JPS61169113A - Extruding method of composite material - Google Patents

Extruding method of composite material

Info

Publication number
JPS61169113A
JPS61169113A JP827985A JP827985A JPS61169113A JP S61169113 A JPS61169113 A JP S61169113A JP 827985 A JP827985 A JP 827985A JP 827985 A JP827985 A JP 827985A JP S61169113 A JPS61169113 A JP S61169113A
Authority
JP
Japan
Prior art keywords
billet
extrusion
temperature
extruded
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP827985A
Other languages
Japanese (ja)
Inventor
Masahiro Kiyofuji
雅宏 清藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP827985A priority Critical patent/JPS61169113A/en
Publication of JPS61169113A publication Critical patent/JPS61169113A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PURPOSE:To perform the extrusion of high working rate and to rationalize its working process by extruding a composite billet consisting of at least two kinds of different metallic materials under a specific low temperature. CONSTITUTION:A billet 4 and a pressure medium 3 are housed in a container 1, and a stem 2 is advanced to compress isotropically the billet 4 through the medium 3 in order to form the billet 4 into the prescribed dimensions through a die 5. The billet temperature is <=-30 deg.C, when extruded. The friction between the billet 4 and the die 5 is reduced by the lubricating action of medium 3, and a second extruded from 6 is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、少なくとも二種類の異なる金属材からなる複
合ヒレットの押出加工法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for extruding a composite fillet made of at least two different metal materials.

[従来技術とその問題点] 例えば、錫、鉛等の低融点金属を構成材の一部とする複
合材の製造にあたって複合ビレツ1〜を押出加工する場
合、その作業は温間又は室温下でなされているのか普通
であるが、高加工度の押出しをしようとすると、複合材
特有の表層欠陥、あるいは芯材破断等の欠陥を発生して
しまい、健全な押出材を得ることができず、低加工度の
能率の悪い作業となっている。
[Prior art and its problems] For example, when extruding composite billets 1 to 1 to manufacture a composite material in which low-melting point metals such as tin and lead are part of the constituent materials, the work is carried out at warm or room temperature. This is common practice, but if you try to extrude to a high degree of processing, defects such as surface layer defects or core material breakage, which are unique to composite materials, will occur, making it impossible to obtain a sound extruded material. This is inefficient work with low machining rate.

本発明の目的は、斯かる従来技術の欠点を解消し、加工
の難しい低融点金属を構成材の一部としたり、低温下で
の変形抵抗の比か2より大きい金属材をもって構成され
た複合ビレツ1〜を高加工度で能率良く押出加工するこ
とのできる方、法を提供することにある。
The purpose of the present invention is to eliminate the drawbacks of the prior art, and to create a composite material in which a low-melting point metal that is difficult to process is used as a part of the constituent material, or a metal material whose deformation resistance ratio at low temperatures is greater than 2. It is an object of the present invention to provide a method and a method capable of efficiently extruding billets 1 to 1 with a high degree of processing.

[発明の概要] すなわち本発明の要旨は、複合ビレットの押出加工を一
30℃以下の低温下で行うことを特徴としている。
[Summary of the Invention] That is, the gist of the present invention is characterized in that the composite billet is extruded at a low temperature of -30°C or lower.

このような低温下での加工であれば、複合ビレットを構
成する金属材の硬さの比、すなわち変形抵抗の比が小さ
くなり、加工の難しい複合材であっても安定して健全に
押出加工することができる。
Processing at such low temperatures reduces the hardness ratio, or deformation resistance ratio, of the metal materials that make up the composite billet, allowing stable and sound extrusion of even difficult-to-process composite materials. can do.

なお、押出加工法としては、通常の方法、すなわち、ラ
ム式押出法でもよいが、圧力媒体の等法的圧縮力を利用
する静水圧押出法でおれば、ヒレットー工具間の摩擦が
減少し、高加工度の押出しが容易である上に、圧力媒体
が断熱材としての役割を果し、ビレットの温度変化を少
なくできるので、この押出法を採用することが望ましい
Note that the extrusion processing method may be a normal method, that is, a ram extrusion method, but if it is a hydrostatic extrusion method that utilizes the isostatic compression force of a pressure medium, the friction between the fillet and the tool will be reduced. It is desirable to employ this extrusion method because it is easy to extrude to a high degree of processing, and the pressure medium serves as a heat insulating material, reducing temperature changes in the billet.

−30’C以下の低温を得るにはドライアイス、液体空
気等の冷媒を用いたり、冷媒機を用いてビレット材を所
定温度に冷却すればよい。ただビレット材を冷却すると
周囲の圧力媒体も冷却され、圧力媒体の粘度が高くなり
、押出材にしわ状の欠陥を発生させることがあるので、
圧力媒体の粘度を低下させる対策を施すことが望ましい
。通常、工業的な静水圧押出しの場合、圧力媒体として
ヒマシ油が用いられているが、ヒマシ油のみ温度を上げ
たものを装置内に注入する、あるいすヒマシ油と軽油の
混合油を用いて粘度を下げる、あるいは他の粘度の低い
圧力媒体を使用することが望ましい。圧力媒体の粘度と
しては室温下のヒンジ油の200ス]ヘークス以下の粘
度がよい。複合ビレットを構成する1つの月利である低
融点金属としては、例えば鎗、鉛合金、錫、錫合金など
が挙げられる。
To obtain a low temperature of -30'C or less, a refrigerant such as dry ice or liquid air may be used, or a refrigerant machine may be used to cool the billet material to a predetermined temperature. However, when the billet material is cooled, the surrounding pressure medium is also cooled, which increases the viscosity of the pressure medium and may cause wrinkle-like defects in the extruded material.
It is desirable to take measures to reduce the viscosity of the pressure medium. Usually, in industrial isostatic extrusion, castor oil is used as the pressure medium, but castor oil alone at a raised temperature is injected into the equipment, or a mixture of castor oil and light oil is used. It is desirable to reduce the viscosity or use other low viscosity pressure media. The viscosity of the pressure medium is preferably 200 hexes or less of hinge oil at room temperature. Examples of the low melting point metal constituting the composite billet include spears, lead alloys, tin, and tin alloys.

「実施例」 以下実施例について説明する。"Example" Examples will be described below.

第1図は静水圧押出しの原理を示しており、この押出法
においては、ビレッi〜■と圧力媒体■をコンテナ■内
に収容し、]ンテナ■の一端側からステム■を前進させ
ることによって、圧力媒体■に等方的縮力を作用させて
ビレッi・■祠を加工し、ダイス■から所定の寸法に加
工される。
Figure 1 shows the principle of hydrostatic extrusion. In this extrusion method, the billets i~■ and the pressure medium ■ are housed in the container ■, and the stem ■is advanced from one end of the antenna ■. , the billets I and (■) are processed by applying isotropic contraction force to the pressure medium (2), and are processed into predetermined dimensions from the die (2).

この場合、ビレッ]〜■とダイス■との間は圧力媒体■
の潤滑作用で摩擦が減少し、健全な押出材■か得られる
In this case, the pressure medium ■ is between the billet ~ ■ and the die ■.
The lubrication effect reduces friction and results in a sound extruded material■.

本発明の具体例としては、斯かる原理に基く100tf
の静水圧押出装置を用い、外径25φ、被覆率25%の
に鉛合金(pb−41osb)被覆アルミニウム材をダ
イス全角か60’ と90’の円錐ダイスを通して夫々
2.5φ、4.5φに種々の温度下で静水圧押出加工し
た。
A specific example of the present invention is a 100tf based on this principle.
Using a hydrostatic extrusion device, a lead alloy (PB-41OSB) coated aluminum material with an outer diameter of 25φ and a coverage rate of 25% was passed through a full-width die or a 60' and 90' conical die into 2.5φ and 4.5φ, respectively. Hydrostatic extrusion was carried out under various temperatures.

その結果を第171表に示ず。The results are not shown in Table 171.

尚、表中X印を付した押出材に欠陥を生じた事例は、ア
ルミニウム材のコアに対して鉛合金被覆材が余分に押出
され、竹の節状となっており、Δ印の事例は、軟質の鉛
合金し被覆材がダイス■内に十分に引込まれず、ダイス
0手前に停滞し、バルジ状の欠陥となった場合である。
In the cases marked with an X in the table, defects occurred in the extruded material, where the lead alloy coating material was excessively extruded against the aluminum core, resulting in a bamboo knot-like shape, and in the cases marked with a Δ. This is a case where the soft lead alloy coating material is not sufficiently drawn into the die (2) and stagnates before the die 0, resulting in a bulge-like defect.

第1表の結果を要約すると、押出し時のビレット温度が
高くなると、欠陥が発生し易くなり、ダイス角がやや小
さい60’の場合には、その欠陥は押出材の竹の節状の
外層欠陥であるが、ダイス角が大きい90°の場合には
、押出材の欠陥と、ビレット材のバルジ欠陥が発生する
。押出サイズについては、4.5φから2.5φと小さ
くなり、と大きくなると、欠陥が発生し易く、O′Cで
も欠陥が出る。
To summarize the results in Table 1, as the billet temperature increases during extrusion, defects are more likely to occur, and when the die angle is slightly small (60'), the defects are bamboo knot-shaped outer layer defects of the extruded material. However, when the die angle is large, 90°, defects in the extruded material and bulge defects in the billet material occur. Regarding the extrusion size, as the extrusion size decreases from 4.5φ to 2.5φ, defects are more likely to occur, and defects occur even in O'C.

第1表から判るように、押出時のビレット温度は、−3
0’C以下と低くなるほど高押出比、高加T度下でも健
全に押出押出比(押出前後の断面積比)で31から10
0加工ができる。
As can be seen from Table 1, the billet temperature during extrusion is -3
The lower the temperature is below 0'C, the higher the extrusion ratio, and the extrusion ratio (cross-sectional area ratio before and after extrusion) is 31 to 10.
0 processing is possible.

このようにして叶仝に押出された加工材は、次工程で伸
線加工等減面加工して所要製品サイズとされるが、押出
時健全な加工がなされたもの(まど次工程の加工は順調
である。押出温度を低くすると、欠陥なく健全に押出せ
る理由であるが、それはビレット構成材の温度特性によ
る。第2図に具体例のビレット構成材であるアルミニウ
ム及び鉛合金材のビッカース硬さの温度変化特性と硬さ
比の温度変化を示す。
The processed material extruded in this way is subjected to surface reduction processing such as wire drawing in the next process to obtain the required product size. The reason why the extrusion temperature can be lowered to allow for sound extrusion without defects is due to the temperature characteristics of the billet components. It shows the temperature change characteristics of hardness and the temperature change of hardness ratio.

温度を高くして行くと、ビッカース硬さは低下して行く
が、その変化はビッカース硬さを対数で表示すると、二
本の直線で示され、高温側では急激に低下する。それに
伴ない芯材であるアルミニウムと、被覆材である鉛合金
材の硬さの比は、高温側130’C以上で急激に大きく
なる。このようなビレット内外層材の硬さの比、すなわ
ち変形抵抗の比が、高温側で急激に大きくなる現象は、
ビレット構成材として低融点金属(ここでは鉛合金)=
 6− を用いているためであり、温度の依存性が特に人ぎい。
As the temperature increases, the Vickers hardness decreases, and this change is shown by two straight lines when the Vickers hardness is expressed logarithmically, and it decreases rapidly on the high temperature side. Accordingly, the hardness ratio between the core material, aluminum, and the coating material, which is a lead alloy material, increases rapidly at a high temperature of 130'C or higher. This phenomenon in which the hardness ratio of the billet inner and outer layer materials, that is, the deformation resistance ratio, increases rapidly at high temperatures is due to the following:
Low melting point metal (here lead alloy) as billet constituent material =
6- is used, and the temperature dependence is particularly difficult.

ところ′Q、複合)オの押出加工の場合、構成材の変形
抵抗比が人ぎいと竹の節状のに外層欠陥が発生し易いこ
とが知られており、今回もその理由のために欠陥を発生
したことを考えることができる。
However, in the case of extrusion processing of composite materials, it is known that outer layer defects are likely to occur due to the deformation resistance ratio of the constituent materials, which are knot-like like bamboo and bamboo. It is possible to imagine that this has occurred.

さらに、押出比が30〜100と高加工度の押出しては
、加工発熱が大きく、押出時の温度上昇は、鉛合金/ア
ルミニウム材の場合、 150〜200 ’Cと大きくなる。すなわち、O′C
のビレット■を押出すと、グイス■出口部の押出祠■温
度は150〜200 ’Cとなり、加工材内外層の硬さ
比は、第2図から明らかなように、急激に大きくなる領
域となってしまい、ぞの比は、3〜5と大きく、その事
が原因して欠陥発生を生じたと考えられる。−30’C
以下のビレット■を用いた場合、押出(A■湿温度、高
くとも120〜170’C以下であり、約3以下の硬さ
比となり、健全な押出加工かできることどなる。
Furthermore, when extruding at a high working degree such as an extrusion ratio of 30 to 100, heat generation during processing is large, and the temperature rise during extrusion is as large as 150 to 200'C in the case of a lead alloy/aluminum material. That is, O'C
When the billet ■ is extruded, the temperature of the extrusion mill at the exit of the goose plate becomes 150 to 200'C, and as is clear from Figure 2, the hardness ratio of the inner and outer layers of the processed material increases rapidly. The ratio was as large as 3 to 5, which is considered to be the cause of the defect occurrence. -30'C
When the following billet (2) is used, the extrusion (A) humidity temperature is at most 120 to 170'C or less, and the hardness ratio is about 3 or less, indicating that sound extrusion processing is possible.

囚に、押出加工時の温度上昇(Δ丁)は次式によって求
めることができる。
In particular, the temperature rise (Δc) during extrusion processing can be determined by the following formula.

△丁−に−P JρG ここに、P:押出圧力、K:断線係数(静水圧押出しの
場合、約0.7)、J:仕出当量、ρ:密度、C:比熱
ΔT-ni-P JρG Here, P: extrusion pressure, K: wire breakage coefficient (approximately 0.7 in the case of hydrostatic extrusion), J: output equivalent, ρ: density, C: specific heat.

本発明の実施例では、低融点金属を含む複合ビレットと
して釣合金被覆アルミニウム材の例を示したか、低融点
金属に限らず室温下で変形抵抗比が2より大きい構成材
の複合ビレットの場合にも、−30’C以下の温度で押
出すことの効果は大きい。
In the embodiments of the present invention, an example of a fishing alloy-coated aluminum material is shown as a composite billet containing a low-melting point metal. Also, extruding at a temperature of -30'C or lower has a great effect.

第2図において、硬さの温度変化か二本の直線で表わさ
れることを示したか、金属材料一般にこのような傾向が
あり、二本の直線の交点は、純金属の場合、絶対温度で
表示して0.55Te(王e:融点)になると言われて
いる。低温になるほど硬さの差は少なくなり、−30’
C以下で押出すことは欠陥が発生しずらくなる。例えば
各種超電導材でも、プレスのパワー4二押出可能なもの
は、−30’C以下の温度で押出すこと1.IIメリッ
トが大きい。特に内部拡散法あるいは固液拡散法におい
て、ビレット構成材中に錫又は錫銅合金を含む場合、健
全押出しが可能となる共に界面の化合物層ができず、次
工程の伸線作業か安定し、最終的に線材の超電導特性も
向上する。
In Figure 2, it was shown that the change in hardness with temperature is expressed by two straight lines. Metal materials generally have this tendency, and the intersection of the two straight lines is expressed in absolute temperature in the case of pure metals. It is said that it becomes 0.55Te (King e: melting point). The difference in hardness decreases as the temperature decreases, -30'
Extruding at a temperature of C or lower makes it difficult for defects to occur. For example, various superconducting materials that can be extruded with a press power of 42 should be extruded at a temperature of -30'C or lower.1. II The benefits are great. In particular, in the internal diffusion method or solid-liquid diffusion method, when the billet constituent materials contain tin or tin-copper alloy, sound extrusion is possible, and a compound layer at the interface is not formed, making the wire drawing operation in the next step stable. Ultimately, the superconducting properties of the wire will also improve.

尚、実施例では外層が軟質となる構成を示したが、その
逆の場合も同様の効果がある。
Although the embodiments have shown a configuration in which the outer layer is soft, the same effect can be obtained in the opposite case.

[発明の効果] 以上のような本発明によれば、次のJ:うな効果がある
[Effects of the Invention] The present invention as described above has the following effects.

(1)高加工度材の押出しが可能となり、工程が合理化
される。
(1) It becomes possible to extrude highly processed materials, streamlining the process.

(2)押出比か高くとれることにより、複合材界面の密
着力が向上し、次工程の伸線作業が容易となる。
(2) By increasing the extrusion ratio, the adhesion of the composite material interface is improved, making the wire drawing operation in the next step easier.

(3)構成材の変形抵抗比例か大きく、通常押出加工で
きなかった構成も押出可能となる。
(3) Structures that cannot normally be extruded because the deformation resistance of the constituent materials is proportionally large can now be extruded.

(4)押出材か超電導材料のような場合、熱影響か少な
く、最終的な超電導特性等が向上する。
(4) In the case of extruded materials or superconducting materials, there is less heat influence and the final superconducting properties are improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る方法の一実施例に用いる静水圧押
出しの原理を示す図、第2図は、一実施例に用いたアル
ミニウム材及び鉛合金材の硬さの温度変化特性と硬さ比
の変化を示すグラフである。 1:コンテナ、 2ニス テ ム、 3:圧力媒体、 4:複合ビレット、 5:ダ イ ス、 6 :押  出  祠。
Fig. 1 is a diagram showing the principle of hydrostatic extrusion used in an embodiment of the method according to the present invention, and Fig. 2 shows the temperature change characteristics and hardness of the aluminum material and lead alloy material used in the embodiment. 3 is a graph showing changes in the ratio. 1: container, 2 system, 3: pressure medium, 4: composite billet, 5: die, 6: extrusion mill.

Claims (4)

【特許請求の範囲】[Claims] (1)少なくとも二種類の異なる金属材からなる複合ビ
レットを−30℃以下の低温下で押出加工することを特
徴とする複合材の押出法。
(1) A composite material extrusion method characterized by extruding a composite billet made of at least two different metal materials at a low temperature of -30°C or lower.
(2)複合ビレットの構成材の一方が低温融点金属であ
る、前記第1項記載の押出法。
(2) The extrusion method according to item 1 above, wherein one of the constituent materials of the composite billet is a low melting point metal.
(3)複合ビレットが、室温下での変形抵抗の比が2よ
り大きい金属材をもって構成されている、前記第1項記
載の押出法。
(3) The extrusion method according to item 1, wherein the composite billet is composed of a metal material having a deformation resistance ratio of more than 2 at room temperature.
(4)押出加工が静水圧押出しである、前記第1項、第
2項、または第3項記載の押出法。
(4) The extrusion method according to item 1, item 2, or item 3, wherein the extrusion process is hydrostatic extrusion.
JP827985A 1985-01-18 1985-01-18 Extruding method of composite material Pending JPS61169113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP827985A JPS61169113A (en) 1985-01-18 1985-01-18 Extruding method of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP827985A JPS61169113A (en) 1985-01-18 1985-01-18 Extruding method of composite material

Publications (1)

Publication Number Publication Date
JPS61169113A true JPS61169113A (en) 1986-07-30

Family

ID=11688740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP827985A Pending JPS61169113A (en) 1985-01-18 1985-01-18 Extruding method of composite material

Country Status (1)

Country Link
JP (1) JPS61169113A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6202303B1 (en) * 1999-04-08 2001-03-20 Intel Corporation Method for producing high efficiency heat sinks

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6202303B1 (en) * 1999-04-08 2001-03-20 Intel Corporation Method for producing high efficiency heat sinks
US6374491B1 (en) 1999-04-08 2002-04-23 Intel Corporation Method and apparatus for producing high efficiency heat sinks
US6539614B2 (en) 1999-04-08 2003-04-01 Intel Corporation Apparatus for producing high efficiency heat sinks

Similar Documents

Publication Publication Date Title
CA1182778A (en) Rapid extrusion of hot-short-sensitive alloys
CA2725837A1 (en) Al-mn based aluminium alloy composition combined with a homogenization treatment
Eslami et al. A comparison between cold-welded and diffusion-bonded Al/Cu bimetallic rods produced by ECAE process
US20020070012A1 (en) Multivoid heat exchanger tubing with ultra small voids and method for making the tubing
DE1953447A1 (en) Composite bearing shell and process for their manufacture
JPS61169113A (en) Extruding method of composite material
US1923514A (en) Low limit bearing and method of making same
US4186586A (en) Billet and process for producing a tubular body by forced plastic deformation
US3350907A (en) Method for extruding molybdenum and tungsten
US2284670A (en) Bearing and process of forming the same
US2260914A (en) Producing copper-base-alloy rod or the like
US2955709A (en) Hot extrusion of metals
Lowe et al. Paper 10: An Account of Some Recent Experimental Work on the Hydrostatic Extrusion of Non-Ferrous Metals
US3299687A (en) Metallurgy
US5475915A (en) Method for increasing extrusion yield in forming a superconducting rod
Hettwer et al. Aluminum Wire by Cold Hydrostatic Extrusion
JPS62167806A (en) Production of aluminum bearing metal
JPS594204B2 (en) High-temperature isostatic extrusion method for aluminum alloy containing Mg and Cu as alloying elements
Fornerod Combined Extrusion, Solution Treatment and Quenching of Aluminum Alloys.(WAA Translation)
JPH0351105A (en) Manufacture of oxide superconductor
US3766766A (en) Method of and means for commencing a deforming operation, e.g., hydrostatic extrusion of a billet
JPH0479109A (en) Manufacture of oxide superconducting wire
Thieme et al. High strain warm extrusion and warm rolling of multifilamentary Bi-2223 metallic precursor wire
Tsai et al. Hydrostatic extrusion of composite rod
Ahmed Hydrostatic Extrusion of Rosin Core Solder Wire