JPS61167850A - Apparatus for producing gas sensor - Google Patents

Apparatus for producing gas sensor

Info

Publication number
JPS61167850A
JPS61167850A JP878885A JP878885A JPS61167850A JP S61167850 A JPS61167850 A JP S61167850A JP 878885 A JP878885 A JP 878885A JP 878885 A JP878885 A JP 878885A JP S61167850 A JPS61167850 A JP S61167850A
Authority
JP
Japan
Prior art keywords
slurry
carrier
hot
hot wire
hot filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP878885A
Other languages
Japanese (ja)
Other versions
JPH0426700B2 (en
Inventor
Shinichi Ochiwa
小知和 眞一
Kenji Kunihara
健二 国原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP878885A priority Critical patent/JPS61167850A/en
Publication of JPS61167850A publication Critical patent/JPS61167850A/en
Publication of JPH0426700B2 publication Critical patent/JPH0426700B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/16Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by burning or catalytic oxidation of surrounding material to be tested, e.g. of gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To stick a carrier or carrier with a catalyst only to the limited part of a hot filament by discharging a slurry from a syringe-shaped aperture provided to an electrophoretic vessel, inserting the hot filament into the outflow slurry and effecting electrophoresis. CONSTITUTION:The slurry 7 dispersed therein with the carrier or the carrier with the catalyst is poured into the electrophoretic vessel 1 until an electrode 5 is immersed into the slurry. A liquid drop 8 of the slurry is formed to the aperture 2 at the bottom end of the vessel 1 or the slurry is continuously run down by the aperture 2. The outflow rate of the slurry from the aperture 2 is adjusted by a needle valve 4. The part to be coated of the coiled hot filament 10 fixed onto a U-shaped jig 9 made of a metal is inserted into the formed liquid drop 8 or the continuously flowing-out slurry and the jig 9 is connected to a DC power source 6 to transfer the dispersion particles in the slurry 7 toward the filament 10 by which the carrier or the carrier with the catalyst is stuck to the required point of the hot filament.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、接触燃焼式ガスセンサに用いられるガス検知
素子および温度補償素子の製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for manufacturing a gas detection element and a temperature compensation element used in a catalytic combustion type gas sensor.

(従来の技術) 接触燃焼式ガスセンサに用いられるガス検知素子は、第
3図に示すように、白金などの抵抗温度係数の高い材質
の線をコイル状にした熱線条10を活性アルミナなどの
担体12で被覆し、さらにこの担体12に可燃性ガスに
対する酸化性能に優れた触媒を付着させた構造となって
おり、また温度補償素子は、可燃性ガスに対して不活性
な点を除けばガス検知素子と同様の形状をしている。実
際のセンサは第4図に示すように、ガス検知素子13と
温度補償素子14とが隣接する枝路内に位置するように
抵抗15.16とともにブリッジを形成せしめて電源1
7に接続し、画素子13.14の接続点と抵抗15.1
6の接続点との間に出力検出部18を接続することによ
って構成される。
(Prior Art) As shown in FIG. 3, a gas detection element used in a catalytic combustion type gas sensor is made of a hot wire 10 made of a coiled wire made of a material with a high temperature coefficient of resistance such as platinum, and a carrier such as activated alumina. 12, and a catalyst with excellent oxidation performance against combustible gases is adhered to the carrier 12, and the temperature compensating element is inert to combustible gases. It has the same shape as the sensing element. As shown in FIG. 4, the actual sensor is constructed by forming a bridge with resistors 15 and 16 so that the gas detection element 13 and the temperature compensation element 14 are located in adjacent branches.
7, the connection point of pixel element 13.14 and resistor 15.1
It is constructed by connecting the output detection section 18 between the connection point No. 6 and the connection point No. 6.

このガス検知素子および温度補償素子は通常、熱線条に
担体を付着させた後適当な熱処理を行なって熱線条に担
体を固着させる方法により製造される。またガス検知素
子用としては、担体を固着させた後、これに適当な触媒
を担持させる方法が通常とられるが、あらかじめ粉末状
の担体に触媒を担持しておき、この触媒付き担体粉末を
熱線条に付着させるという方法がとられることもある。
The gas detection element and the temperature compensation element are usually manufactured by a method in which a carrier is attached to a hot wire and then a suitable heat treatment is performed to fix the carrier to the hot wire. Furthermore, for gas detection elements, a method is usually used in which a carrier is fixed and then an appropriate catalyst is supported on it. A method of attaching it to the strips may also be used.

熱線条を担体で被覆する方法の一つとして特開昭48−
83890号公報に記載のように電気泳動を利用する方
法がある。第5図はこの電気泳動法により熱線条に被覆
層を形成させる一般的が方法を示したもので、活性アル
ミナなどの担体粉末が分散したスラリー7の中に、一方
に白金などの電極5を、他方に担体を付着させようとす
る熱線条10を浸漬し、電極5と熱線条lOとを直流電
源6の6極に接続し、分散媒中の担体粉末の帯電電荷と
逆符号の電位を熱線条に印加することにより熱線条10
の表面に担体を付着させるものである。この方法は、担
体の付着量を電圧値および電圧の印加時間等により制御
できるため、素子の大きさを揃えやすいことから、セン
サ性能のばらつきS小さくでき、しかも量産性にも優れ
ているという長所がある。しかしながらこの電気泳動に
より素子を形成する方法は、L記のエラな長所を持り半
面、以下に述べるような製造技術丘の問題がある。
As one of the methods of coating hot filaments with a carrier, Japanese Patent Application Laid-Open No. 1973-
There is a method using electrophoresis as described in Japanese Patent No. 83890. Figure 5 shows a general method for forming a coating layer on a hot wire using this electrophoresis method, in which an electrode 5 made of platinum or the like is placed on one side in a slurry 7 in which carrier powder such as activated alumina is dispersed. , the hot filament 10 on which the carrier is to be attached is immersed, the electrode 5 and the hot filament 10 are connected to the 6 poles of the DC power source 6, and a potential with the opposite sign to the charge on the carrier powder in the dispersion medium is applied. By applying heat to the hot streak 10
A carrier is attached to the surface of the carrier. This method has the advantage of being able to control the amount of carrier deposited by the voltage value, voltage application time, etc., making it easy to align the size of the elements, reducing the variation in sensor performance S, and being excellent in mass production. There is. However, although this method of forming elements by electrophoresis has the advantages listed in item L, it also has problems with manufacturing technology as described below.

すなわち、第5図に示す装置をそのまま用いた場合、分
散媒に浸漬されている熱線条の部分には総て担体が付着
することになる。しかしながら、実際のセンチでは熱線
条の両端は導電性の端子棒と接合する必要があるため、
この部分は電気絶縁性の担体で被覆されてはならない。
That is, when the apparatus shown in FIG. 5 is used as it is, the carrier will adhere to all parts of the hot wire that are immersed in the dispersion medium. However, in actual centimeters, both ends of the hot wire need to be connected to conductive terminal rods, so
This part must not be covered with an electrically insulating carrier.

さらに、通常用いられる熱線条は第3図に示すようにコ
イル状の形状をしており、このコイル部分にのみ担体を
付着させることが望ましい。このような理由から、第5
図の装置を用いて熱線条に担体を付着させる場合には、
熱線条の不要な部分に付着した担体をなんらかの方法で
除去するか、あるいは熱線条のうちで担体を付着させた
くない部分をあらかじめ電気絶縁性の樹脂膜で被覆した
後電気泳動により担体を付着させ、次いで高温で加熱す
ることにより絶縁性皮膜を燃焼除去するなどの操作が必
要である。したがってこれらの方法では、一度付着した
担体の除去操作、絶縁皮膜の塗布などの作業工程が増大
するため量産性の点で好ましくない。
Furthermore, the commonly used hot wire has a coiled shape as shown in FIG. 3, and it is desirable to attach the carrier only to this coiled portion. For this reason, the fifth
When attaching the carrier to the hot wire using the device shown in the figure,
Either remove the carrier attached to unnecessary parts of the hot filament by some method, or cover the part of the hot filament where you do not want the carrier to be attached with an electrically insulating resin film, and then attach the carrier by electrophoresis. Then, operations such as burning and removing the insulating film by heating at a high temperature are required. Therefore, these methods are unfavorable in terms of mass production because they increase the number of work steps such as removing the carrier once attached and coating the insulating film.

なお、前述の特開昭48−83890号公報では熱線条
の表面に電気泳動法によって被覆層を形成するようにな
っているが、熱線条の4要な部分のみを被覆する具体的
な方法については記載されていない。
In addition, in the above-mentioned Japanese Patent Application Laid-Open No. 48-83890, a coating layer is formed on the surface of the hot filament by electrophoresis, but there is no specific method for coating only the four essential parts of the hot filament. is not listed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明が解決しようとする問題点は、接触燃焼式ガスセ
ンナのガス検知素子および温度補償素子を電気泳動法に
より製造する場合において、熱線条の限定された部分に
のみ担体または触媒付き担体を付着させることができる
装置を得ることにある。
The problem to be solved by the present invention is that when manufacturing the gas detection element and temperature compensation element of a catalytic combustion type gas sensor by electrophoresis, the carrier or the carrier with catalyst is attached only to a limited part of the hot wire. The goal is to obtain equipment that can.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

上述の問題点は本発明によれば、熱線条の表面を電気泳
動法により担体または触媒付き担体で被覆したガス検知
素子および温度補償素子から成る接触燃焼式ガスセンサ
の装造装置において、(1)  被覆粒子が分散したス
ラリーを電気泳動槽に設けたスポイト状の開口部より流
出させる手段(2)流出スラリー中に熱線条の被覆すべ
き部分を挿入する手段 (3)  熱線条と電気泳動槽中の電極との間に直流電
圧を印加する手段 を有することにより解決される。
According to the present invention, the above-mentioned problems can be solved by (1) in a device for manufacturing a catalytic combustion gas sensor comprising a gas sensing element and a temperature compensating element in which the surface of a hot wire is coated with a carrier or a carrier with a catalyst by electrophoresis; Means for flowing out the slurry in which coated particles are dispersed through a dropper-shaped opening provided in the electrophoresis tank (2) Means for inserting the portion of the hot filament to be coated into the flowing slurry (3) The hot filament and the inside of the electrophoresis bath This problem is solved by having means for applying a DC voltage between the electrodes.

本発明装着におけるスラリーを流出させる手段としては
、スポイト状の開口部よりスラリーを自然落下させる方
式が好ましく、この場合は落下速度は電気泳動槽のと部
に設けた外気の導入量を調Uするニードルパルプの開度
により制御することができるが、この自然落下の方式以
外にも例えばポンプなどにより強制的にスラリーを流出
させる方式を採用することもできる。
As a means for draining the slurry when installing the present invention, it is preferable to let the slurry fall naturally from a dropper-shaped opening. In this case, the falling speed is adjusted by the amount of outside air introduced at the end of the electrophoresis tank. The slurry can be controlled by the degree of opening of the needle pulp, but in addition to this natural falling method, it is also possible to adopt a method in which the slurry is forced to flow out using a pump or the like.

また、流出スラリーの形状は流出速度、およびスポイト
状開口部の断面形状などによるが、液滴状、円柱状、帯
状などの形状が使用できる。
Further, the shape of the slurry flowing out depends on the flow rate and the cross-sectional shape of the dropper-like opening, but shapes such as a droplet shape, a cylindrical shape, and a band shape can be used.

〔作用〕[Effect]

本発明においては、スラリーを装入した電気泳動槽の一
部にスポイト状の細い開口部を形成することにより、開
口部からのスラリーの流出量を制限し、熱線条の限定し
た部分にのみスラリーを接触させた状態で電圧を印加す
ることにより、熱線条の必要な部分にだけ担体または触
媒付き担体を付着させることができる。
In the present invention, by forming a dropper-like narrow opening in a part of the electrophoresis tank charged with slurry, the amount of slurry flowing out from the opening is restricted, and the slurry is applied only to a limited part of the hot wire. By applying a voltage while the two are in contact with each other, the carrier or the carrier with catalyst can be attached only to the necessary portions of the hot wire.

〔実施例〕〔Example〕

次に本発明の実施例を図面について説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図において、1は電気泳動槽で、下端にはスポイト
状の細い開口部2、上部にはスラリー注入口3とニード
ルパルプ4を備えている。電気泳動槽1内には電極5が
配置され、電極5は直流電源6の一極に接続されている
In FIG. 1, reference numeral 1 denotes an electrophoresis tank, which is equipped with a thin dropper-like opening 2 at the lower end, and a slurry inlet 3 and needle pulp 4 at the upper end. An electrode 5 is disposed within the electrophoresis tank 1, and the electrode 5 is connected to one pole of a DC power source 6.

装造に当ってはまず電気泳動槽l内に、担体または触媒
付き担体粉末を分散させたスラリー7を電極5がスラリ
ー中にひたるまでスラリー注入口3より注入する。次い
で電気泳動槽1の下端の開口部2にスラリーの液滴8を
形成させるか、または開口部2よりスラリーを連続的に
流下させる。
In preparation, first, a slurry 7 in which a carrier or a carrier powder with a catalyst is dispersed is injected into the electrophoresis tank l through the slurry inlet 3 until the electrode 5 is submerged in the slurry. Next, droplets 8 of the slurry are formed in the opening 2 at the lower end of the electrophoresis tank 1, or the slurry is allowed to flow down continuously from the opening 2.

この場合開口部2からのスラリーの流出速度はニードル
パルプ4の開度により調整することができる。
In this case, the flow rate of the slurry from the opening 2 can be adjusted by the opening degree of the needle pulp 4.

次にこの形成された液滴8または連続的に流出するスラ
リーの流体中に、金属製のU字型治具9上に固定したコ
イル状の熱線条lOの被覆すべき部分を挿入し、治具9
を直流電源6に接続することにより、スラリー7中の分
散粒子を熱線条10の方へ移動せしめ、熱線条の所要個
所に担体または触媒付き担体を付着させる。
Next, the part to be coated of the coiled hot wire lO fixed on a metal U-shaped jig 9 is inserted into the formed droplets 8 or the continuously flowing slurry fluid, and Ingredients 9
By connecting to the DC power supply 6, the dispersed particles in the slurry 7 are moved toward the hot wires 10, and the carrier or the carrier with a catalyst is attached to the desired location of the hot wires.

なお、電気泳動による付着操作の間、液滴の流出を止め
、静止した状態で行うことができるが、開口部からまだ
分離していない状態の液滴の内部に熱線条を設置するこ
とにより、液滴を間欠的に落下させた状態で4歌とも可
能である。
Note that during the adhesion operation by electrophoresis, it is possible to stop the outflow of the droplet and keep it stationary; however, by placing a hot wire inside the droplet that has not yet separated from the opening, All four songs are possible with droplets falling intermittently.

実施例1 第1図の装置を使用し、スラリー注入口3より活性アル
ミナ微粉末、アルミナゾルおよび水から成るスラリーを
注入し、注入口3を閉じ、ニードルパルプ4を操作して
開口部2の下端に液滴を形成させた。一方、線径30s
の白金線から成りコイル外径0.8鰭、巻き数10ター
ンの熱線条の両端をニッケル製U字型治具1に溶接し、
熱線条のコイル部分が液滴の内部に入る位置にセットし
た。
Example 1 Using the apparatus shown in FIG. 1, a slurry consisting of activated alumina fine powder, alumina sol, and water is injected from the slurry inlet 3, the inlet 3 is closed, and the needle pulp 4 is operated to fill the lower end of the opening 2. formed droplets. On the other hand, the wire diameter is 30s
Both ends of a hot wire made of platinum wire with a coil outer diameter of 0.8 fins and a number of turns of 10 are welded to a U-shaped nickel jig 1.
The coil part of the hot wire was set in a position inside the droplet.

この状態で熱線条を陰極に、電極を陽極にして直流電圧
を印加し、熱線条のコイル部分に担体粒子を付着させた
。次いでこの熱線条を治具から外し、電気炉で800℃
に加熱し、付着した担体粒子を熱線条に固着させた。こ
うして得られた素子は、第2図に示すように熱線条のコ
イル部分11の所定位置のまわりにのみ担体12で円柱
状に被覆された形状を有していた。
In this state, a direct current voltage was applied using the hot wire as a cathode and the electrode as an anode, thereby causing carrier particles to adhere to the coil portion of the hot wire. Next, this hot wire was removed from the jig and heated to 800°C in an electric furnace.
was heated to fix the attached carrier particles to the hot wire. The thus obtained element had a cylindrical shape in which only a predetermined position of the coil portion 11 of the hot wire was covered with a carrier 12, as shown in FIG.

実施例2 第1図の装着を使用し、かつ実施例1と同様のスラリー
を使用し、ニードルパルプ4の開度全調整して開口部2
からの液滴の落下速度を5秒に1滴程度となるようにし
た。次いで実施例1と同様の治具と熱線条を用意し、開
口部からまだ分離しない位置にある液滴の内部に熱線条
のコイル部分があるように設置し、実施例1と同様にし
てコイル部分に担体を付着させ、実施例1と同様の熱処
理を行った結果、第2図と同じような形状の素子が得ら
れた。
Example 2 Using the installation shown in FIG. 1 and using the same slurry as in Example 1, the opening degree of the needle pulp 4 was fully adjusted to form the opening 2.
The falling speed of the droplets was set to about 1 droplet every 5 seconds. Next, prepare the same jig and hot wire as in Example 1, install the coil part of the hot wire inside the droplet at a position that has not yet separated from the opening, and attach the coil in the same manner as in Example 1. As a result of attaching a carrier to the portion and performing the same heat treatment as in Example 1, an element having a shape similar to that shown in FIG. 2 was obtained.

実施例3 第1図の装置を使用し、かつ実施例1と同様のスラリー
を使用し、開口部2からスラリーが連続的に流下するよ
うにニードルパルプ4の開度を調整した。次いで実施例
1と同様の治具と熱線条を用意し、開口部近傍に形成さ
れた円柱状スラリーの内部に熱線条のコイル部分が位置
するようにセットし、実施例1と同様にしてコイル部分
に担体を付着させた。なおこの操作の際、電気泳動槽1
中の電極5が1回の付着操作の間スラリーの内部に位置
しているようにスラリーの仕込量およびスラリーの流下
速度を調整した。このようにスラリーを連続的C二流下
して担体を付着させた素子の形状も第2図と同様であっ
た。
Example 3 Using the apparatus shown in FIG. 1 and using the same slurry as in Example 1, the degree of opening of the needle pulp 4 was adjusted so that the slurry continuously flowed down from the opening 2. Next, prepare the same jig and hot wire as in Example 1, set the hot wire so that the coil portion of the hot wire is located inside the cylindrical slurry formed near the opening, and prepare the coil in the same manner as in Example 1. A carrier was attached to the part. Note that during this operation, electrophoresis tank 1
The amount of slurry charged and the rate of slurry flow were adjusted so that the electrode 5 inside was located inside the slurry during one deposition operation. The shape of the element to which the carrier was attached by continuously flowing the slurry in two C streams was also the same as that shown in FIG. 2.

熱線条の被覆される部分の領域は、液滴または連続的に
流下する流体の大きさによって決まるが、例えば開口部
の内径が0,5龍φのときは液滴の内部にある熱線条の
部分の長さは約1.51mである。
The area covered by the hot filament is determined by the size of the droplet or the continuously flowing fluid, but for example, when the inner diameter of the opening is 0.5 mm, The length of the section is approximately 1.51 m.

〔発明の効果〕〔Effect of the invention〕

本発明の装置は、接触燃焼式ガスセンチに用いられるガ
ス検知素子、温度補償素子を製造する場合に、電気泳動
槽に設けたスポイト状の開口部よりスラリーを液滴状、
円柱状または帯状に流出させる手段を有し、かつこの流
出スラリーの内部に熱線条を挿入して電気泳動を行なわ
せるようにした装着であるため、開口部に形成させる液
滴状、円柱状、または帯状スラリーのサイズを調整する
ことにより担体で被覆される熱線条の領域を所定の位菫
に限定することができる。
The apparatus of the present invention, when manufacturing gas detection elements and temperature compensation elements used in catalytic combustion type gas centimeters, collects slurry in the form of droplets through a dropper-shaped opening provided in an electrophoresis tank.
The device has a means for flowing out the slurry in a columnar or band shape, and a hot wire is inserted into the inside of the slurry to perform electrophoresis. Alternatively, by adjusting the size of the band-shaped slurry, the area of the hot filaments covered with the carrier can be limited to a predetermined range.

さらに本発明の装置によれば、素子形状のばらつきが少
なく、かつ量産性に優れるという電気泳動法が本来持っ
ている特長を有効に生かすことができ、接触燃焼式ガス
センチの性能および量産性の向上に大きく買献すること
ができるものである。
Furthermore, according to the apparatus of the present invention, the inherent features of the electrophoresis method, such as less variation in element shape and excellent mass productivity, can be effectively utilized, and the performance and mass productivity of catalytic combustion gas centimeters can be improved. This is something that can be greatly contributed to improvement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の装置の構成図、第2図は本発明の装置
により製造された素子の一部切欠斜視図、第3図は接触
燃焼式ガスセンサに一般に用いられるガス検知素子の一
部切欠斜視図、第4図は接触燃焼式ガスセンチに用いら
れる回路接続図、第5図は従来の方法を実施するための
装置の構成図である。 l・・・電気泳動槽、2・・・開口部、 3・・・スフ
9−注入口、 4−・二一ドルパルメ、 5・・・電極
、6・・・直流電源、 7・・・スラリー、 8・・・
スラリーの液滴、 9・・・U字型治真、 i o −
・・熱線条、11 ・・・熱線条のコイル部分、 12
・・・担体。
Fig. 1 is a configuration diagram of the device of the present invention, Fig. 2 is a partially cutaway perspective view of an element manufactured by the device of the present invention, and Fig. 3 is a part of a gas detection element generally used in a catalytic combustion type gas sensor. FIG. 4 is a cutaway perspective view, FIG. 4 is a circuit connection diagram used in a catalytic combustion type gas centimeter, and FIG. 5 is a configuration diagram of an apparatus for carrying out a conventional method. 1...Electrophoresis tank, 2...Opening, 3...Suf 9-inlet, 4-21 dollar palme, 5...Electrode, 6...DC power supply, 7...Slurry , 8...
Droplet of slurry, 9...U-shaped jima, io −
... Hot filament, 11 ... Coil part of hot filament, 12
...Carrier.

Claims (1)

【特許請求の範囲】[Claims] 1)熱線条の表面に電気泳動法により被覆層を形成した
素子から成る接触燃焼式ガスセンサの製造装置において
、被覆すべき粒子が分散したスラリーを電気泳動槽に設
けたスポイト状の開口部より流出させる手段と、流出ス
ラリー中に熱線条の被覆すべき部分を挿入する手段と、
電気泳動槽中の電極と前記熱線条との間に直流電圧を印
加する手段とを有することを特徴とするガスセンサの製
造装置。
1) In a manufacturing device for a catalytic combustion gas sensor consisting of an element in which a coating layer is formed on the surface of a hot wire by electrophoresis, a slurry in which particles to be coated are dispersed flows out from a dropper-shaped opening provided in an electrophoresis tank. and means for inserting the portion of the hot filament to be coated into the flowing slurry;
1. An apparatus for manufacturing a gas sensor, comprising means for applying a DC voltage between an electrode in an electrophoresis tank and the hot wire.
JP878885A 1985-01-21 1985-01-21 Apparatus for producing gas sensor Granted JPS61167850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP878885A JPS61167850A (en) 1985-01-21 1985-01-21 Apparatus for producing gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP878885A JPS61167850A (en) 1985-01-21 1985-01-21 Apparatus for producing gas sensor

Publications (2)

Publication Number Publication Date
JPS61167850A true JPS61167850A (en) 1986-07-29
JPH0426700B2 JPH0426700B2 (en) 1992-05-08

Family

ID=11702602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP878885A Granted JPS61167850A (en) 1985-01-21 1985-01-21 Apparatus for producing gas sensor

Country Status (1)

Country Link
JP (1) JPS61167850A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243226A (en) * 2009-04-02 2010-10-28 Riken Keiki Co Ltd Method for manufacturing element constituting gas detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243226A (en) * 2009-04-02 2010-10-28 Riken Keiki Co Ltd Method for manufacturing element constituting gas detector

Also Published As

Publication number Publication date
JPH0426700B2 (en) 1992-05-08

Similar Documents

Publication Publication Date Title
KR100391037B1 (en) Polymeric resistance heating element
US6432344B1 (en) Method of making an improved polymeric immersion heating element with skeletal support and optional heat transfer fins
ATE68121T1 (en) HEATABLE INJECTION MOLDING NOZZLE WITH BRAZE-IN HEATING ELEMENT AND METHOD OF PRODUCTION.
US5020214A (en) Method of manufacturing a hot wire air flow meter
US4019021A (en) Electric resistance fluid heating apparatus
EP0245092B1 (en) Thermo-sensitive resistor
JPH0452866B2 (en)
JPS61167850A (en) Apparatus for producing gas sensor
CA1076181A (en) Electric immersion heating apparatus and methods of constructing and utilizing same
JPH06227822A (en) Outflow apparatus for glass preform
US4906821A (en) Resistor for the treatment of materials
KR910003716A (en) Inorganic Insulation Heater, Cathode Ray Heater Cathode Heater and Their Manufacturing Process and Air Flow Sensor Using the Heater, Cathode Ray cathode, Cathode Ray Heater
EP0177795B1 (en) Apparatus for sensing oxygen concentration
US4438322A (en) Ceramic coated electric heater assembly for tools
JPH0754263B2 (en) Heat wire type air flow meter and manufacturing method thereof
GB1562623A (en) Device for monitoring the composition of the gaseous emission of a combustion process
JPH0235432B2 (en)
JPS62151358A (en) Thermal head
US4701933A (en) Method of supplying heat energy to a metal melt or the like and a heating element for use with said method
JPH0426701B2 (en)
JP2567931B2 (en) Wirewound resistance element
US3364565A (en) Method of making a thermistor
JPH0259372B2 (en)
CN211527078U (en) Novel electromagnetic melting furnace
JPH06267710A (en) Resistor element and thermal flowmeter