advance. . Regarding the measurement sensitivity, that is, the detection limit concentration, using a latex reagent for detecting HBs antigen (hepatitis B virus surface antigen) as an example, a latex reagent manufactured by a normal albumin treatment method has a concentration of 10 ÎŒg (10 -5 g/ cc) degree or higher
Currently, only HBs antigen can be detected, and something even higher is desired. In addition to visually identifying and diagnosing the agglutination phenomenon of latex reagents based on the antigen-antibody reaction, it is also possible to use visible light, near-infrared light, laser, etc. to detect the reduction in turbidity when a sample is applied to latex reagents. A method is known in which the antigen or antibody to be measured is measured using a standard curve prepared in advance using known concentrations of antigen or antibody.
For example, JP-A-53-24015 and JP-A-54-108693 disclose measurement methods using near-infrared light, but even in such optical measurement methods, the aforementioned non-specific reaction There are similar problems such as aggregation and low sensitivity. In view of the above-mentioned drawbacks of conventional latex reagents, the present invention has been made with the aim of providing a latex reagent that is free from non-specific aggregation and has excellent sensitivity. but (Here, R 1 is H or CH 3 , R 2 is H or CH 3 , and x, y, and z are each positive integers, and one of the following relationships holds true between them: 1≩x≩100, y=0, x=0 1≩y≩100, x=0, z=0 1≩x≩50, 1≩y≩50, 1≩z≩50, x+y+z≩100) The antibody is sensitized to a latex obtained by copolymerizing the same compound as described above in water using a water-soluble radical polymerization initiator in the absence of an emulsifier. A method for producing a latex reagent, which comprises dispersing it in a liquid containing serum containing serum and treating it by separating it from the liquid. Examples of the compound represented by the above general formula include acrylic or methacrylic esters of polyethylene oxide, acrylic or methacrylic esters of polypropylene oxide, and acrylic or methacrylic esters of block copolymers of ethylene oxide and propylene oxide. Specifically, etc. are given as suitable examples. These compounds are copolymerization components with styrene, and at the same time they also function as emulsifiers in commonly known emulsion polymerization methods, and the ratio of use to styrene is 0.1.
from 1 to 70% by weight, preferably from 1 to 50% by weight
% by weight, more preferably 3 to 30% by weight. In the above relational expression of x, y, z, x, y,
When z>100, the copolymerizability of styrene and these compounds decreases, making it impossible to obtain a stable latex with well-uniformed particle sizes. In addition, as the water-soluble radical polymerization initiator in the present invention, persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate, 2'-2 azobis(2-amidinopropane) mineral acid salt, and azobiscyanopoule are used. Azo compounds such as phosphoric acid and its alkali metal salts and ammonium salts, tartaric acid peroxide, Rongarit peroxide, ascorbic acid
Examples include redox initiators such as peroxides,
Persulfates are preferably used. The proportion of these polymerization initiators to the total monomers is preferably in the range of 0.01 to 1% by weight. To carry out copolymerization for producing latex by the method of the present invention, at least one of the compounds represented by the above general formula and the above initiator are added to styrene in a reactor filled with water, and the mixture is stirred. All you need to do is heat, and the polymerization reaction temperature at that time is usually 50 to 50℃.
The temperature is preferably 100°C, preferably in the range of 60 to 85°C. The time required for the polymerization reaction varies depending on conditions such as monomer composition, monomer concentration, and initiator concentration, but is usually in the range of 5 to 50 hours. Note that in the present invention, no emulsifier that is commonly used in the production of latex is used. Further, in the present invention, it is possible to coexist ultrafine particles of silicic anhydride during the above-mentioned copolymerization, and in this case, more favorable results are obtained due to the uniform dispersibility of the produced latex. Therefore, as the ultrafine particles of silicic anhydride, silicic anhydride formed into ultrafine particles with a particle size of about 5 to 50 mΌ is used, and for example, Aerosil (trade name, manufactured by Nippon Aerosil Co., Ltd.) is preferably used. . In addition, a colloidal solution in which the ultrafine particulate silicic anhydride is dispersed in water, such as Snowtex (trade name, manufactured by Nissan Chemical Industries, Ltd.)
is also suitably used. The amount of ultrafine silicic anhydride used is 0.01 to 10% by weight based on styrene.
It is preferable to use a proportion of 0.05 to 5% by weight, especially
It is preferably 0.08 to 2% by weight. When used as the above-mentioned colloidal solution, it is preferable to use one having a silicic anhydride content of 35% by weight or less, a sodium oxide content of 0.6% by weight or less, and a viscosity of 10 centipoise or less and a pH of 8 to 10. In the present invention, by carrying out the copolymerization as described above, the average particle size is 0.05 to 2 microns, and the variation in particle size is 0.05 or less expressed as the coefficient of variation (standard deviation of particle size/average particle size). A monodisperse latex with very uniform particle size can be obtained.
The latex obtained by the above method is extremely stable and has a very uniform particle size, and unlike conventionally obtained latexes, the emulsifier does not exist in a free state, so it is highly immunizable. As a serological diagnostic reagent, it does not cause so-called non-specific agglutination reactions. Next, in the present invention, the latex obtained as described above is sensitized with an antibody, but the method of sensitizing this antibody is not particularly limited, and conventionally known methods can be adopted as appropriate. .
For example, latex particles and antibodies have a pH of about 7 to 8.6.
Contact is carried out in an appropriate aqueous solvent such as a buffer solution, physiological saline, water, etc. at a temperature of about 20 to 37° C. for an appropriate time. At this time, stir or shake if necessary. The sensitized latex thus obtained is further washed with an aqueous solvent or centrifuged, if necessary, to remove antibodies (or antigens) that are not adsorbed to the latex particles. In the present invention, the sensitized latex prepared above is treated by dispersing it in a liquid containing serum containing the same antibodies as above and then separating it from the liquid. is added to a buffer solution containing antibody-containing serum, i.e., antiserum, at an optimal concentration, suspended and stirred for a short time to treat the serum, and after removing excess serum, add preferably 0.5 to 3 weight of antiserum to the buffer solution. % concentration. The concentration of the serum in the buffer solution containing the serum is 0.1 to 20% by weight, and therefore the concentration of the antibody is 1 to 1000 Όg/
It is preferable that it is about cc. Further, the temperature and time during the sensitization may be the same as those for antibody sensitization. As mentioned above, the latex reagent produced according to the present invention is different from the latex reagent produced by treating antibody-sensitized latex with an inert protein that does not participate in the antibody-antigen reaction based on the conventional method. It was treated with serum containing sensitized antibodies, and surprisingly, this treatment successfully removed the nonspecific agglutination reaction of the latex reagent and dramatically increased the measurement sensitivity. As shown in the Examples described below, it has become possible to make accurate diagnoses even for extremely low concentrations of antigens by measuring agglutination reactions with the naked eye or with an optical measuring device. For example, HBs antigen (hepatitis B virus surface antigen)
Taking latex reagents for detection as an example, latex reagents produced using conventional albumin treatment methods are
Whereas only HBs antigen of approximately 10 ÎŒg (10 -5 g/cc) or more can be detected, the latex reagent produced based on the present invention can detect antigen amounts of approximately 10 ng (10 -8 g/cc). In this case, it is actually 1000 times more sensitive. As described above, according to the present invention, it is possible to easily obtain a latex reagent that is free from non-specific agglutination and has extremely high sensitivity. Examples of the present invention will be described below. Example 1 Styrene monomer 65g 4.5g of the compound represented by, potassium persulfate 0.05
g and 450 g of ion-exchanged water were charged into a reaction vessel, the vessel was purged with nitrogen gas, and copolymerization was carried out at a reaction temperature of 70°C for 30 hours. The average particle size of the latex thus obtained was 0.59 microns, and the variation in particle size was 0.05 expressed as a coefficient of variation. One volume of this latex was dispersed in phosphate buffer at pH 7.4 with a solid content of 2%, and the solution was passed twice through a column containing HBs monospecific antibody produced by guinea pigs (antigen immobilized on Sepharose 4B). (purified product by affinity chromatography)
was mixed with 1 volume of the same solution dissolved in phosphate buffer at a concentration of 40 Όg/cc and incubated at 37° C. for 2 hours to bind the antibody to this latex.
Next, this sensitized latex was centrifuged at 15,000 rpm for 15 minutes to remove the adsorbed antibodies. The antibody titer in this supernatant was measured by PHA (passive hemagglutination), and at least 99.5% of the antibodies were adsorbed to this latex. Next, guinea pig antiserum from guinea pigs immunized with HBs antigen and anti-human protein antibodies which have been absorbed in a column was added to the precipitated latex at a concentration of 0.1 to 0.1%.
The sensitized latex was well dispersed by adding 5% and 1 volume of phosphate buffer, and stirred at 37°C for 10 minutes. Anti-HBs in phosphate buffer containing this guinea pig antiserum.
The antibody is contained at approximately 1-50 ÎŒg/cc. Then, centrifuge at 12,000 rpm and discard the supernatant.
The precipitated treated sensitized latex was redispersed in a phosphate buffer solution of pH 7 to complete the preparation of the latex reagent. Using the latex reagent thus prepared, the agglutination strength of human serum containing various concentrations of HBs antigen was measured, and the results shown in the following table were obtained.

【衚】 次にリバヌセむアHBs抗原怜出EIAキツト、
山の内補薬を甚いお、血枅䞭HBs抗原が0.4n
c.c.以䞋であるこずの刀明しおいる1000人の正
垞人血枅に぀いお同様のテストをした。1000怜䜓
䞭停陜性はわずか件であ぀た。たた、HBs抗䜓
を含有する100人の停陜性は件もなか぀た。 比范䟋  実斜䟋におけるHBs抗䜓含有モルモツト血枅に
よる凊理を正垞モルモツトによる凊理に倉えに他
は、実斜䟋ず党く同様にしお調補した抗HBs抗
䜓感䜜ラテツクスを甚いお同じ詊隓をしたずころ
次衚の結果を埗た。
[Table] Next, Riverseia (HBs antigen detection EIA kit,
Serum HBs antigen was 0.4n using Yamanouchi Pharmaceutical)
A similar test was conducted on 1,000 normal human serum samples known to be below g/cc. There was only one false positive out of 1000 samples. Additionally, there were no false positives among the 100 people who contained HBs antibodies. Comparative Example 1 The same test was conducted using an anti-HBs antibody sensitized latex prepared in exactly the same manner as in Example 1, except that the treatment with guinea pig serum containing HBs antibody in Example 1 was replaced with treatment with normal guinea pigs. I got the result.

【衚】 たた、実斜䟋ず同様の1000怜䜓の正垞人血枅に
぀いお停陜性は件、たた抗䜓を含有する100人
の血枅ずの反応では件の停陜性があ぀た。すな
わち、本法では非特異反応はそれほどでもない
が、怜出感床が実斜䟋に比し玄1000分のずな
る。 実斜䟋  実斜䟋で埗られたラテツクスに家兎の産生し
たアルフア−プトプロテむンの抗䜓アフむニ
テむヌクロマトグラフむヌにより粟補したモノス
ペシフむツク抗䜓を感䜜し、人血枅䞭のアルフ
ア−プトプロテむンずの凝集反応を調べた。ラ
テツクス詊薬の調補法は実斜䟋ず同称であり、
本実斜䟋では家兎の抗血枅を含有するリン酞
緩衝液で凊理をした。 その結果を次衚に瀺す。
[Table] In addition, there were 9 false positives for 1000 normal human serum samples similar to those in the example, and 4 false positives for the reaction with 100 human serum containing antibodies. That is, although the non-specific reaction is not so great in this method, the detection sensitivity is about 1/1000 times lower than in the example. Example 2 The latex obtained in Example 1 was sensitized with an antibody to alpha-fetoprotein produced by domestic rabbits (a monospecific antibody purified by affinity chromatography), and alpha-fetoprotein in human serum was sensitized to the latex obtained in Example 1. The agglutination reaction with fetoprotein was investigated. The preparation method of the latex reagent is the same as in Example 1,
In this example, treatment was performed with a phosphate buffer containing 1% rabbit antiserum. The results are shown in the table below.

【衚】 たた、正垞人の血枅1000怜䜓の停陜性は䟋に
すぎなか぀た。 比范䟋  実斜䟋ず同じくアルフア−プトプロテむン
の抗䜓を実斜䟋で埗られたラテツクスに感䜜
し、牛血枅アルブミンを含有するリン酞緩衝
液で掗浄し、ラテツクス詊薬を調補した。 人血枅䞭のアルフア−プトプロテむンずの凝
集反応は次衚の通りであ぀た。
[Table] In addition, there were only 2 false positives among 1000 normal human serum samples. Comparative Example 2 As in Example 2, the latex obtained in Example 1 was sensitized with alpha-fetoprotein antibody and washed with a phosphate buffer containing 1% bovine serum albumin to prepare a latex reagent. . The agglutination reaction with alpha-fetoprotein in human serum was as shown in the table below.

【衚】 この比范䟋では実斜䟋に比し1000分のしか
怜出感床を有しないこずが明らかである。たた、
正垞人の血枅1000怜䜓䞭の停陜性は130件にもの
が぀た。すなわち、アルブミン凊理法では非特異
凝集の反応がきわめお著しい。 実斜䟋  実斜䟋ず同様にしお調敎した抗HBsラテツク
ス詊薬0.5c.c.を小詊隓管にずり、これにリン酞緩
衝液0.5c.c.を加え、さらに䞋蚘の衚に瀺す濃床の
HBs抗原溶液c.c.を加えお20秒間振ずうしお混合
したのち、回転子を備えたアクリル暹脂補のセル
光路長cmに入れ、盎ちに毎分200回転の速さ
で撹拌し぀぀吞光床の時間倉化の蚘録を行぀た。
枬定波長は950nmを甚いた。次にこの吞光床の時
間倉化の蚘録図䞊においお、蚘録開始埌のなるべ
く早い時間で近䌌的に盎線である郚分に沿぀お盎
線を匕き、その盎線の傟きを蚈算したものが、䞋
蚘第衚の「速さ」の欄の数字であり、吞光床の
倉化をABSminで瀺しおある。
[Table] It is clear that this comparative example has a detection sensitivity of only 1/1000 of that of Example 2. Also,
There were as many as 130 false positives out of 1,000 serum samples from normal people. That is, in the albumin treatment method, the reaction of non-specific aggregation is extremely significant. Example 3 Take 0.5 cc of the anti-HBs latex reagent prepared in the same manner as in Example 1 into a small test tube, add 0.5 cc of phosphate buffer, and then add 0.5 cc of the anti-HBs latex reagent prepared in the same manner as in Example 1, and then add 0.5 cc of the phosphate buffer solution to the solution at the concentration shown in the table below.
Add 1 c.c. of HBs antigen solution and mix by shaking for 20 seconds, then put into an acrylic resin cell equipped with a rotor (light path length 1 cm) and immediately stir at a speed of 200 revolutions per minute. Changes in absorbance over time were recorded.
The measurement wavelength used was 950 nm. Next, on this record of absorbance changes over time, a straight line is drawn along the approximate straight line as soon as possible after the start of recording, and the slope of the straight line is calculated as shown in Table 5 below. This is the number in the "Speed" column, which shows the change in absorbance in ABS/min.

【衚】 比范䟋  実斜䟋におけるHBs抗䜓含有モルモツト血枅
による凊理を正垞モルモツト血枅による凊理に倉
えた他は実斜䟋ず党く同様にしお調敎した抗
HBsラテツクス詊薬を甚い、抗原抗䜓反応を光孊
的に枬定したずころ、Όc.c.の抗原量以䞊し
か怜出できず、しかも非特異凝集が起぀た。 実斜䟋  (1) 抗α−プトプロテむンα−FP抗䜓感
䜜ラテツクス抗α−FPラテツクス詊薬の
調補、実斜䟋で埗られたのず同じラテツクス
に家兎の産生したα−FPの抗䜓アフむニテ
むヌクロマトグラフむヌにより粟補したモノス
ペシフむツク抗䜓を感䜜した。ラテツクス詊
薬調補法は実斜䟋ず同様であり、家兎の抗血
枅含有のリン酞緩衝液で凊理した。 (2) ラテツクス凝集反応の光孊的枬定 䞊蚘(1)で調補した抗α−FPラテツクス詊薬
を甚い、650nmの可芖光を甚いる他は実斜䟋
ず党く同様にしお第衚の結果を埗た。
[Table] Comparative Example 3 Antibodies prepared in exactly the same manner as in Example 3 except that the treatment with guinea pig serum containing HBs antibody in Example 3 was changed to treatment with normal guinea pig serum.
When the antigen-antibody reaction was optically measured using the HBs latex reagent, only an antigen amount of 5 Όg/cc or more could be detected, and non-specific agglutination occurred. Example 4 (1) Preparation of anti-α-phetoprotein (α-FP) antibody sensitized latex (anti-α-FP latex) reagent, injecting rabbit-produced α into the same latex obtained in Example 1. - Sensitized with FP antibody (monospecific antibody purified by affinity chromatography). The latex reagent preparation method was the same as in Example 1, and the latex reagent was treated with a phosphate buffer containing 1% rabbit antiserum. (2) Optical measurement of latex agglutination reaction Example 3 except that the anti-α-FP latex reagent prepared in (1) above was used and visible light of 650 nm was used.
The results shown in Table 6 were obtained in exactly the same manner.

【衚】【table】

【衚】 比范䟋  実斜䟋におけるα−FP抗䜓含有家兎血枅に
よる凊理を牛血枅アルブミンによる凊理に倉える
他は実斜䟋ず党く同様にしお調敎した抗α−
FPラテツクス詊薬を甚い、抗原抗䜓反応を光孊
的に枬定したずころΌc.c.の抗原量以䞊しか
怜出できず、しかも非特異凝集が起こ぀た。
[Table] Comparative Example 4 Anti-α-
When the antigen-antibody reaction was optically measured using the FP Latex reagent, only an antigen amount of 7 ÎŒg/cc or more could be detected, and non-specific agglutination occurred.

Claims (1)

【特蚱請求の範囲】  スチレンず䞀般匏が ここでR1は又はCH3R2は又はCH3であ
り、はそれぞれ正の敎数にしおこれら
の間には次の〜のいずれかの関係が成り
立぀ ≊≊100 ≊≊100 ≊≊50≊≊50 ≊≊50≊100 で衚わされる化合物ずを乳化剀の䞍存圚䞋で氎溶
性ラゞカル重合開始剀を甚いお氎䞭で共重合する
こずによ぀お埗られるラテツクスに抗䜓を感䜜
し、次いでこの抗䜓感䜜ラテツクスを、䞊蚘ず同
じ抗䜓を含む血枅を含有する液䞭に分散させたの
ち該液から分離するこずにより凊理するこずを特
城ずするラテツクス詊薬の補造方法。  共重合が無氎珪酞の超埮粒子の共存䞋に行わ
れるものである第項蚘茉のラテツクス詊薬の補
造方法。
[Claims] 1. Styrene and the general formula are (Here, R 1 is H or CH 3 , R 2 is H or CH 3 , and x, y, and z are each positive integers, and one of the following relationships holds true between them: 1≩x≩100, y=0, x=0 1≩y≩100, x=0, z=0 1≩x≩50, 1≩y≩50, 1≩z≩50, x+y+z≩100) The antibody is sensitized to a latex obtained by copolymerizing the same compound as described above in water using a water-soluble radical polymerization initiator in the absence of an emulsifier. 1. A method for producing a latex reagent, which comprises dispersing the serum in a liquid containing serum, and then separating the latex reagent from the liquid. 2. The method for producing a latex reagent according to item 1, wherein the copolymerization is carried out in the coexistence of ultrafine particles of silicic anhydride.
JP16866980A 1980-11-29 1980-11-29 Manufacture of latex reagent Granted JPS5793256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16866980A JPS5793256A (en) 1980-11-29 1980-11-29 Manufacture of latex reagent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16866980A JPS5793256A (en) 1980-11-29 1980-11-29 Manufacture of latex reagent

Publications (2)

Publication Number Publication Date
JPS5793256A JPS5793256A (en) 1982-06-10
JPS6116944B2 true JPS6116944B2 (en) 1986-05-02

Family

ID=15872292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16866980A Granted JPS5793256A (en) 1980-11-29 1980-11-29 Manufacture of latex reagent

Country Status (1)

Country Link
JP (1) JPS5793256A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994015216A1 (en) * 1992-12-23 1994-07-07 Niyazmatov Agzamdzhan Akhtamov Process for obtaining a diagnostic reagent for detecting antigens and antibodies of infectious and other illnesses

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224068A (en) * 1984-04-20 1985-11-08 Sekisui Chem Co Ltd Method for deciding pathogenic bacterium in opportunistic infection
KR20000063268A (en) * 2000-06-13 2000-11-06 김형순 Model Colloid for Diagnostic Usage, and Method for Producing Thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994015216A1 (en) * 1992-12-23 1994-07-07 Niyazmatov Agzamdzhan Akhtamov Process for obtaining a diagnostic reagent for detecting antigens and antibodies of infectious and other illnesses

Also Published As

Publication number Publication date
JPS5793256A (en) 1982-06-10

Similar Documents

Publication Publication Date Title
US4480042A (en) Covalently bonded high refractive index particle reagents and their use in light scattering immunoassays
US4656144A (en) Immunoparticles and process for preparing same
US4060597A (en) Serological reagent and preparation thereof
JPS6314783B2 (en)
US4945146A (en) Dispersion polymers processes for their preparation and their use
AU608753B2 (en) Dispersion polymers, processes for their preparation and their use
JPH0527064B2 (en)
JPH0810224B2 (en) A latex for immobilizing a physiologically active substance and a latex reagent using this latex
JPH01118770A (en) Method and reagent for measuring protein
JPS6116944B2 (en)
EP0064275B1 (en) Immunochemical reagent
Quesada et al. A simple kinetic model of antigen-antibody reactions in particle-enhanced light scattering immunoassays
JPS6116942B2 (en)
JPS5850646B2 (en) Method for producing latex for serological diagnostic reagents
JP2682697B2 (en) Immunoassay reagents and immunoassays
JPS6116941B2 (en)
JPS6116943B2 (en)
JPS6352708B2 (en)
JPS6352707B2 (en)
JPS6352706B2 (en)
JPS5992354A (en) Reagent for immune serological diagnosis
EP0286687B1 (en) Carrier latex for diagnostic reagent
JPS5876762A (en) Manufacture of latex for diagnostic reagent
JPS6343412B2 (en)
JPS60235061A (en) Diagnostic reagent