JPS61169003A - Antenna device - Google Patents

Antenna device

Info

Publication number
JPS61169003A
JPS61169003A JP1021685A JP1021685A JPS61169003A JP S61169003 A JPS61169003 A JP S61169003A JP 1021685 A JP1021685 A JP 1021685A JP 1021685 A JP1021685 A JP 1021685A JP S61169003 A JPS61169003 A JP S61169003A
Authority
JP
Japan
Prior art keywords
dielectric
phase
antenna
axis
antenna beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1021685A
Other languages
Japanese (ja)
Inventor
Shigeru Sato
滋 佐藤
Shinichi Betsudan
信一 別段
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1021685A priority Critical patent/JPS61169003A/en
Publication of JPS61169003A publication Critical patent/JPS61169003A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

PURPOSE:To move an antenna beam in an optional direction by providing a dielectric through which a radio wave radiated from plural array elements irradiating the radio wave of the phase is transmitted in a different phase to each array element. CONSTITUTION:A signal incoming from a terminal 19 is distributed to primary radiation array elements 9a-9c in a signal distributor 14 is the same amplitude and same phase. A dielectric 17 is provided in the front face of the elements 9a-9c and when the radio wave passes through into the dielectric 17, the phase is retarded. In using the dielectric arranging the phase face in a desired direction while the radio wave passes through in the dielectric, the antenna beam is varied in its direction. The dielectric constant of the dielectric 17 is controlled by an external control section to vary the antenna beam in an optional direction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアレーアンテナに関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to an array antenna.

〔従来の技術〕[Conventional technology]

従来より、衛星通信、あるいはロケット追尾などの大型
アンテナの追尾の丸めのマクント万式としてhas図の
A、 −Hlマクント方式、あるいは第6図のX−Yマ
クント万式がよく用いられており、また天体観測用など
には第7図のポーラマクントが用いられている。
Traditionally, the A and -Hl Maknt systems in the has diagram, or the X-Y Maknt system in Figure 6, have been often used as Maknt systems for rounding tracking of large antennas such as satellite communications or rocket tracking. In addition, the Polar Makunt shown in Figure 7 is used for astronomical observation.

第5図にお−て11+はA、軸、+!1l−jEL軸、
第6図にお−て、+31flX軸、(41はY軸、第7
図にお−て、11) ハEム、軸、(61#:tl)]
ffct軸である。
In Figure 5, 11+ is A, axis, +! 1l-jEL axis,
In Figure 6, +31flX axis, (41 is Y axis, 7th
In the figure, 11) haem, axis, (61#:tl)]
This is the ffct axis.

第S図のムz −111マクント方式は、ム2軸を地面
に垂直にIIIIl軸を水平に設置したものである・こ
の方式は天頂付近を移動衛星を追尾する場合五2軸の回
転速度が大きくなるところに難点がある。
The Mz-111 Makunt system shown in Figure S is a system in which the M2 axis is installed perpendicular to the ground and the III axis is installed horizontally.This system uses There is a problem with growing bigger.

第6図のX−Yマクント万式は、地面に水平なX軸とそ
れに直交するY軸からなり、!軸自体は、X軸とともに
回転する。これは、両輪とも地面から高い位置となるの
で機・械的に難点がある。
The X-Y Makunt formula in Figure 6 consists of an X-axis horizontal to the ground and a Y-axis perpendicular to it. The axis itself rotates with the X axis. This is mechanically difficult because both wheels are placed high above the ground.

第7図のポーラマクント方式は、天波望遠鏡などにおい
て、−軸のみの回転で恒星を追尾するのに広く用いられ
て−るもので、−軸(Hム軸)を地球の極軸に平行、他
軸(DZC軸)はIIIA軸に垂直に設置するものであ
る。
The Polar Makunt method shown in Figure 7 is widely used in astronomical telescopes to track stars by rotating only the -axis, with the -axis (H-axis) parallel to the Earth's polar axis, and the The axis (DZC axis) is installed perpendicular to the IIIA axis.

これは、極軸方向付近を移動する衛星を追尾する場合に
■ム軸の回転速度が大きくなること、および、極点と赤
道上に設置される場合を除きHA軸が地面に対して傾い
ていることによる構追上の難点がある。
This is because the rotational speed of the HA axis increases when tracking a satellite moving near the polar axis, and the HA axis is tilted with respect to the ground unless it is installed at the poles or the equator. There are some difficulties in tracking the structure.

第5図第7図までのマクント方式は、追尾のためにアン
テナ全体が両軸(直交するiつの軸)まわりに回転する
丸めに機械的にどうしても大きくなる欠点がある。
The Makant method shown in FIGS. 5 and 7 has the disadvantage that the antenna inevitably becomes mechanically large due to rounding in which the entire antenna rotates around both axes (i orthogonal axes) for tracking.

一方、これに対して、追尾可動範囲が非常に小さいアン
テナでは、第8図に示すように副反射鏡(8)全可動に
してアンテナビームlla〜llcを可動して追尾する
方式あるいは、第9図のように一次放射系を構成してい
る集束反射鏡α8a)〜(13d) t−可動すること
によって、アンテナビーム(lla)〜(lIC)t−
目標に向けるように可動する方式がある。
On the other hand, in the case of an antenna with a very small tracking movable range, as shown in FIG. As shown in the figure, by moving the focusing reflectors α8a) to (13d) t- which constitute the primary radiation system, the antenna beams (lla) to (lIC) t-
There is a method to move it to aim at the target.

gs図、第9図において、(7)は主反射鏡、(8)は
副反射鏡、(9)は−次放射器を構成するホーン、(1
01#:を給電@路、(lla) 〜(llc)は可動
にされたアンテナビームの方向、(l′IJはアンテナ
ビームの波面、(18a −18(1) #’f−次放
射器を構成している集束反射鏡(平面あるいは1曲面鏡
)’lHf。
In the gs diagram and Fig. 9, (7) is the main reflector, (8) is the sub-reflector, (9) is the horn constituting the -order radiator, and (1
01#: feed @ path, (lla) ~ (llc) is the direction of the movable antenna beam, (l'IJ is the wavefront of the antenna beam, (18a - 18 (1) #'f-order radiator The converging reflecting mirror (plane or single curved mirror) 'lHf.

これに対して、ビーム可動動作を電子的に行つている方
式が図6のアレーアンテナ方式である。これは各アレー
素子(9a)〜(9d)の後に位相器(11Sa)〜(
15(1)を接続して、位相器の制御器−によって各位
相器(15a)〜(15a)の位相量を制御して、アレ
ー素子(9a)〜(9b)の位相波面! (12の面で
同位相となるようにして、アンテナビームf:(lla
)〜(11(1)の方向に可動するものである。
On the other hand, the array antenna method shown in FIG. 6 is a method in which the beam movement operation is performed electronically. After each array element (9a) to (9d), the phase shifter (11Sa) to (
15(1) is connected, and the phase amount of each phase shifter (15a) to (15a) is controlled by the phase shifter controller to control the phase wavefront of the array elements (9a) to (9b)! (Antenna beam f: (lla
) to (11(1)).

図6にお−て、(9a)〜(9d)はアレー素子、(l
la)〜(111)は可動されたアンテナビームの波面
、α尋は信号の分配器、(15a)〜(15d)は9質
位相器、a曖は可変位相器を制御する制御器である。
In FIG. 6, (9a) to (9d) are array elements, (l
1a) to (111) are the wavefronts of the moved antenna beams, .alpha. is a signal distributor, 15a to 15d are 9-phase phase shifters, and a is a controller for controlling the variable phase shifter.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のように追尾するのく第5〜第γ図のマ上 クント方式はアンテナ全体を可動する方式であシ比較的
、大型アンテナに用りられておシ、第8図、第9図の可
動ビーム方式は可動範囲が比較的微少範囲でも、構成上
アンテナもある程度以上大きいものになる欠点がある。
As described above, the Ma-Kund method shown in Figs. 5 to γ moves the entire antenna, and is used for relatively large antennas. The movable beam method has the drawback that even though the movable range is relatively small, the antenna must be larger than a certain extent due to its configuration.

着た第1θ図の可動ビーム方式も、全方向に電子的に可
動できるが、位相器の構成、及び制御器が非常に複雑と
なるため簡易な追尾を必要とする装置には適用できなめ
欠点がある・本発明は、これらの欠点をなくし簡単な装
置により容易にアンテナビームを可動にするものである
The movable beam method shown in Figure 1θ can also be moved electronically in all directions, but the phase shifter configuration and controller are extremely complex, making it unapplicable to devices that require simple tracking. The present invention eliminates these drawbacks and allows the antenna beam to be easily moved using a simple device.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、プレイアンテナのアレー素子の前面に誘電
体を配置し、その誘電体の形状ま九は誘電率に変化をも
たせることによってアンテナビームの方向を簡単な装置
構成で変えるようにしている。− 〔作用〕 各アレー素子から同一の位相で放射された電波は、誘電
体を透過するが、誘電体の厚みや誘電率に変化をもたせ
ておくと、透過した電波の波面が異なってくる。従って
アンテナビームの方向を変えることかできる。
In this invention, a dielectric is arranged in front of the array element of the play antenna, and the shape of the dielectric changes the dielectric constant, thereby changing the direction of the antenna beam with a simple device configuration. - [Operation] Radio waves emitted with the same phase from each array element transmit through a dielectric material, but if the thickness or permittivity of the dielectric material is varied, the wavefronts of the transmitted radio waves will differ. Therefore, it is possible to change the direction of the antenna beam.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

第1図は本実施例の一般的構成例で(9a)〜(9C)
は−次放射アレ一群、(lla)〜(110)は可動さ
れたアンテナビーム、 (12+はアンテナビームの波
面、04は信号分配器、0ηは波面変換を行う誘電体で
ある・ @X図において電波がアンテナから送信される系(送信
系)として説明する。まず、端子−より入って来た信号
は信号分配器04においてアレー素子(9a)〜(9C
)に同振幅、同位相で分配される。このとき、誘電体1
ηがない場合には、第2図のように各アレー素子の等位
相波面はQlのようにアンテナの正面方向で等しくなる
九め、アンテナビームはアンテナの正方向に出てhるこ
とになる。従って、この状態でアンテナビームを可変し
ようとすれば、アンテナ全体を可動にしなければならな
ノい。しかしながら、第1図にもどって、誘電体0ηが
、アレー素子の前面に存在すると、電波は、誘電体内を
通過すると、誘電体がない場合に比べて位相がおくれる
性質がある。
Figure 1 shows a general configuration example of this embodiment (9a) to (9C).
is a group of -order radiation arrays, (lla) to (110) are the moved antenna beams, (12+ is the wavefront of the antenna beam, 04 is the signal splitter, and 0η is the dielectric that performs wavefront conversion. This will be explained as a system (transmission system) in which radio waves are transmitted from an antenna. First, signals coming from terminal - are sent to array elements (9a) to (9C) in signal distributor 04.
) with the same amplitude and phase. At this time, dielectric 1
In the absence of η, as shown in Figure 2, the equal-phase wavefronts of each array element will be equal in the front direction of the antenna, as shown by Ql, and the antenna beam will emerge in the positive direction of the antenna, resulting in h. . Therefore, if you want to change the antenna beam in this state, you have to make the entire antenna movable. However, returning to FIG. 1, if the dielectric 0η exists in front of the array element, the phase of the radio wave will be delayed when it passes through the dielectric compared to when there is no dielectric.

そこで、電波が、誘電体内を通過する間に所望する方向
に位相波面がそろうような、誘電体であれば(例えば第
1図の四の波面)その方向にアンテナビームが可変され
ることになり、追尾は、アンテナを可動にしなくとも行
えることになる。
Therefore, if the dielectric material is such that the phase wavefront is aligned in the desired direction while the radio wave passes through the dielectric material (for example, wavefront number 4 in Figure 1), the antenna beam will be varied in that direction. , tracking can be performed without moving the antenna.

js8図は、本発明の一実施例であり、誘電体aηが+
12)の方向で波面が等波面となるように誘電体形状を
テーパとし、誘電率に勾配をもたしたものである。
Figure js8 shows an embodiment of the present invention, in which the dielectric aη is +
12) The shape of the dielectric material is tapered so that the wavefront becomes an equal wavefront in the direction of 12), and the dielectric constant has a gradient.

誘電体0ηの厚い部分では位相が遅れるので波面(12
は図示のようになる。
In the thick part of the dielectric 0η, the phase is delayed, so the wavefront (12
becomes as shown.

この場合波面(I乃を変えることけ困難だが、広い幅(
ブロード)のビームを発生するようにすれば、追尾すべ
き対象が少々動いた程度ではビームの幅の中にあるので
、波面α匂を変える必要はないので問題はない。
In this case, it is difficult to change the wavefront (I), but the width is wide (
If a beam with a broad width is generated, even if the target to be tracked moves slightly, it will remain within the width of the beam, so there is no need to change the wavefront α, so there is no problem.

誘電体としては誘電率が大きく損失の少いものが良い。The dielectric material should preferably have a high dielectric constant and low loss.

このようなものとして例えば石英ガラスがある。An example of such a material is quartz glass.

第3図#−tm電体の形状をテーパ状としたが、形状が
一様で、誘電率それ自身に変化をつけることも可能であ
る。
Although the shape of the #-tm electric body in FIG. 3 is tapered, it is also possible to have a uniform shape and change the dielectric constant itself.

第4図#:を誘電体の誘電率を外部の制御部α樽により
制御し、任意の方向でアンテナビームの波面を等位相に
するようにしたもので、この場合には、アンテナ本体及
び、誘電体も完全に静止したままで、アンテナビームを
可動することができる。
The dielectric constant of the dielectric material is controlled by an external control unit α, and the wavefront of the antenna beam is made to have the same phase in any direction. In this case, the antenna body and the The antenna beam can be moved while the dielectric also remains completely stationary.

この場合でも、外部制御部+I11より誘電体の誘電率
を変える方法として、誘電体の形状を変えないで、誘電
率それ自身を直接変化させる方向と誘電体の形状を変え
て、等価的に誘電率を変えて行う方式上が回船である。
Even in this case, the method of changing the permittivity of the dielectric using the external control unit +I11 is to directly change the permittivity itself without changing the shape of the dielectric, or to change the shape of the dielectric to equivalently change the dielectric constant. The method of changing the rate is called shipping.

この用途に使用する誘電体としては、誘電率が印加電圧
によって変化するピエゾエレクトリック素子を用い、印
加電圧を部分的に変えれば良い。
As the dielectric used for this purpose, a piezoelectric element whose dielectric constant changes depending on the applied voltage may be used, and the applied voltage may be partially changed.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、アンテナ開口前面に誘電
体を装荷し、かつその誘電率を変えることによってアン
テナビームを任意方向に可動でき、非常に簡易な追尾が
可能となる。
As described above, according to the present invention, the antenna beam can be moved in any direction by loading a dielectric material on the front surface of the antenna aperture and changing its dielectric constant, thereby making it possible to perform very simple tracking.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一般的構成図、第3図は位相説明図、
第8図、第4図は本発明の実施例である。 第5図〜第7図は従来のアンテナマクント方式の概略図
、aI8図〜第1(1図は従来の可動ビーム方式の説明
図である。 図において、+11iA、  軸、l!1qllfT、
t 軸、(3)ハX軸、(4)はY軸、f511iHA
軸、(61はDEC軸、(7)は主反射鏡、(8)は副
反射鏡、(9)はアレー素子。 1101は給電部、(Illはアンテナビーム、 (+
21はアンテナビームの波面、atrは集束反射鏡、0
4]は分配器、lJ@は可変位相器、a*n可変位相器
の制御器、aηtI′i誘電体、α11は誘電体の制御
器、四は信号端子である。 なお、図中の同一符号、同一番号は同−又は相当部分を
示す。
FIG. 1 is a general configuration diagram of the present invention, FIG. 3 is a phase diagram,
FIGS. 8 and 4 show embodiments of the present invention. Figures 5 to 7 are schematic diagrams of the conventional antenna Makant system, and Figures aI8 to 1 (Figure 1 is an explanatory diagram of the conventional movable beam system.
t axis, (3) C X axis, (4) Y axis, f511iHA
axis, (61 is the DEC axis, (7) is the main reflector, (8) is the sub-reflector, (9) is the array element. 1101 is the feeding section, (Ill is the antenna beam, (+
21 is the wavefront of the antenna beam, atr is the focusing reflector, 0
4] is a distributor, lJ@ is a variable phase shifter, a*n variable phase shifter controller, aηtI′i dielectric, α11 is a dielectric controller, and 4 is a signal terminal. Note that the same reference numerals and numbers in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 同一位相の電波を放射する複数個のアレー素子と、これ
らのアレー素子から放射された電波を各アレー素子に対
して異なる位相で透過させる誘電体とを備えたアンテナ
装置。
An antenna device comprising a plurality of array elements that radiate radio waves with the same phase and a dielectric body that transmits the radio waves radiated from these array elements with different phases to each array element.
JP1021685A 1985-01-21 1985-01-21 Antenna device Pending JPS61169003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1021685A JPS61169003A (en) 1985-01-21 1985-01-21 Antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1021685A JPS61169003A (en) 1985-01-21 1985-01-21 Antenna device

Publications (1)

Publication Number Publication Date
JPS61169003A true JPS61169003A (en) 1986-07-30

Family

ID=11744070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1021685A Pending JPS61169003A (en) 1985-01-21 1985-01-21 Antenna device

Country Status (1)

Country Link
JP (1) JPS61169003A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310407A (en) * 1989-06-07 1991-01-18 Nippondenso Co Ltd Radome for planer antenna
WO2001045203A1 (en) * 1999-12-13 2001-06-21 Siemens Aktiengesellschaft Radio transmitter/radio receiver unit comprising a tuneable antenna
JP2014027347A (en) * 2012-07-24 2014-02-06 Nippon Telegr & Teleph Corp <Ntt> Radio communication system and radio communication method
JP2016111439A (en) * 2014-12-03 2016-06-20 日本電信電話株式会社 Radio communication system and radio communication method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310407A (en) * 1989-06-07 1991-01-18 Nippondenso Co Ltd Radome for planer antenna
WO2001045203A1 (en) * 1999-12-13 2001-06-21 Siemens Aktiengesellschaft Radio transmitter/radio receiver unit comprising a tuneable antenna
US6781562B1 (en) 1999-12-13 2004-08-24 Siemens Aktiengesellschaft Radio transmitter/radio receiver unit comprising a tuneable antenna
JP2014027347A (en) * 2012-07-24 2014-02-06 Nippon Telegr & Teleph Corp <Ntt> Radio communication system and radio communication method
JP2016111439A (en) * 2014-12-03 2016-06-20 日本電信電話株式会社 Radio communication system and radio communication method

Similar Documents

Publication Publication Date Title
US4413263A (en) Phased array antenna employing linear scan for wide angle orbital arc coverage
US4792805A (en) Multifunction active array
US11700056B2 (en) Phased array antenna for use with low earth orbit satellite constellations
US3307188A (en) Steerable antenna array and method of operating the same
US11846699B2 (en) Method for monopulse single beam phased array tracking for communications using beam jitter
US11824280B2 (en) System and method for a digitally beamformed phased array feed
US4163974A (en) Antenna feed system
WO1991001620A2 (en) Multi-element antenna system and array signal processing method
JP2001251126A (en) Antenna cluster structure for wide angle coverage
CA1093207A (en) Satellite communications transmission systems
US6906665B1 (en) Cluster beam-forming system and method
US4675681A (en) Rotating planar array antenna
CA2880122C (en) Low cost, high-performance, switched multi-feed steerable antenna system
JPS61169003A (en) Antenna device
US3202997A (en) Scanning corner array antenna
US4458247A (en) Phased array antenna employing linear scan for wide angle orbital arc coverage
JPS6376504A (en) Antenna system
US6507313B1 (en) Reflector radar antenna using flanking-beam array switching technique
US4743914A (en) Space fed antenna system with squint error correction
JPH10322121A (en) Array-feeding reflecting mirror antenna
Teng et al. Dual reflector zoom antenna based on optical imaging theory for satellites in elliptical orbits
US4025921A (en) Technique for obtaining wide bandwidth with optically fed array
US12021317B2 (en) System and method for a digitally beamformed phased array feed
Schell Antenna developments of the 1950s to the 1980s
JPH07181251A (en) Electronic scanning antenna