JPS6116908B2 - - Google Patents

Info

Publication number
JPS6116908B2
JPS6116908B2 JP52139788A JP13978877A JPS6116908B2 JP S6116908 B2 JPS6116908 B2 JP S6116908B2 JP 52139788 A JP52139788 A JP 52139788A JP 13978877 A JP13978877 A JP 13978877A JP S6116908 B2 JPS6116908 B2 JP S6116908B2
Authority
JP
Japan
Prior art keywords
methane
stream
pressure
cooling
liquefaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52139788A
Other languages
Japanese (ja)
Other versions
JPS5472203A (en
Inventor
Eru Nyuuton Chaarusu
Esu Goomaa Rii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Products and Chemicals Inc
Original Assignee
Air Products and Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Products and Chemicals Inc filed Critical Air Products and Chemicals Inc
Priority to JP13978877A priority Critical patent/JPS5472203A/en
Publication of JPS5472203A publication Critical patent/JPS5472203A/en
Publication of JPS6116908B2 publication Critical patent/JPS6116908B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0239Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling
    • F25J1/0241Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling wherein the overhead cooling comprises providing reflux for a fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0249Controlling refrigerant inventory, i.e. composition or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0249Controlling refrigerant inventory, i.e. composition or quantity
    • F25J1/025Details related to the refrigerant production or treatment, e.g. make-up supply from feed gas itself
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 天然ガスが不足し、そしてその不足のために天
然ガスの価格が高くなり、その結果、外国の需要
者への輸送を可能にするために、主要ガス産出国
の天然ガス井戸の近くで炭化水素原料から液化天
然ガスを製造するための実質的な努力が為されて
いる。液化天然ガス(LNG)の製造にははなは
だしい量のエネルギーを必要とするので、炭化水
素原料から凝縮性成分を除去するための蒸留、お
よびこの蒸留サイクルから得られるメタンを液化
するための冷却サイクルを含めてその全サイクル
は、他の燃料源と競争し得るための、極度に効率
的でなければならない。また、液化天然ガスを製
造する際のエネルギーコストが上昇するとそれだ
け利益が低下することになる。
DETAILED DESCRIPTION OF THE INVENTION When natural gas is in short supply, and the price of natural gas is high because of the scarcity, natural gas in major gas producing countries must be Substantial efforts are being made to produce liquefied natural gas from hydrocarbon feedstocks near gas wells. The production of liquefied natural gas (LNG) requires significant amounts of energy, requiring distillation to remove condensable components from the hydrocarbon feedstock and a cooling cycle to liquefy the methane obtained from this distillation cycle. The entire cycle must be extremely efficient to be competitive with other fuel sources. Furthermore, as the energy cost for producing liquefied natural gas increases, profits will decline accordingly.

米国特許第3702541号明細書には、実質的な割
合でメタンを含む炭化水素原料から凝縮性成分を
除去するための方法が開示されている。その方法
では、原料は−18℃以下の温度に冷却され、そし
てタービン中で膨張されてガスと凝縮物との混合
物が製造され、この混合物は分別されて凝縮性成
分が除去され、そしてメタンを含有する塔頂留分
が得られる。この塔頂留分は熱交換器中で冷却さ
れ、再び膨張され、次いでこの膨張したガスは熱
交換器中を流れ、そして次にこの膨張したガス
は、その膨張装置のエネルギー出力を用いて再圧
縮される。このガスはパイプラインに放出され
る。
US Pat. No. 3,702,541 discloses a method for removing condensable components from a hydrocarbon feedstock containing a substantial proportion of methane. In that method, the feedstock is cooled to a temperature below -18°C and expanded in a turbine to produce a mixture of gas and condensate, which is fractionated to remove condensable components and remove methane. An overhead fraction is obtained containing: The overhead fraction is cooled and re-expanded in a heat exchanger, the expanded gas then flows through a heat exchanger, and then the expanded gas is re-expanded using the energy output of the expansion device. Compressed. This gas is released into the pipeline.

米国特許第3792590号明細書中には、天然ガス
原料を一連の乾燥機及びフイルターに通してそれ
を乾燥し、この原料を多重割合の留分と少量割合
の留分とに分配し、その少量割合の留分を二酸化
炭素吸収剤中に通し、そして次に液化用の冷却サ
イクルに通すことからなる天然ガスの液化方法が
開示されている。その多量割合の留分は機械的に
膨張させられ、高い温度水準の冷却のために熱交
換器に通される。その多量割合の留分の膨張のエ
ネルギーはその冷却サイクル用の主コンプレツサ
ーの駆動に使用される。
No. 3,792,590 discloses passing a natural gas feedstock through a series of dryers and filters to dry it, dividing the feedstock into multiple fractions and a minor fraction; A process for liquefying natural gas is disclosed which comprises passing a fraction of the fraction through a carbon dioxide absorbent and then through a cooling cycle for liquefaction. A large proportion of the fraction is mechanically expanded and passed through a heat exchanger for cooling to high temperature levels. The energy of expansion of the major fraction is used to drive the main compressor for the refrigeration cycle.

米国特許第3763658号明細書中に開示された方
法を改良し、それで炭化水素原料ガスを供給圧力
からより低圧に等エンタルピー的に膨張させ、そ
の低圧で炭化水素原料を蒸留してメタンに富んだ
塔頂留分を得、そして次に冷却サイクルでこの塔
頂留分を液化することにより液化メタンを製造す
ることも公知である。
The method disclosed in U.S. Pat. No. 3,763,658 is improved by isenthalpically expanding a hydrocarbon feed gas from a feed pressure to a lower pressure and distilling the hydrocarbon feed at that lower pressure to produce a methane-enriched gas. It is also known to produce liquefied methane by obtaining an overhead fraction and then liquefying this overhead fraction in a cooling cycle.

特に、本発明は天然ガス原料流を液化するため
の液化方法を提供し、この方法は (a) 天然ガス原料流を60.5Kg/cm2あるいはそれ以
上の絶対圧力で供給し、 (b) この原料流を、別個の閉ループ冷却システム
中の冷媒により多数の熱交換帯域中で間接熱交
換で冷却し、 (c) 該原料流を、次工程の分別(d)で形成される塔
頂留分流及び塔底留分流の双方の臨界圧より低
い第1の圧力に等エントロピー的に膨張させ、
そしてそれによつて機械的エネルギーを得、 (d) 上記の膨張した原料流をスクラブ塔中で分別
してメタンに富んだ塔頂留分流と重質炭化水素
に富んだ塔底留分流とを生成させ、 (e) 該塔頂留分流を別個の閉ループ冷却システム
中の多成分冷媒により間接熱交換で冷却し且つ
部分的に凝縮させ、 (f) 上記の部分的に凝縮した塔頂留分流を重質炭
化水素に富んだ液体留分とメタンに富んだ蒸気
流とに相分離させ、 (g) 該液体留分を還流として上記スクラブ塔に供
給し、 (h) 上記のメタンに富んだ蒸気流を−73℃以下の
温度でコンプレツサーに直接供給し、そして前
記の膨張工程(c)で回収した機械的エネルギーを
用いて該蒸気流を少なくとも47.8Kg/cm2の絶対
圧力に圧縮してメタンに富んだ高圧流を形成
し、 (i) 該メタンに富んだ高圧流を熱交換帯域に供給
し、 (j) 該メタンに富んだ高圧流を上記冷却工程(e)で
用いたと同一の上記多成分冷媒により上記の冷
却帯域中で間接熱交換で冷却し、液化させ、且
つその液化温度よりも冷却し、そして (k) 該液化させ且つその液化温度よりも冷却した
メタン流を液化天然ガス製品流として抜き出
す、ことを特徴とする。
In particular, the present invention provides a liquefaction method for liquefying a natural gas feed stream, which method comprises: (a) supplying the natural gas feed stream at an absolute pressure of 60.5 Kg/cm 2 or greater; (c) cooling the feed stream by indirect heat exchange in a number of heat exchange zones with a refrigerant in a separate closed loop cooling system; (c) converting the feed stream into an overhead fraction formed in a subsequent step of fractionation (d); and the bottoms stream isentropically expanded to a first pressure below the critical pressure of both;
and thereby obtaining mechanical energy; (d) fractionating said expanded feed stream in a scrub column to produce a methane-enriched overhead fraction and a heavy hydrocarbon-enriched bottoms fraction; (e) cooling and partially condensing the partially condensed overhead fraction by indirect heat exchange with a multicomponent refrigerant in a separate closed-loop cooling system; and (f) (g) feeding said liquid fraction as reflux to said scrub column; (h) said methane-enriched vapor stream; is fed directly to a compressor at a temperature below -73°C, and the mechanical energy recovered in expansion step (c) above is used to compress the vapor stream to an absolute pressure of at least 47.8 Kg/cm 2 into methane. (i) supplying the methane-enriched high-pressure stream to a heat exchange zone; and (j) supplying the methane-enriched high-pressure stream to the same polypropylene stream used in cooling step (e) above; cooling by indirect heat exchange in said cooling zone with a component refrigerant, liquefied and cooled below its liquefaction temperature; and (k) converting said liquefied and cooled methane stream below its liquefaction temperature into a liquefied natural gas product. It is characterized by extracting it as a flow.

本発明の利点は従来技術によつては達成できな
いものであり、その利点としては次のものがあ
る: (a) 液化効率を実質的に犠牲にすることなしで、
臨界圧力よりも十分低い圧力で炭化水素原料か
ら価値のあるガス状成分を分別することができ
る、 (b) 比較的簡単な方法、すなわち液化する前に、
炭化水素原料を分別圧力に膨張させる際に得ら
れるエネルギーをメタンに富んだ塔頂留分を再
圧縮するのに利用することにより、炭化水素原
料からエネルギーを回収して液化効率を高める
ことができる、また (c) これまでに使用されていた方法よりも更に効
率的な方法で炭化水素原料からメタンを回収
し、そしてそのメタンを液化することがきる。
The advantages of the present invention are not achievable with the prior art and include: (a) without substantial sacrifice of liquefaction efficiency;
Valuable gaseous components can be fractionated from hydrocarbon feedstocks at pressures well below the critical pressure, (b) in a relatively simple manner, i.e. before liquefaction;
Energy can be recovered from the hydrocarbon feedstock to increase liquefaction efficiency by using the energy gained in expanding the hydrocarbon feed to fractionation pressure to recompress the methane-rich overhead fraction. , and (c) recover methane from hydrocarbon feedstocks and liquefy the methane in a more efficient manner than previously used methods.

本発明を添付図面によつて説明する。この添付
図面はガス状炭化水素原料から液化メタンを製造
するために企画されたサイクルの好ましい一実施
態様のプロセスフローシートである。
The invention will be explained with reference to the accompanying drawings. The accompanying drawing is a process flow sheet of one preferred embodiment of a cycle designed to produce liquefied methane from gaseous hydrocarbon feedstocks.

一般的に、本発明方法で使用するのに適した原
料は約60〜約90モル%のメタン含有率を有し、残
りの部分は窒素及び重質炭化水素である。これら
の原料は分別されて通常はメタンに富んだ塔頂留
分と重質炭化水素に富んだ塔底留分とが生成す
る。
Generally, feedstocks suitable for use in the process of this invention have a methane content of about 60 to about 90 mole percent, with the balance being nitrogen and heavy hydrocarbons. These feedstocks are typically fractionated to produce a methane-rich overhead fraction and a heavy hydrocarbon-rich bottoms fraction.

炭化水素原料は、二酸化炭素不純物が除去され
た後に、ライン10を通つてその系に入り、そし
て第1の熱交換器12を通る。この熱交換器12
は3個のカスケード式熱交換器の第1番目であ
り、それらのカスケード式熱交換器にはC2,C3
またはC4のパラフイン炭化水素のような単一成
分の冷媒が供給される。
The hydrocarbon feed enters the system through line 10 and passes through first heat exchanger 12 after carbon dioxide impurities have been removed. This heat exchanger 12
is the first of three cascade heat exchangers, which include C 2 , C 3
Or a single component refrigerant such as C4 paraffin hydrocarbon is supplied.

一般的に、単一成分の炭化水素冷媒としてはプ
ロパンが使用されるが、それは最も理想的な圧力
で最適温度を達成できることが判明しているから
である。
Typically, propane is used as the single component hydrocarbon refrigerant because it has been found to achieve optimal temperatures at the most ideal pressures.

炭化水素原料は熱交換器12中でそのプロパン
により20℃程度の第1の温度水準にまで冷却さ
れ、そして相分離器14に通され、その相分離器
14から凝縮した水がライン16を通して除去、
排出される。このある程度乾燥された炭化水素原
料は次にライン18を通つて一対の乾燥器20の
いずれかに送られ、この各乾燥器20はこの炭化
水素原料から実質的に全部の残留水を除去する。
この各乾燥器は乾燥剤、例えば活性アルミナを収
容しており、そして当該技術分野で周知の如く、
交互に再生できるように構成されている。次にそ
の乾燥した炭化水素原料はライン22を通つて第
2の単一成分冷媒熱交換器24に送られ、そこで
その原料が大体−13℃に冷却される。この冷却し
た炭化水素原料はライン25を通して熱交換器2
4から取り出され、そして第3の単一成分熱交換
器26に送られる。そこで約−33℃の温度に冷却
される。
The hydrocarbon feedstock is cooled with the propane in heat exchanger 12 to a first temperature level of about 20° C. and passed through phase separator 14 from which condensed water is removed through line 16. ,
be discharged. This partially dried hydrocarbon feedstock is then passed through line 18 to either of a pair of dryers 20, each dryer 20 removing substantially all residual water from the hydrocarbon feedstock.
Each dryer contains a desiccant, such as activated alumina, and as is well known in the art.
It is configured so that it can be played alternately. The dried hydrocarbon feedstock is then passed through line 22 to a second single component refrigerant heat exchanger 24 where the feedstock is cooled to approximately -13C. This cooled hydrocarbon feedstock passes through line 25 to heat exchanger 2
4 and sent to a third single component heat exchanger 26. There, it is cooled to a temperature of approximately -33°C.

典型的には、熱交換器26から出た原料流は−
33℃の温度及び60.5Kg/cm2の圧力で毎時炭化水素
原料26,201モルの速度で流れ、またその炭化水
素原料は、モル%で大体0.35%の窒素、83%のメ
タン、10.5%のエタン、3.7%のプロパン、0.65%
のイソブタン、1.03%のブタン、0.23%のイソペ
ンタン、0.18%のペンタンおよび0.18%のヘキサ
ンからなる。(本明細書におけるすべての圧力は
絶体圧力である。)冷却された原料はライン27
を通つて相分離器29に移動し、そこで液相と蒸
気相に分けられる。この蒸気相はライン31を通
して取り出され、そして次に、共通のシヤフト3
7に設けられた膨張器33とコンプレツサー35
とを有する膨張器―コンプレツサーの組合せに送
られる。この炭化水素原料は約60.5Kg/cm2の圧力
から33.7Kg/cm2の圧力にまで等エントロピー的に
膨張され、そしてその膨張の間に(消費された仕
事の結果として)約−58℃の温度にまで冷却され
る。膨張器33からの排出物はライン39を通し
て送られ、そして相分離器29の底からくるライ
ン41からの液体と一緒になり、その後者は予め
絞り弁23を通して減圧されている。この一緒に
された流れはライン43によりスクラブ塔28に
送られ、そこから重質炭化水素が排出ライン30
を通して凝縮物としてガス状炭化水素から分離さ
れる。メタン、エタンおよびプロパンを含むより
軽質の炭化水素の少量も取り出され、そして後で
述べるように補充用冷媒を提供できるように分別
システム(図示せず)に送る得る。スクラブ塔2
8の底からくる流れの大部分は、このスクラブ塔
の底トレイを通して蒸気を供給するようにスチー
ムリボイラー32に再循環される。典型的には、
この方法ではより重質の炭化水素を除去する必要
がある。なぜならもしそれらの重質炭化水素が除
去されないと、それらの重質炭化水素が下流の液
化サイクルで凍結して装置を閉そくするからであ
る。更に、原料中のエタン、プロパン、ブタン及
びガソリンのような諸成分の含有率により、また
それらの諸成分の別個の製品としての相対的な価
値により、原料からそれらの諸成分を回収するこ
とがしばしば望まれる。
Typically, the feed stream exiting heat exchanger 26 is -
It flows at a rate of 26,201 moles of hydrocarbon feedstock per hour at a temperature of 33°C and a pressure of 60.5 Kg/ cm2 , and the hydrocarbon feedstock contains approximately 0.35% nitrogen, 83% methane, 10.5% methane in mole percent. Ethane, 3.7% Propane, 0.65%
of isobutane, 1.03% butane, 0.23% isopentane, 0.18% pentane and 0.18% hexane. (All pressures herein are absolute pressures.) The cooled feedstock is transferred to line 27
through a phase separator 29 where it is separated into a liquid phase and a vapor phase. This vapor phase is taken off through line 31 and then into the common shaft 3
Expander 33 and compressor 35 provided in 7
and an expander-compressor combination. This hydrocarbon feedstock is isentropically expanded from a pressure of about 60.5 Kg/cm 2 to a pressure of 33.7 Kg/cm 2 and during the expansion (as a result of the work expended) a temperature of about −58° C. cooled to temperature. The effluent from expander 33 is sent through line 39 and is combined with the liquid from line 41 coming from the bottom of phase separator 29, the latter having been previously depressurized through throttle valve 23. This combined stream is sent by line 43 to scrub column 28 from where heavy hydrocarbons are delivered to discharge line 30.
The gaseous hydrocarbons are separated from the gaseous hydrocarbons as condensate. Small amounts of lighter hydrocarbons, including methane, ethane, and propane, may also be removed and sent to a fractionation system (not shown) to provide replenishment refrigerant as described below. scrub tower 2
Most of the stream coming from the bottom of the scrub column 8 is recycled to the steam reboiler 32 to provide steam through the bottom tray of this scrub column. Typically,
This method requires removal of heavier hydrocarbons. This is because if the heavy hydrocarbons are not removed, they will freeze in the downstream liquefaction cycle and block the unit. Additionally, the content of components such as ethane, propane, butane, and gasoline in the feedstock, and the relative value of those components as separate products, may dictate the recovery of those components from the feedstock. often desired.

60.5Kg/cm2の供給圧力での分別は望ましくな
い。なぜならメタンに富んだ所望の塔頂留分のそ
の圧力はその臨界圧力と実質的に同じかあるいは
わずかに高いからである。
Fractionation at a feed pressure of 60.5 Kg/cm 2 is undesirable. This is because the pressure of the desired methane-rich overhead fraction is substantially the same as or slightly higher than its critical pressure.

臨界圧力およびそれ以上の圧力、そして臨界圧
力よりわずかに低い圧力においてさえも、その液
及び蒸気の密度はほぼ同一であり、従つてその液
体からガスを分別することが困難である。一般的
には、圧力を塔頂留分あるいは塔底留分のいずれ
かの臨界力(いずれの圧力がより低いにしても)
より少なくとも約20%低い圧力に低下させるこ
と、即ち約45.7〜約52.7Kg/cm2の範囲の圧力に低
下させることにより、蒸気相と液相との密度間に
十分な差異が生じて適当な蒸留即ち分別が達成で
きる。その圧力を、最適の分別が達成できるよう
に約14.1〜約45.7Kg/cm2の範囲に低下させるのが
好ましい。
At and above the critical pressure, and even at pressures slightly below the critical pressure, the densities of the liquid and vapor are approximately the same, making it difficult to separate the gas from the liquid. Generally, the pressure is determined by the critical force of either the overhead or bottom fraction (whichever pressure is lower).
By reducing the pressure to at least about 20% less than Distillation or fractionation can be accomplished. Preferably, the pressure is reduced to a range of about 14.1 to about 45.7 Kg/cm 2 so that optimal fractionation is achieved.

毎時約27.484モルのメタンに富んだ(例えばメ
タンが約93%)天然ガス原料流が塔頂留分蒸気と
してスクラブ塔28から出る。一般的には、この
塔頂留分は約80%以上そして好ましくは約90%以
上のメタンを含有している。次にこの塔頂留分蒸
気はライン34を通つて主熱交換器50中の第1
の管束36に送られ、そして多成分冷媒によつて
約−66℃の温度から約−79.5℃の温度に冷却され
る。この冷却した蒸気は主熱交換器50の第1の
管束36からライン36aにより取出され、そし
て第2の相分離器38に送られ、その相分離器3
8から更に凝縮した炭化水素が分離される。この
液状凝縮物はライン40を通つてポンプ42とラ
イン44を経由してスクラブ塔28に戻されてス
クラブ塔28の還流となる。メタンに富んだ塔頂
留分は蒸気として相分離器38の頂部からライン
45を経由して去る。その塔頂留分が相分離器3
8を去るときの圧力と温度は大体32.7Kg/cm2の圧
力と−80℃の温度である。
About 27.484 moles per hour of a methane-enriched (eg, about 93% methane) natural gas feed stream exits scrub column 28 as overhead vapor. Generally, the overhead fraction contains about 80% or more and preferably about 90% or more methane. This overhead vapor then passes through line 34 to the first
tube bundle 36 and is cooled by a multicomponent refrigerant from a temperature of about -66°C to a temperature of about -79.5°C. This cooled steam is removed from the first tube bundle 36 of the main heat exchanger 50 by line 36a and sent to the second phase separator 38, which phase separator 3
Further condensed hydrocarbons are separated from 8. This liquid condensate is returned through line 40 to scrub column 28 via pump 42 and line 44 to become the reflux of scrub column 28. The methane-rich overhead fraction leaves the top of phase separator 38 as vapor via line 45. The top fraction is transferred to phase separator 3.
The pressure and temperature when leaving 8 are approximately 32.7 Kg/cm 2 and -80°C.

プラント効率が従来技術と比較して増大するの
は次の工程の組合せにおいてである。この組合せ
工程では、毎時約22,479モルの塔頂留分が相分
理器38からライン45を通して取出され、そし
て膨張器33によりシヤフト37を介して駆動さ
れるコンプレツサー35に送られ、そして膨張器
33から得られる総仕事量により可能な最高圧力
すなわち47.8Kg/cm2に圧縮されらる。換言すれ
ば、メタンに富んだ塔頂留分を圧縮するためのエ
ネルギーは、炭化水素原料が分別圧力即ち蒸留圧
力にまで圧力低下されるときの該原料の膨張エネ
ルギーを利用して得られる。今までは、メタンに
富んだ塔頂留分は圧縮せずに液化サイクルに送ら
れていたので、その結果として、全液化サイクル
の効率は実質的に低下していた。従来は多くの場
合に、動力消費を最小限にするために蒸留サイク
ル全体にわたつて入口圧力の高さ、例えば45.7〜
49.2Kg/cm2を保持するのが通例であつた。しかし
ながら、その分別は非効率的であつた。本発明の
利点は、圧力を製造すべき塔頂留分あるいは塔底
留分のいずれかの臨界圧よりも十分に低く低下さ
せることができ、そして所望の分別が全プラント
の効率を実質的に犠牲にすることなく達成できる
ことである。その理由は、メタンに富んだ塔頂留
分を、膨張時に得られるエネルギーにより実質的
により高い圧力に圧縮してこの方法をより効率的
にすることができるからである。
It is in the combination of the following steps that the plant efficiency is increased compared to the prior art. In this combined process, approximately 22,479 moles of overhead fraction per hour are removed from phase separator 38 through line 45 and sent by expander 33 to compressor 35 driven via shaft 37 and expanded The total work obtained from the vessel 33 compresses it to the highest possible pressure, that is, 47.8 Kg/cm 2 . In other words, the energy to compress the methane-rich overhead fraction is obtained by utilizing the expansion energy of the hydrocarbon feed as it is reduced in pressure to the fractionation or distillation pressure. Until now, the methane-rich overhead fraction was sent to the liquefaction cycle without being compressed, resulting in a substantial reduction in the efficiency of the overall liquefaction cycle. Traditionally, the inlet pressure is often kept high throughout the distillation cycle to minimize power consumption, e.g.
It was customary to maintain a weight of 49.2 Kg/cm 2 . However, this separation was inefficient. An advantage of the present invention is that the pressure can be reduced well below the critical pressure of either the overhead or bottom fraction to be produced, and that the desired fractionation substantially reduces the overall plant efficiency. This can be achieved without sacrifice. This is because the methane-rich overhead fraction can be compressed to a substantially higher pressure due to the energy gained during expansion, making the process more efficient.

圧縮後、メタンに富んだ塔頂留分は通常の冷却
サイクル、すなわちジユール―トムソン、等エン
トロピー膨張により液化あるいは液化冷媒により
冷却することができる。図面に示した如き好まし
い液化サイクルは市販されているコイル巻き熱交
換器中の多成分冷媒を使用している。
After compression, the methane-rich overhead fraction can be liquefied by a conventional refrigeration cycle, ie, Joel-Thompson, isentropic expansion, or cooled by a liquefied refrigerant. The preferred liquefaction cycle, as shown in the drawings, uses a multicomponent refrigerant in a commercially available coiled heat exchanger.

液化サイクルにおいて、圧縮されている塔頂留
分流はライン47を通して二帯域主熱交換器50
の1つの管回路48に送られる。この塔頂留分流
は管回路48を通して上方に送られ、そしてスプ
レーヘツダー52からこの管回路に下向きにスプ
レーされた第1の多成分冷媒の向流により冷却さ
れる。この多成分冷媒は一般に2〜12モル%の窒
素、35〜45モル%のメタン、32〜42モル%のエタ
ンおよび9〜19モル%のプロパンから構成されて
いる。図示した例の場合は、その冷媒は10モル%
のN2,40モル%のCH4,35モル%のC2H6および
15モル%のC3H8から構成されている。メタンに
富んだ塔頂留分は直接第2の管回路54に通さ
れ、そしてこの管回路中を上方に送られ、そして
その回路中でスプレーヘツダー56から下方にス
プレーされる第2の向流の多成分冷媒留分によつ
て冷却される。この塔頂留分は、−164℃程度の温
度と38.7Kg/cm2程度の圧力とを有する完全に液体
で液化温度よりも冷却されている流れとして管回
路54の頂部から抜き出されら。次に、この液化
され且つその液化温度よりもかなり冷却されてい
る原料流はバルブ58中で5.3Kg/cm2程度の圧力
と−161℃程度の温度に膨張される。その液化温
度よりかなり冷却されているので、揮散は発生せ
ず、そしてその液体は貯蔵タンクに直接放出さ
れ、そのタンク中で大気圧および−161℃程度の
温度で貯蔵できる。
In the liquefaction cycle, the compressed overhead fraction stream passes through line 47 to two-zone main heat exchanger 50.
to one tube circuit 48. This overhead fraction is sent upwardly through tube circuit 48 and cooled by a countercurrent of a first multicomponent refrigerant sprayed downwardly into the tube circuit from spray header 52. This multicomponent refrigerant generally consists of 2-12 mole percent nitrogen, 35-45 mole percent methane, 32-42 mole percent ethane, and 9-19 mole percent propane. In the example shown, the refrigerant is 10 mol%
of N2 , 40 mol% CH4 , 35 mol% C2H6 and
It is composed of 15 mol% C3H8 . The methane-enriched overhead fraction is passed directly to a second tube circuit 54 and sent upwardly through this tube circuit and into a second direction where it is sprayed downwardly from a spray header 56. It is cooled by a multicomponent refrigerant fraction of the stream. This overhead fraction is withdrawn from the top of tube circuit 54 as a fully liquid, cooled below liquefaction temperature stream having a temperature on the order of -164 DEG C. and a pressure on the order of 38.7 Kg/ cm2 . This liquefied feed stream, which has been cooled significantly below its liquefaction temperature, is then expanded in valve 58 to a pressure on the order of 5.3 kg/cm 2 and a temperature on the order of -161°C. Since it has been cooled well below its liquefaction temperature, no volatilization occurs and the liquid is discharged directly into a storage tank where it can be stored at atmospheric pressure and temperatures as low as -161°C.

毎時約22,478モルのLNGが得られる。 Approximately 22,478 moles of LNG are obtained per hour.

熱交換器12,24および26に戻つて説明す
ると、プロパンあるいは他の単一成分冷媒は第1
の段階60と、中間ホイールに吸引流を含む第2
の段階62とを有するコンプレツサーで圧縮され
る。その圧縮されたプロパンは水冷却器64中で
冷却されて完全に凝縮され、そして熱交換器12
に入る前にバルブ66中で14.2Kg/cm2の圧力から
大体8.2Kg/cm2の圧力に膨張され、そしてこのよ
うな膨張によつて40.6℃から18.4℃に冷却され
る。熱交換器12並びに他のプロパン熱交換器
は、例えば液体プロパン中に浸漬したU字管を有
するような通常の設計のものでよい。しかして、
この液体プロパンの一部はU字管中の炭化水素原
料の冷却中に蒸発し、そしてこの蒸気はライン6
8を通して前記段階62中の中間ホイールに戻つ
てくる。その残りの液状冷媒は熱交換器12から
ライン70を通して分枝ライン72と90に送ら
れる。分枝ライン72中にある部分のプロパンは
バルブ74によつて3.0Kg/cm2の程度の圧力に膨
張され、そして−16℃程度の温度で熱交換器24
に導入される。液状冷媒の第2の部分は熱交換器
24中で原料流を冷却する際に蒸発し、そしてラ
イン76を通つて段階62の第1のホイールに戻
される。その残りの液状プロパンは熱交換器24
からライン78を通して送られ、そしてバルブ8
0中で1.3Kg/cm2程度の圧力に膨張され、そして
−37℃程度の温度で熱交換器26に導入される。
この部分の冷媒は原料の冷却中に蒸発し、そして
この冷却蒸気はライン82と84を通つて段階6
0の吸引側に戻される。しかして、原料は3つの
単一成分冷媒熱交換器中で連続的に冷却され、こ
の場合に、同一の冷媒が三段階の、カスケード冷
媒サイクル中で、漸進的に圧力と温度を低下させ
ながら利用されていることが明らかであろう。
Returning to heat exchangers 12, 24 and 26, propane or other single component refrigerant is
step 60 and a second step 60 including a suction flow in the intermediate wheel.
and a compressor having a step 62. The compressed propane is cooled and fully condensed in water cooler 64 and then in heat exchanger 12.
It is expanded in valve 66 from a pressure of 14.2 Kg/cm 2 to a pressure of approximately 8.2 Kg/cm 2 before entering, and is cooled from 40.6°C to 18.4°C by such expansion. Heat exchanger 12 as well as other propane heat exchangers may be of conventional design, such as having U-tubes immersed in liquid propane. However,
Some of this liquid propane evaporates during cooling of the hydrocarbon feed in the U-tube, and this vapor is transferred to line 6.
8 and returns to the intermediate wheel in step 62. The remaining liquid refrigerant is sent from heat exchanger 12 through line 70 to branch lines 72 and 90. The portion of propane in branch line 72 is expanded by valve 74 to a pressure on the order of 3.0 Kg/cm 2 and transferred to heat exchanger 24 at a temperature on the order of -16°C.
will be introduced in A second portion of liquid refrigerant is evaporated in cooling the feed stream in heat exchanger 24 and returned to the first wheel of stage 62 through line 76. The remaining liquid propane is transferred to the heat exchanger 24.
through line 78 and valve 8
It is expanded to a pressure of about 1.3 kg/cm 2 in 0 and introduced into the heat exchanger 26 at a temperature of about -37°C.
This portion of refrigerant evaporates during cooling of the feedstock, and this cooling vapor passes through lines 82 and 84 to stage 6.
It is returned to the suction side of 0. Thus, the feedstock is continuously cooled in three single-component refrigerant heat exchangers, where the same refrigerant is passed through a three-stage, cascading refrigerant cycle with progressively lower pressure and temperature. It is obvious that it is being used.

上述のカスケードサイクルで炭化水素原料を冷
却する以外にも、上記の単一成分冷媒は、主熱交
換器50で塔頂留分を液化し且その液化温度より
も冷却するのに実質的に利用されている多成分冷
媒の冷却および部分的凝縮にも利用できる。この
単一成分冷媒による多成分冷媒の冷却は、熱交換
器12から主ライン70と分枝ライン90とを通
して供給される。第2部分の液状プロパンによつ
て熱交換器86及び88で行われる。この部分の
プロパン冷媒はバルブ92で3.0Kg/cm2程度の圧
力に膨張され、そして−16℃程度の温度で熱交換
器86中に導入される。プロパンの一部は多成分
冷媒の冷却中に蒸発し、そして熱交換器86から
ライン87を通して抜き出され、そして段階62
の第1のホイールに戻される。残つている液状プ
ロパンは熱交換器86からライン93と膨張バル
ブ94を経由して熱交換器88へ送られ、そのプ
ロパンは1.3Kg/cm2程度の圧力と大体−37℃の温
度で熱交換器88に入る。この部分は原料の冷却
中に蒸発し、そしてその冷媒蒸気はライン96と
84を経由してコンプレツサー60の吸引側に戻
される。プロパンが大気中に漏れることに起因し
てそのプロパンサイクルから失われる冷媒を補填
するために、補充ライン97をバルブ66の下流
に設けることができ、それで適当な液状ブロパン
がこの系中で不足したときはコンプレツサー60
と62の吸引側に新たな液状プロパンを加えるこ
とができる。
In addition to cooling the hydrocarbon feedstock in the cascade cycle described above, the single component refrigerant described above is utilized substantially to liquefy the overhead fraction in the main heat exchanger 50 and cool it below its liquefaction temperature. It can also be used for cooling and partial condensation of multi-component refrigerants. This cooling of the multi-component refrigerant by the single-component refrigerant is provided from the heat exchanger 12 through the main line 70 and the branch line 90. A second portion of liquid propane is used in heat exchangers 86 and 88. This portion of the propane refrigerant is expanded to a pressure of about 3.0 kg/cm 2 by a valve 92, and introduced into the heat exchanger 86 at a temperature of about -16°C. A portion of the propane evaporates during cooling of the multicomponent refrigerant and is withdrawn from heat exchanger 86 through line 87 and step 62
is returned to the first wheel. The remaining liquid propane is sent from the heat exchanger 86 via the line 93 and the expansion valve 94 to the heat exchanger 88, where the propane is heat exchanged at a pressure of about 1.3 kg/cm 2 and a temperature of approximately -37°C. Enter vessel 88. This portion evaporates during cooling of the feedstock, and the refrigerant vapor is returned to the suction side of compressor 60 via lines 96 and 84. A replenishment line 97 can be provided downstream of valve 66 to replace refrigerant lost from the propane cycle due to propane leaking into the atmosphere, so that adequate liquid propane is lacking in the system. Time Compressor 60
Fresh liquid propane can be added to the suction side of and 62.

10モル%のN2,40モル%のCH4,35モル%の
C2H6および15モル%のC3H8からなる多成分冷媒
は中間冷却器104と後冷却器106を有するコ
ンプレツサー100及び102中で圧縮される。
ライン108中の多成分冷媒蒸気の圧力は一般的
には約35.2〜約84.4Kg/cm2の間で変化し得る。図
示の例の場合には、ライン108中の圧力は約
45.7Kg/cm2であり、その温度は約41.1℃である。
この多成分冷媒はライン108を通つて熱交換器
86に送られ、そこでプロパンによりその液化温
度よりも冷却され、そして次に直接に第2のプロ
パン熱交換器88中を通り、そこから44.6Kg/cm2
の圧力と−33℃程度の温度で放出される。この多
成分冷媒はライン109を通つて抜き出されそし
て相分離器110に送られる。
10 mol% N2 , 40 mol% CH4 , 35 mol%
A multicomponent refrigerant consisting of C 2 H 6 and 15 mole percent C 3 H 8 is compressed in compressors 100 and 102 having an intercooler 104 and a postcooler 106.
The pressure of the multicomponent refrigerant vapor in line 108 may generally vary between about 35.2 and about 84.4 kg/ cm2 . In the illustrated example, the pressure in line 108 is approximately
It is 45.7Kg/cm 2 and its temperature is about 41.1℃.
This multi-component refrigerant is passed through line 108 to heat exchanger 86 where it is cooled below its liquefaction temperature by propane and then passed directly into a second propane heat exchanger 88 from which 44.6 kg / cm2
It is released at a pressure of about -33°C. This multicomponent refrigerant is withdrawn through line 109 and sent to phase separator 110.

相分離器110中の液状凝縮物はライン112
を通して主熱交換器50の管回路114に送ら
れ、そこで液化温度より低い−112℃程度の温度
に冷却される。この液化温度よりも冷却された液
体はバルブ116で約3.5Kg/cm程度の圧力に膨
張され、それによつて少量が揮発して蒸気とな
り、その温度が約−119℃に降下する。この液体
およびその揮発した蒸気は、管回路36,48,
122おび114上に下向きに流れる冷媒が与え
られるようにライン118とスプレーヘツダー5
2を経由して熱交換器50に注入される。
The liquid condensate in phase separator 110 is transferred to line 112
is sent to the tube circuit 114 of the main heat exchanger 50, where it is cooled to a temperature of about -112°C, which is lower than the liquefaction temperature. The liquid cooled below the liquefaction temperature is expanded to a pressure of about 3.5 Kg/cm by valve 116, whereby a small amount evaporates into vapor and its temperature drops to about -119°C. This liquid and its volatilized vapor are transferred to the pipe circuits 36, 48,
line 118 and spray header 5 to provide downwardly flowing refrigerant onto 122 and 114.
2 into the heat exchanger 50.

相分離器110に戻つて説明すると、塔頂留分
蒸気はライン120を通して管回路122に送ら
れ、そこでその蒸気は、下方にスプレーされた多
成冷媒によつて冷却、凝縮される。管回路122
中の凝縮した多成分冷媒は第2の管回路124に
直接送られ、そこで液化温度より低い−163℃程
度の温度に冷却される。この液化温度よりも冷却
された液体冷媒はバルブ128中で3.6Kg/cm2
度の圧力に膨張され、それによつてその小部分が
揮発、蒸気化し、そしてその温度が大体−167℃
に降下する。この液体および揮発したした蒸気
は、ライン130とスプレーヘツダー56を経由
して熱交換器50中に注入され、それで管回路5
4と124上に下方に流れる冷媒となり、その後
それはスプレーヘツダー52からの多成分冷媒と
一緒になる。この一緒になつた多成分冷媒は次に
管回路36,48,114および122との熱交
換で蒸発される。結果として、すべてのこの多成
分冷媒は熱交換器50の底で蒸気相として再び一
緒になり、抜き出され、そしてライン136と1
38を通つてコンプレツサー100の吸引側に送
られる。かように、この系の多成分冷媒は別個の
閉サイクルを形成しており、それによつてメタン
塔頂留分がプロパン水準から液化温度より低い最
終冷却温度約−164℃にまで最も効率的に冷却さ
れる。
Returning to phase separator 110, the overhead vapor is passed through line 120 to tube circuit 122 where it is cooled and condensed by a downwardly sprayed polymorphic refrigerant. Tube circuit 122
The condensed multi-component refrigerant therein is sent directly to the second tube circuit 124 where it is cooled to a temperature on the order of -163 DEG C., which is below the liquefaction temperature. The liquid refrigerant cooled below its liquefaction temperature is expanded in valve 128 to a pressure of about 3.6 kg/cm 2 , whereby a small portion of it is volatilized and vaporized, and its temperature is approximately -167°C.
descend to This liquid and volatilized vapor is injected into heat exchanger 50 via line 130 and spray header 56, and then into tube circuit 5.
4 and 124, which then joins with the multicomponent refrigerant from spray header 52. This combined multicomponent refrigerant is then evaporated in heat exchange with tube circuits 36, 48, 114 and 122. As a result, all this multicomponent refrigerant is recombined as a vapor phase at the bottom of heat exchanger 50, withdrawn, and passed through lines 136 and 1.
38 to the suction side of the compressor 100. As such, the multicomponent refrigerants in this system form separate closed cycles that most efficiently transport the methane overhead fraction from propane levels to a final cooling temperature of approximately -164°C below the liquefaction temperature. cooled down.

補充ライン140とバルブ142を設けてるこ
とができ、それで避けられない冷媒の損失を補填
する必要があるときに、そのような多成分冷媒を
加えることができる。前述の通り、この補充冷媒
はスクラブ塔からライン30を通して放出された
炭化水素を分別し、そして更に窒素を加えること
により得ることができる。
A replenishment line 140 and valve 142 may be provided so that such multi-component refrigerant can be added when needed to compensate for unavoidable refrigerant losses. As previously mentioned, this make-up refrigerant can be obtained by fractionating the hydrocarbons discharged from the scrub column through line 30 and adding additional nitrogen.

上述の本発明の実施態様は、液化効率を実質的
に犠牲にすることなしで重質炭化水素からガス状
炭化水素を最適且つ望ましく分別することができ
る。従来技術においては、例えば、分別は約49.2
Kg/cm2の圧力で行われ、次いで同じ圧力で液化さ
れていた。分別のためにそれより低い圧力を使用
すると、望ましい液化効率を達成するのに必要な
動力コストがそれだけ高くなるのでそのような低
い圧力は使用されなかつた。
The embodiments of the invention described above are capable of optimally and desirably fractionating gaseous hydrocarbons from heavier hydrocarbons without substantially sacrificing liquefaction efficiency. In the prior art, for example, fractionation is approximately 49.2
It was carried out at a pressure of Kg/cm 2 and then liquefied at the same pressure. Lower pressures were not used for fractionation because the power costs required to achieve the desired liquefaction efficiency would be correspondingly higher.

本発明の別の実施態様もまた、本発明の総合効
果を達成する。すなわち、最適のあるいは望まし
い圧力で分別することができ、そしてしかも卓越
した液化効率を得ることができる。例えば、炭化
水素原料の供給圧力が大体84.4Kg/cm2であるるな
らば、33.7Kg/cm2に膨張させ、分別し、そして次
にその膨張から得られるエネルギーを用いて塔頂
留分を約52.7Kg/cm2に再圧縮し、その後液化する
ことが可能であ。かように、所望の分別が良好な
液化効率で達成できる。他方、従来技術方法を同
一圧力の原料に使用すると、その原料は等エンタ
ルピー的に膨張し、49.2Kg/cm2で分別され、そし
て次に49.2Kg/cm2で液化される。84.4Kg/cm2の原
料を利用する従来技術の場合に使用される如き分
別並びに液化は本発明方法の如く効率的でないこ
とが明らかである。
Other embodiments of the invention also achieve the overall effects of the invention. That is, fractionation can be performed at an optimal or desired pressure, and excellent liquefaction efficiency can be obtained. For example, if the hydrocarbon feed pressure is approximately 84.4 Kg/cm 2 , it is expanded to 33.7 Kg/cm 2 , fractionated, and then the energy obtained from the expansion is used to generate the overhead fraction. It can be recompressed to approximately 52.7Kg/cm 2 and then liquefied. In this way, the desired fractionation can be achieved with good liquefaction efficiency. On the other hand, if the prior art method were used with the same pressure feedstock, the feedstock would expand isenthalpically, fractionate at 49.2 Kg/cm 2 and then liquefy at 49.2 Kg/cm 2 . It is clear that fractionation and liquefaction as used in the prior art utilizing 84.4 Kg/cm 2 of feedstock is not as efficient as in the process of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

図はガス状炭化水素原料から液化メタンを製造
すべく企画したサイクルの好ましい実施態様のプ
ロセスフローシートである。 図中、12,24,26,50,86,88…
…熱交換器、14,29,38,110……相分
離器、20……乾燥器、28……スクラブ塔、3
3……膨張器、35,60,62,100,10
2……コンプレツサー。
The figure is a process flow sheet of a preferred embodiment of a cycle designed to produce liquefied methane from gaseous hydrocarbon feedstocks. In the figure, 12, 24, 26, 50, 86, 88...
... Heat exchanger, 14, 29, 38, 110 ... Phase separator, 20 ... Dryer, 28 ... Scrub column, 3
3... Expander, 35, 60, 62, 100, 10
2... Compressor.

Claims (1)

【特許請求の範囲】 1 (a)天然ガス原料流を60.5Kg/cm2あるいはそれ
以上の絶体圧力で供給し、 (b) 該原料流を別個の閉ループ冷却システム中の
冷媒により多数の熱交換帯域中で間接熱交換で
冷却し、 (c) 該原料流を、次工程の分別(d)で形成される塔
頂留分流と塔底留分流の双方の臨界圧力より低
い第1の圧力にまで等エントロピー的に膨張さ
せ、そしてそれによつて機械的エネルギーを
得、 (d)上記の膨張した原料流をスクラブ塔中で分別し
てメタンに富んだ塔頂留分流と重質炭化水素に
富んだ塔底留分流とを生成させ、 (e) 該塔頂留分流を別個の閉ループ冷却システム
中の多成分冷媒により間接熱交換で冷却し且つ
部分的に凝縮させ、 (f) 上記の部分的に凝縮した塔頂留分流を重質炭
化水素に富んだ液状留分としてメタンに富んだ
蒸気流とに相分離させ、 (g) 該液状留分を還流として上記スクラブ塔に供
給し、 (h) 上記のメタンに富んだ蒸気流を−73℃以下の
温度でコンプレツサーに直接供給し、そして前
記の膨張工程(c)で回収した機械的エネルギーを
用いて該蒸気流を少なくとも47.8Kg/cm2の絶体
圧力にまで圧縮してメタンに富んだ高圧流を形
成し、 (i) 該メタンに富んだ高圧流を熱交換帯域に供給
し、 (j) 該メタンに富んだ高圧流を上記の冷却工程(e)
で用いたと同一の上記多成分冷媒により上記の
冷却帯域中で間接熱交換で冷却し、液化させ、
且つその液化温度よりも冷却し、そして (k) 該液化させ且つその液化温度よりも冷却した
メタン流を液化天然ガス製品流として抜き出
す、 ことを特徴とする天然ガス原料流を液化するため
の液化方法。 2 天然ガス原料流を60.5〜84.4Kg/cm2の範囲の
絶対圧力で供給することを特徴とする特許請求の
範囲第1項記載の液化方法。 3 メタンに富んだ蒸気流を圧縮工程(h)中で47.8
〜52.7Kg/cm2の範囲の絶対圧力に圧縮することを
特徴とする特許請求の範囲第1項または第2項記
載の液化方法。 4 原料流を膨張工程(c)で14.1〜45.7Kg/cm2の範
囲内の絶対圧力に膨張させることを特徴とする特
許請求の範囲第1項、第2項または第3項記載の
液化方法。
Claims: 1. (a) providing a natural gas feed stream at an absolute pressure of 60.5 Kg/cm 2 or more; (b) converting the feed stream to multiple heat sources by a refrigerant in a separate closed-loop cooling system; (c) cooling the feed stream by indirect heat exchange in an exchange zone; (d) fractionating the expanded feed stream in a scrub column to produce a methane-rich overhead fraction and a heavy hydrocarbon-rich overhead fraction; (e) cooling and partially condensing the overhead fraction by indirect heat exchange with a multicomponent refrigerant in a separate closed-loop cooling system; (g) feeding the liquid fraction as reflux to the scrub column, (h ) feeding said methane-rich vapor stream directly to a compressor at a temperature below -73° C. and using the mechanical energy recovered in said expansion step (c) said vapor stream to at least 47.8 Kg/cm 2 . (i) supplying the methane-rich high-pressure stream to a heat exchange zone; and (j) compressing the methane-rich high-pressure stream to an absolute pressure of Cooling process (e)
cooling and liquefying by indirect heat exchange in the cooling zone with the same multicomponent refrigerant used in
and (k) extracting the liquefied and cooled methane stream below its liquefaction temperature as a liquefied natural gas product stream. Method. 2. A liquefaction process according to claim 1, characterized in that the natural gas feed stream is supplied at an absolute pressure in the range of 60.5 to 84.4 kg/cm 2 . 3.47.8 methane-rich vapor stream during compression step (h)
A liquefaction method according to claim 1 or 2, characterized in that the liquefaction method is compressed to an absolute pressure in the range of ~52.7 Kg/cm 2 . 4. The liquefaction method according to claim 1, 2 or 3, characterized in that the raw material stream is expanded to an absolute pressure within the range of 14.1 to 45.7 kg/cm 2 in the expansion step (c). .
JP13978877A 1977-11-21 1977-11-21 Production of liquefied methane Granted JPS5472203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13978877A JPS5472203A (en) 1977-11-21 1977-11-21 Production of liquefied methane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13978877A JPS5472203A (en) 1977-11-21 1977-11-21 Production of liquefied methane

Publications (2)

Publication Number Publication Date
JPS5472203A JPS5472203A (en) 1979-06-09
JPS6116908B2 true JPS6116908B2 (en) 1986-05-02

Family

ID=15253432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13978877A Granted JPS5472203A (en) 1977-11-21 1977-11-21 Production of liquefied methane

Country Status (1)

Country Link
JP (1) JPS5472203A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02204U (en) * 1988-06-15 1990-01-05

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4445916A (en) * 1982-08-30 1984-05-01 Newton Charles L Process for liquefying methane
DZ2533A1 (en) * 1997-06-20 2003-03-08 Exxon Production Research Co Advanced component refrigeration process for liquefying natural gas.
TW477890B (en) * 1998-05-21 2002-03-01 Shell Int Research Method of liquefying a stream enriched in methane
UA76750C2 (en) * 2001-06-08 2006-09-15 Елккорп Method for liquefying natural gas (versions)
TWI313186B (en) * 2003-02-10 2009-08-11 Shell Int Research Removing natural gas liquids from a gaseous natural gas stream
WO2005045338A1 (en) * 2003-10-30 2005-05-19 Fluor Technologies Corporation Flexible ngl process and methods
JP6225049B2 (en) * 2013-12-26 2017-11-01 千代田化工建設株式会社 Natural gas liquefaction system and method
JP6517251B2 (en) * 2013-12-26 2019-05-22 千代田化工建設株式会社 Natural gas liquefaction system and liquefaction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02204U (en) * 1988-06-15 1990-01-05

Also Published As

Publication number Publication date
JPS5472203A (en) 1979-06-09

Similar Documents

Publication Publication Date Title
US4065278A (en) Process for manufacturing liquefied methane
US4486209A (en) Recovering condensables from a hydrocarbon gaseous stream
JP5997798B2 (en) Nitrogen removal by isobaric open frozen natural gas liquid recovery
US3205669A (en) Recovery of natural gas liquids, helium concentrate, and pure nitrogen
US4453956A (en) Recovering condensables from natural gas
USRE33408E (en) Process for LPG recovery
JP4571934B2 (en) Hydrocarbon gas treatment
CA1195230A (en) Separation of nitrogen from natural gas
JP5276763B2 (en) Low reflux and high yield hydrocarbon recovery method
US5036671A (en) Method of liquefying natural gas
JP5793145B2 (en) Hydrocarbon gas treatment
US5275005A (en) Gas processing
CA1250220A (en) Process for the separation of a c in2 xx hydrocarbon fraction from natural gas
US3292380A (en) Method and equipment for treating hydrocarbon gases for pressure reduction and condensate recovery
US3675435A (en) Low pressure ethylene recovery process
US4507133A (en) Process for LPG recovery
KR0144700B1 (en) Mixed refrigerant cycle for ethylene recovery
JP3602807B2 (en) Method for separating a raw material gas mixture
KR0144701B1 (en) Open loop mixed refigerant cycle for ethylene recovery
JPS6346366A (en) Method of separating supply gas at low temperature
US9222724B2 (en) Natural gas liquefaction method with high-pressure fractionation
JP2006510867A5 (en)
WO2005009930A1 (en) Method and apparatus for separating hydrocarbon
AU701090B2 (en) Method and installation for the liquefaction of natural gas
JP2004534116A (en) LNG production method in low temperature processing of natural gas