JPS61168564A - Ceramic insulation substrate - Google Patents

Ceramic insulation substrate

Info

Publication number
JPS61168564A
JPS61168564A JP60005721A JP572185A JPS61168564A JP S61168564 A JPS61168564 A JP S61168564A JP 60005721 A JP60005721 A JP 60005721A JP 572185 A JP572185 A JP 572185A JP S61168564 A JPS61168564 A JP S61168564A
Authority
JP
Japan
Prior art keywords
mullite
metal
added
bending strength
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60005721A
Other languages
Japanese (ja)
Inventor
永山 更成
信之 牛房
浩一 篠原
荻原 覚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60005721A priority Critical patent/JPS61168564A/en
Publication of JPS61168564A publication Critical patent/JPS61168564A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、セラミック絶縁基板に係プ、特に電気信号の
入出力の丸めのビンを取シ付けたシ、半導体部品を搭載
して機能モジュ、ルを構成するために好適なセラミック
基板に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a ceramic insulating substrate, in which rounded bins for inputting and outputting electric signals are attached, and semiconductor components are mounted on the ceramic insulating substrate to form a functional module. The present invention relates to a ceramic substrate suitable for configuring a cell.

〔発明の背景〕[Background of the invention]

近年、L、9I等の集積回路は高速化、高密度化に伴っ
て、放熱や素子の高密度化を計るため回路基板上に直接
チップを実装する方式が用いられているようになってき
ている。しかし、この実装方式においては、LSI等の
集積回路のサイズが大きくなるにつれ−(、LSI等の
集積回路材料と回路板材料との間で、実装時の温度変化
によって生じる応力が大きくなるという問題があった。
In recent years, as integrated circuits such as L and 9I have become faster and more dense, a method of mounting chips directly on the circuit board has been used to improve heat dissipation and increase the density of elements. There is. However, this mounting method has the problem that as the size of integrated circuits such as LSIs increases, the stress caused by temperature changes during mounting increases between the integrated circuit materials such as LSIs and the circuit board materials. was there.

すなわち、現在セラミック多層配線基板の主流であるA
40g  は、AtzOs自身の熱膨張係数がLSI等
の集積回路材料であるシリコンの熱膨張係数30x10
−’/C(室温〜500C)に比べ、約2倍以上kH2
O3の熱膨張係数が大きい。このため、AtmOs系多
層回路板へLSI等のシリコン半導体チップを直接半田
等で接続部の微細化は、実装寿命を悪化させる傾向にあ
る。この問題を解決するためには、多層配線基板の熱膨
張係数をシリコンに近づけると共に、多層回路板内の電
気信号の伝播速度の高速化をはかるため、低比誘電率の
基板材料を開発する必要がある。この目的のために、ム
ライト(3A!40s・23i01)系の焼結体を用い
た多層配線基板が考えられる。その理由は、ムライトの
熱膨張係数が40〜55X10−’/Cとシリコンのそ
れに近く且つ、比誘電率が約6.7(IMHz)と低い
ためである。
That is, A, which is currently the mainstream of ceramic multilayer wiring boards.
40g means that the thermal expansion coefficient of AtzOs itself is 30x10, which is the thermal expansion coefficient of silicon, which is a material for integrated circuits such as LSI
-'/C (room temperature to 500C), about twice as much kH2
The coefficient of thermal expansion of O3 is large. For this reason, miniaturization of the connecting portion of a silicon semiconductor chip such as an LSI to an AtmOs multilayer circuit board by direct soldering or the like tends to worsen the mounting life. To solve this problem, it is necessary to develop a substrate material with a low dielectric constant in order to bring the thermal expansion coefficient of the multilayer circuit board closer to that of silicon and to increase the propagation speed of electrical signals within the multilayer circuit board. There is. For this purpose, a multilayer wiring board using a sintered body of mullite (3A!40s/23i01) may be considered. This is because mullite has a coefficient of thermal expansion of 40 to 55×10 −′/C, which is close to that of silicon, and a relative dielectric constant of about 6.7 (IMHz), which is low.

しかし、ムライトの組成であるALx’s とS102
を混合した系で、多層配線板を作製しようとした場合、
LL2os系多層配線板に適用されている焼成温度16
00C付近では、k4 Q3 、 S l oz等が未
反応の状態で残シ、多孔質で且つ、熱膨張係数が大きい
などの欠点がある。ち密質のムライト材料を作製するた
めには、約1800c以上の高温で焼結しなければなら
ず、量産する上で能率が悪い。
However, the composition of mullite, ALx's and S102
If you try to make a multilayer wiring board using a mixed system,
Firing temperature 16 applied to LL2os multilayer wiring board
At around 00C, there are disadvantages such as k4 Q3, S l oz, etc. remaining in an unreacted state, being porous, and having a large coefficient of thermal expansion. In order to produce a dense mullite material, it must be sintered at a high temperature of about 1800 C or more, which is inefficient for mass production.

そこで、1600tZ’付近゛の温度で焼結できるムラ
イト系材料の開発が必要であった。この目的のため、ム
ライトとガラスとからなる材料が考えられる。
Therefore, it was necessary to develop a mullite-based material that can be sintered at a temperature around 1600 tZ'. For this purpose, materials consisting of mullite and glass are conceivable.

その−例としてムライト焼結体及びその製造法(特開昭
57−115895号)である。この例は、カラスとし
て例えばコージエ?イト(2MgO・2AlzOs ・
58i0z )  組成ニジなっている。
An example of this is a mullite sintered body and its manufacturing method (Japanese Patent Laid-Open No. 115895/1989). An example of this would be a crow such as Kojie? (2MgO・2AlzOs・
58i0z) The composition is different.

しかし、この材料はムライト結晶が、ガラスまたは、ガ
ラスから生成する結晶によシ結合されたものである。し
たがって、材料の強度は、ムライト結晶を結合するガラ
ス、または、それから生成する結晶に左右され、実際こ
の材料の強度は、最大で16に9/−である。このため
、多層配線板の信号の入出力用ピンをろう付けした場合
、ろう材料と多層配線板との熱膨張差にょシ配線板にク
ラックを生ずる。ムライト系材料を用いて、有用な多層
配線板を得るためには、更に強度の大きい材料を開発す
る必要があるう 〔発明の目的〕 本発明の目的は、低比誘電率で且つ、高強度のムライト
系セラミック絶縁基板を提供することにある。
However, this material consists of mullite crystals bonded to glass or crystals derived from glass. The strength of the material therefore depends on the glass bonding the mullite crystals or the crystals formed therefrom; in fact the strength of this material is at most 16 to 9/-. For this reason, when signal input/output pins of a multilayer wiring board are brazed, cracks occur in the wiring board due to the difference in thermal expansion between the brazing material and the multilayer wiring board. In order to obtain useful multilayer wiring boards using mullite-based materials, it is necessary to develop materials with even higher strength. An object of the present invention is to provide a mullite-based ceramic insulating substrate.

〔発明の概要〕[Summary of the invention]

本発明を概説すれば、本発明はセラミック絶縁基板に関
する発明であって、ムライト系セラミック絶縁基板にお
いて、ムライトに焼結助剤として金属Siを添加して大
気中で焼結することを特徴とするものである。
To summarize the present invention, the present invention relates to a ceramic insulating substrate, and is characterized in that the mullite-based ceramic insulating substrate is sintered in the atmosphere by adding metal Si as a sintering aid to mullite. It is something.

従来、ムライトを焼結するための材料として、ガラスで
なければ焼結が困難であると考えられていたが、ムライ
トに金属Siを添加して、大気中で焼成を行うことによ
シ酸化反応で金属s1が、ムライト(3A40s・23
 to意)の−成分であるsiowとなり、その510
2がムライトと固相で拡散反応を行い、十分焼結が可能
であることを確認した。しかも、そのムライト系材料は
、気孔も小さく、強度の大きい材料を開発することが可
能となった。また、従来の原料粉の混合粉に対し、本発
明は、原料粉としてムライトと金属S1であるため非常
に単純である。また、従来のムライ)Kガラス添加(特
開昭57−115895号;)はMgOが添加されてい
るがMgOは非常に不安定であシ、水の吸収性が良いた
め水酸化マグネシウムになプやすく保存に問題がある。
Conventionally, it was thought that it would be difficult to sinter mullite unless it was made of glass, but by adding metal Si to mullite and firing it in the atmosphere, a silicon oxidation reaction was achieved. The metal s1 is mullite (3A40s/23
siow is the -component of (to), and its 510
2 performed a diffusion reaction with mullite in the solid phase, and it was confirmed that sufficient sintering was possible. Furthermore, mullite-based materials have small pores, making it possible to develop materials with high strength. Further, in contrast to the conventional mixed powder of raw material powders, the present invention is very simple because the raw material powders are mullite and metal S1. In addition, in the conventional Murai) K glass addition (Japanese Patent Application Laid-open No. 115895/1989), MgO is added, but MgO is very unstable and has good water absorption, so it is not suitable for magnesium hydroxide. There are problems with storage.

次に、ムライトに添加する金属3i量は、8102量に
換算して10〜30wt1が良好である。その理由とし
ては、5lot量が10wt*よシ少ない場合は、焼結
温度が亮くなシ好ましくない。Sigh量が30wtチ
よシ多い場合は、比誘電率は低くなる傾向にあるが、強
度が小さい。
Next, the amount of metal 3i added to mullite is preferably 10 to 30 wt1 in terms of 8102 amount. The reason for this is that if the 5 lot amount is less than 10 wt*, the sintering temperature will be low, which is not preferable. When the amount of Sigh is more than 30wt, the dielectric constant tends to be low, but the strength is small.

したがって、ムライトに焼結助剤として添加する金属5
iJiは、5iCh量に換算して10〜30wt%が適
当である。この場合には、ち密で且つ比誘電率の低い、
高強度の多層配線回路板用材料及び配線板が製造可能に
なる。次に、ムライト系セラミック絶縁基板の製造方法
には、まずグリンシート(生の成形体)を製造する方法
がある。それKは、グリンシート法、スリップキャステ
ング法、プレスによる金型成形法、インジェクションモ
ールド法等がある。
Therefore, the metal 5 added to mullite as a sintering aid
The appropriate amount of iJi is 10 to 30 wt% in terms of 5iCh amount. In this case, it is dense and has a low dielectric constant.
It becomes possible to manufacture high-strength multilayer wiring circuit board materials and wiring boards. Next, as a method for manufacturing a mullite ceramic insulating substrate, there is a method of first manufacturing a green sheet (green molded body). Examples of these methods include the green sheet method, slip casting method, press molding method, and injection molding method.

グリンシート法は、原料粉に溶剤及び熱可塑性等の樹脂
を添加し、攪拌し九スラリーを真空脱気したのち、グリ
ンシート作製機にょシ、グリンシ・中トを作製する方法
である。スリップキャステング法は、原料粉に、水1分
散剤及び熱可塑性の樹脂を添加し、攪拌したスラリーを
例えば、石こう屋内へ流し込んで製造する方法である。
The green sheet method is a method in which a solvent and a resin such as a thermoplastic resin are added to raw material powder, stirred, and the slurry is vacuum degassed, and then a green sheet making machine is produced. The slip casting method is a method of manufacturing by adding water, a dispersant, and a thermoplastic resin to raw material powder, and pouring the stirred slurry into, for example, a plaster interior.

プレスによる金型成形法は、原料粉に溶剤及び熱可塑性
の樹脂を添加し、らいかい機で混合攪拌した原料粉を、
ふるい等によシ造粒したのち、金型内に入れて荷重を加
えて製造する方法である。インジェクションモールド法
は、原料粉に、熱り塑性等の樹脂及びワックス等を添加
し、温度を加えて原料粉に樹脂等を付着させた原料粉を
インジェクションマシン機のホッパ部内に入れ、加熱し
、原料粉の回りに付着している樹脂等を溶融させながら
スクリューによシ射出ノズル部まで送り圧力を与えて金
型内に打ち込む方法である。以上の方法によシ、製造さ
れたグリンシートを積層あるいは、脱脂工程をしたのち
、焼成してムライト系セラミック絶縁基板を製造する。
In the mold forming method using a press, a solvent and a thermoplastic resin are added to the raw material powder, and the raw material powder is mixed and stirred in a sieve machine.
This is a manufacturing method in which the pellets are granulated through a sieve, etc., and then placed in a mold and subjected to a load. In the injection molding method, a thermoplastic resin, wax, etc. is added to the raw material powder, and the raw material powder is heated to adhere the resin, etc. to the raw material powder, and then placed in the hopper of an injection machine and heated. This is a method in which the raw material powder is fed into the mold by applying pressure to the injection nozzle part while melting the resin attached around the raw material powder. The green sheets produced by the above method are laminated or subjected to a degreasing process and then fired to produce a mullite ceramic insulating substrate.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例によシ更に具体的に説明するが、
本発明は、これら実施例に限定されない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to these examples.

なお、文中に部とあるのは重量部を、チとあるのは重量
%を示す。多層配線基板の製造方法は、まずムライト粉
(平均粒径:5μm)に金属St(平均粒径;3μm)
を4.66.7.0,9.33゜1L66.14.0%
を添加した。上記の金属Si量は、5iOzに換算して
10.0,15.0,20.0゜25.0,30.01
である。次に各々の混合粉に重合度1000のポリビニ
ルブチラール5.9部、トリクロロエチレン124部、
テトラクロロエチレン32部、n−ブチルアルコール4
4部を加え、ボールミルで24時時間式混合レスラリー
を作成する。真空脱気によシ、スラリーから気泡を除去
する。次にスラリーをドクターブレードを用いて、ポリ
エステルフィルム支持体上に0.2 ws厚さに塗布し
、炉を通して乾燥し、ムライト系セラミック多層配線基
板用のグリンシートを作成する。
In addition, parts in the text indicate parts by weight, and letters in the text indicate weight %. The method for manufacturing a multilayer wiring board is to first add metal St (average particle size: 3 μm) to mullite powder (average particle size: 5 μm).
4.66.7.0, 9.33゜1L66.14.0%
was added. The above metal Si amount is 10.0, 15.0, 20.0°25.0, 30.01 in terms of 5iOz.
It is. Next, 5.9 parts of polyvinyl butyral with a degree of polymerization of 1000, 124 parts of trichlorethylene,
32 parts of tetrachlorethylene, 4 parts of n-butyl alcohol
Add 4 parts and make a 24-hour mixed slurry in a ball mill. Remove air bubbles from the slurry by vacuum degassing. Next, the slurry is applied onto a polyester film support to a thickness of 0.2 ws using a doctor blade, and dried in an oven to produce a green sheet for a mullite-based ceramic multilayer wiring board.

次にそのグリンシートを50角に切断し、30層積層し
たのち熱間プレスによシ圧着した。圧着啼件は、温度1
2(Ic、圧力は40Kg/cm”である。圧着後、樹
脂抜きのため1200tll”X1時間の脱脂をしたの
ち、焼結を行ったう焼結温度は1600〜1650Cで
保持時間は1時間である。雰囲気は、大気中である。焼
結された基板を比誘電率及び曲げ強さ測定試験片用に切
断したのち、ダイヤモンドラップ盤を用いて荒研摩及び
仕上研摩を行った。
Next, the green sheet was cut into 50 square pieces, 30 layers were laminated, and then hot-pressed. For crimping, temperature 1
2 (Ic, pressure is 40Kg/cm". After crimping, degreasing for 1200tll" x 1 hour to remove resin, and then sintering. The sintering temperature was 1600-1650C and the holding time was 1 hour. The atmosphere was air. After cutting the sintered substrate into specimens for measuring dielectric constant and bending strength, rough polishing and final polishing were performed using a diamond lapping machine.

表1に各セラミックにおける緒特性を示す。また、比較
するためにムライトにコージェライトなるガラス成分を
30チ添加したムライト系セラミック(特開昭57−1
15895号) 、Al40a  も併せて示す。図は
、ムライトに金属5i(SiOs量に換算)量(重量%
)と曲げ強さくKy/was” )との関係を示すグラ
フである。
Table 1 shows the properties of each ceramic. In addition, for comparison, a mullite-based ceramic (Japanese Unexamined Patent Publication No. 57-1
15895) and Al40a are also shown. The figure shows the amount of metal 5i (converted to SiOs amount) (wt%) in mullite.
) and bending strength Ky/was'').

表1から、わかるように現在多l−配線基板の主流であ
るktzosは、比誘電率9.5(IMHz)、路板の
電気信号の伝播速度を遅くする原因になっている。ムラ
イトに30%コージェライトが添加されているムライト
系セラミック(特開昭57−115895号)では、比
誘電率6−0 (IMHz )と低く良好であるが、曲
げ強さが16.OK9/■2と、ALzOsの強度の約
1/2程度しか得られない。つそれに比べ、本発明のセ
ラミック絶嫌材料であるムライトに金tAsiを8iC
hに換算して10〜30チ添加した材料は、ムライトに
30チコージライトを添加した材料(特開昭57−11
5895号)の比誘電率6.0 (IMHz)K比べ、
0.2〜0.7と僅かに高い比誘電率でめるが、それほ
ど大きな影響はない。曲げ強さに関しては、金属S1を
4.66チ(St(h)に換算して10チ)添加した焼
結体の曲げ強さは20.1Kg/■2、金属s1を9.
33チ(stonに換算して20チ)添加した焼結体ノ
曲げ強さは2ZOKg/ym”、金属siを141(8
40,に換算して30チ)添加した焼結体の曲げ強さ2
0.0 Kg / lal+2 とそれぞれ高い曲げ強
さになっておシ、ムライトに301コージエライト添加
した材料の曲げ強さ16.Q14/■2に対し約1.3
〜1.4倍曲げ強さが向上しておシ、低比誘電率と曲げ
強さの大きい優れた材料であることが確認された。
As can be seen from Table 1, ktzos, which is currently the mainstream for multi-layer wiring boards, has a dielectric constant of 9.5 (IMHz), which causes the propagation speed of electrical signals on the road board to slow down. Mullite-based ceramic (Japanese Unexamined Patent Publication No. 57-115895), in which 30% cordierite is added to mullite, has a low dielectric constant of 6-0 (IMHz), which is good, but the bending strength is 16. OK9/■2, which is only about 1/2 of the strength of ALzOs, can be obtained. Compared to that, 8iC of gold tAsi was added to mullite, which is the ceramic material of the present invention.
The material to which 10 to 30 chicordierite is added in terms of
5895) relative permittivity of 6.0 (IMHz)K,
Although it has a slightly high dielectric constant of 0.2 to 0.7, it does not have a large effect. Regarding the bending strength, the bending strength of the sintered body to which 4.66 inches of metal S1 (10 inches in terms of St (h)) was added was 20.1 Kg/■2, and the bending strength of metal S1 was 9.
The bending strength of the sintered body added with 33 inches (20 inches in terms of ston) was 2 ZOKg/ym", and the metal Si was 141 (8 inches).
Bending strength of the added sintered body 2
The bending strength of the material with 301 cordierite added to mullite is 16. About 1.3 for Q14/■2
The bending strength was improved by ~1.4 times, and it was confirmed that it is an excellent material with a low dielectric constant and high bending strength.

次に各々の焼結体のX線回折結果について説明するラム
ライトに30%コージェライトした材料(特開昭57−
115895号′)のX線回折結果では、ムライト以外
にAt5Os 、 S i Ox 、 Mg 00少な
くとも2種以上の結晶相であるスピネル(At481t
) I5サファリ7 (Mlls、s At481t 
、502oi)、コージェライト(MgsA48輸0目
)、シリマナイト(A48jへ)等、数多くの複雑な相
からなっている。これは、ムライトを焼成するために含
有したガラス成分(コージェライト等)が相となシ、ム
ライトとの界面で反応生成したものであろう一万、本発
明であるムライトに金属S i (31Chに換して1
0〜30チ9を添加した焼結体は、ムライトにSigh
その池に固相拡散によシ生成されたシリマナイト(AI
4SiOs)相・5のみであることが確認された。した
がって、焼結助剤としてガラス(コージェライト等)を
用いたものと金属Stを用いたものとでは、焼結体中に
生成された結晶相が明らかに異なっていることがわかる
Next, the X-ray diffraction results of each sintered body will be explained.
115895'), spinel (At481t
) I5 Safari 7 (Mlls,s At481t
, 502oi), cordierite (MgsA48 import 0), and sillimanite (to A48j). This is probably because the glass components (cordierite, etc.) contained for firing mullite are in phase and are produced by reaction at the interface with mullite. 1 in exchange
The sintered body to which 0 to 30 Ti9 is added has Sigh in mullite.
Sillimanite (AI) produced by solid-phase diffusion in the pond
It was confirmed that there was only 4SiOs) phase 5. Therefore, it can be seen that the crystal phases produced in the sintered bodies are clearly different between those using glass (cordierite, etc.) as a sintering aid and those using metal St.

次に、ムライト系セラミック破断面を走査電子型顕微鏡
(SEM)で観察すると、従来のムライトに30%コー
ジェライトを添加させた焼結体の破断面は、ボイドも大
きく、結晶粒も粗大化された様相を示している。しかし
、本発明組成であるムライトに金属S1を8’i0*量
に換算して10〜30チ添加した焼結体の破断面は、ボ
イドも小さく分散し、結晶粒も微細化され良好様相を示
している。
Next, when observing the fractured surface of a mullite-based ceramic using a scanning electron microscope (SEM), it was found that the fractured surface of a sintered body made by adding 30% cordierite to conventional mullite had larger voids and coarser crystal grains. It shows a similar appearance. However, the fracture surface of a sintered body in which 10 to 30 g of metal S1 is added to mullite, which is the composition of the present invention, in terms of 8'i0* amount, has a good appearance with small and dispersed voids and fine grains. It shows.

図は、金属5iit(重量チ)または5i02量(重量
%)に換算したものと焼結体の曲げ強さとの関係を示す
グラフである。このグラフからも、わかるように本発明
組成であるムライトに金属S1をS r Otに換算し
てlO〜30チ添加したものは、従来の30チガラスを
添加した焼結体の曲げ強さ16 K4/+w” よシも
大きな曲げ強さを示している。またいずれの本発明組成
においても、曲げ強さは20 Kg / ws ”以上
をクリアーし安定した曲げ強さを示している。したがっ
て、焼結助剤としてムライトに金属siを4.66〜1
4チ(8r Ozに換算して10〜30%)添加して大
気中で焼成することにより、金属S1が酸化反応によp
sio。
The figure is a graph showing the relationship between the amount of metal 5iit (by weight) or the amount of 5i02 (% by weight) and the bending strength of the sintered body. As can be seen from this graph, when the metal S1 is added to the mullite of the present invention in an amount of 10 to 30 t in terms of S r Ot, the bending strength of the conventional sintered body to which 30 t glass is added is 16 K4. /+w" also shows a large bending strength. Also, in any of the compositions of the present invention, the bending strength cleared 20 Kg/ws" or more, indicating stable bending strength. Therefore, as a sintering aid, metal Si is added to mullite from 4.66 to 1
By adding 4 tB (10 to 30% in terms of 8r Oz) and firing in the atmosphere, metal S1 is reduced by oxidation reaction.
sio.

となシ、そのsho、がムライトと固相で反応し焼結す
るため、ち密で且つ低比誘電率の高強度ムライト系セラ
ミック多層基板材料が得られる。
Since the tonashi and the sho react with mullite in the solid phase and sinter, a dense, high-strength mullite-based ceramic multilayer substrate material with a low dielectric constant can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、セラミック絶縁基板としてムライトに
焼結助剤として金属3i′1rSiOxK換算して10
〜30重量饅添加して大気中で焼結することにより、金
属3iが酸化反応によ1)SiOxとなシ、ムライトと
その5IChが固相拡散で焼結が進行するため、ムライ
ト粒子の粒成長が小さく微細である。したがって、高強
度で且つ比誘電率6.7(IMH2)以下の優れたムラ
イト系IfIA*基板が得られる。
According to the present invention, a metal 3i'1rSiOxK equivalent of 10
By adding ~30 weight of rice cake and sintering in the atmosphere, the metal 3i undergoes an oxidation reaction and sintering progresses through solid phase diffusion of 1) SiOx and mullite and its 5ICh, resulting in the formation of mullite particles. The growth is small and fine. Therefore, an excellent mullite-based IfIA* substrate having high strength and a dielectric constant of 6.7 (IMH2) or less can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明のセラミック絶縁基板の実施例の金属Si
量または5fChに換算した量と、焼結体の曲げ強さと
の関係説明図である。 5LO24J−(’lI Z)
The figure shows metal Si of an embodiment of the ceramic insulating substrate of the present invention.
It is an explanatory diagram of the relationship between the amount or the amount converted into 5fCh and the bending strength of the sintered body. 5LO24J-('lIZ)

Claims (1)

【特許請求の範囲】[Claims] 1、ムライト系セラミック絶縁基板において、ムライト
に焼結助剤として金属珪素を添加し残りがムライトから
なり、大気中で焼成することを特徴とするセラミック絶
縁基板。
1. A mullite-based ceramic insulating substrate characterized in that silicon metal is added to mullite as a sintering aid, the remainder is mullite, and the substrate is fired in the atmosphere.
JP60005721A 1985-01-18 1985-01-18 Ceramic insulation substrate Pending JPS61168564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60005721A JPS61168564A (en) 1985-01-18 1985-01-18 Ceramic insulation substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60005721A JPS61168564A (en) 1985-01-18 1985-01-18 Ceramic insulation substrate

Publications (1)

Publication Number Publication Date
JPS61168564A true JPS61168564A (en) 1986-07-30

Family

ID=11618981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60005721A Pending JPS61168564A (en) 1985-01-18 1985-01-18 Ceramic insulation substrate

Country Status (1)

Country Link
JP (1) JPS61168564A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4920640A (en) * 1988-01-27 1990-05-01 W. R. Grace & Co.-Conn. Hot pressing dense ceramic sheets for electronic substrates and for multilayer electronic substrates
JPWO2016114121A1 (en) * 2015-01-13 2017-04-27 日本特殊陶業株式会社 Method for manufacturing ceramic substrate, ceramic substrate and silver-based conductor material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4920640A (en) * 1988-01-27 1990-05-01 W. R. Grace & Co.-Conn. Hot pressing dense ceramic sheets for electronic substrates and for multilayer electronic substrates
JPWO2016114121A1 (en) * 2015-01-13 2017-04-27 日本特殊陶業株式会社 Method for manufacturing ceramic substrate, ceramic substrate and silver-based conductor material
JPWO2016114119A1 (en) * 2015-01-13 2017-04-27 日本特殊陶業株式会社 Ceramic substrate and manufacturing method thereof
JPWO2016114118A1 (en) * 2015-01-13 2017-04-27 日本特殊陶業株式会社 Circuit board and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP0211619A2 (en) A multilayer ceramic circuit board
US4460916A (en) Ceramic substrate with integrated circuit bonded thereon
JP2894667B2 (en) Method of forming conductor pattern on circuit board
JPS6273799A (en) Multilayer ceramic circuit substrate
JPS63314855A (en) Ceramic package
JPS6043890A (en) Dielectric board for mounting integrated circuit device
EP0196670B1 (en) Ceramic substrates for microelectronic circuits and process for producing same
US20080171647A1 (en) Low temperature cofired ceramic materials
JP2973820B2 (en) Manufacturing method of ceramic substrate
JPH07147354A (en) Manufacture of conductor having grain size controlled
JPH05279145A (en) Ceramic composite material suitable for electronic product
JP3089973B2 (en) Method for sintering glass ceramic laminate
JPS61168564A (en) Ceramic insulation substrate
JPH11177238A (en) Manufacture of glass ceramic multilayer substrate
JPS6136168A (en) Ceramic insulative substrate
JPS62206861A (en) Ceramic multilayer circuit board and semiconductor mounting structure
JPH01167259A (en) Glass ceramics board for packaging of electronic parts, method for its manufacture and glass for use therein
JP2000281452A (en) Production of glass ceramic multilayered substrate
JPS61101457A (en) Ceramic insulating substrate material
JPS62260769A (en) Mullite ceramic material
JPH04114931A (en) Production of sintered glass ceramic compact
JPH02225338A (en) Calcined body of glass ceramics
JPS63169098A (en) Ceramic multilayer circuit board
JPH075359B2 (en) Manufacturing method of ceramic insulating substrate
JPH06227858A (en) Ceramic substrate