JPS61167627A - Synthesis of oxygen-containing compound from olefin - Google Patents

Synthesis of oxygen-containing compound from olefin

Info

Publication number
JPS61167627A
JPS61167627A JP60008862A JP886285A JPS61167627A JP S61167627 A JPS61167627 A JP S61167627A JP 60008862 A JP60008862 A JP 60008862A JP 886285 A JP886285 A JP 886285A JP S61167627 A JPS61167627 A JP S61167627A
Authority
JP
Japan
Prior art keywords
complex
oxygen
compound
olefin
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60008862A
Other languages
Japanese (ja)
Inventor
Rikuo Yamada
陸雄 山田
Taiji Kamiguchi
上口 泰司
Hirotoshi Tanimoto
博利 谷本
Kijiro Arikawa
有川 喜次郎
Hiroyuki Kako
宏行 加来
Naruhito Takamoto
成仁 高本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60008862A priority Critical patent/JPS61167627A/en
Priority to KR1019860000361A priority patent/KR870002102B1/en
Priority to EP86300406A priority patent/EP0189312B1/en
Priority to CA000499978A priority patent/CA1311495C/en
Priority to DE8686300406T priority patent/DE3680927D1/en
Priority to US06/820,004 priority patent/US4806692A/en
Publication of JPS61167627A publication Critical patent/JPS61167627A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To produce an oxygen-containing compound from an olefin, economically, by using water and a composite catalyst containing a platinum-group complex and a transition metal complex capable of forming a coordination bond with oxygen or olefin to form an oxygen complex or olefin complex, as the components of the catalyst. CONSTITUTION:An oxygen-containing component is produced by oxidizing an olefin in the presence of a metal complex catalyst. In the above process, the metal complex catalyst is composed of (A) a composite catalyst containing both complexes of formula MmXn.Ll and formula M'm'X'n'.L'l' (M is transition metal belonging to groups I, IV-VII or iron group of the group VIII of the periodic table; X is Cl<->, Br<->, I<->, BF<->4, PF<->6, etc.; L and L' are organic phosphorus compound or nitrile; L' may be organic fluorine compound; M' is transition metal belonging to platinum-group of the group VIII of the periodic table; m, m', n and n' are numbers determined by the balance of atomic values; land l' are coorination numbers) capable of forming a coordination bond with oxygen or olefin to form an oxygen complex or olefin complex, and (B) water. The objective compound can be produced in high yield and selectivity under mild condition.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はオレフィン類から含酸素化合物を合成する方法
に係り、特に水および酸素錯体の存在下に白金族錯体を
用いてオレフィンを酸化し、含酸素化合物を製造する方
法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for synthesizing oxygen-containing compounds from olefins, and in particular, oxidizing an olefin using a platinum group complex in the presence of water and an oxygen complex, The present invention relates to a method for producing an oxygen-containing compound.

(従来の技術) 従来、工業的に実施されている各種オレフィンの酸化反
応としては有名なヘキスト・フッカ法がある(特公昭3
6−1475号、同36−7869号)。この方法では
触媒であるPd (2)c7!。
(Prior art) As an example of the oxidation reaction of various olefins that has been carried out industrially, there is the famous Hoechst-Fucka process (Japanese Patent Publication No. 3
No. 6-1475, No. 36-7869). In this method, the catalyst is Pd (2)c7! .

とCu (2)C12を塩酸溶液(pH二〇〜2)に熔
解させた複合触媒が用いられている。例えば、エチレン
の酸化反応で説明するならば、まず、2価のパラジウム
と水によってエチレンを酸化しアセトアルデヒドを生成
する。その反応は次式で示される。
A composite catalyst in which Cu(2)C12 and Cu(2)C12 are dissolved in a hydrochloric acid solution (pH 20-2) is used. For example, to explain the oxidation reaction of ethylene, first, ethylene is oxidized with divalent palladium and water to produce acetaldehyde. The reaction is shown by the following formula.

CH,=CH,+Pd (2)C12+H2O−CH3
CHO+Pd (0)  ↓+2HC1(1)この反応
式かられかるように、pa (2)は還元されて金属パ
ラジウム(Pd (0))となり沈澱する。そこでCu
 (2)C1zを多量に共存させ、次式に示すようにp
a (0)をpa (2)に酸化再生する必要がある。
CH,=CH,+Pd (2)C12+H2O-CH3
CHO+Pd (0) ↓+2HC1 (1) As seen from this reaction formula, pa (2) is reduced to metal palladium (Pd (0)) and precipitated. Therefore, Cu
(2) By allowing a large amount of C1z to coexist, p
It is necessary to oxidize and regenerate a (0) to pa (2).

Pd (0)+2Cu (2)C112−=Pd (2
)C112+2Cu (1)Cj!     (2)こ
のとき副生じた難溶性のCu (1)C1は、HClの
共存下、次式に従い酸素酸化されCu(2)C12に戻
される。
Pd (0)+2Cu (2)C112-=Pd (2
) C112+2Cu (1) Cj! (2) The poorly soluble Cu(1)C1 produced as a by-product at this time is oxidized with oxygen according to the following formula in the presence of HCl and returned to Cu(2)C12.

2Cu (1)CI+−0□+28CJ→2Cu (2
)CH12+H20(3)(発明が解決しようとする問
題点) このように、Pd (2)/Pd (0) 、Cu (
2)/Cu(1)のレドックス系を採用してエチレンの
連続的酸化を可能にしている。しかし、この酸化は、酸
素によるエチレンの直接酸化ではなく水中に熔解したP
d (2)イオンによる酸化であり、Cu (1)CI
の酸化再生が律速となっている。また、酸素の水に対す
る熔解度が低いため、その熔解度を上げなければならず
、酸素処理は100℃、10atmと高温、高圧となっ
ている。
2Cu (1) CI+-0□+28CJ→2Cu (2
)CH12+H20(3) (problem to be solved by the invention) In this way, Pd (2)/Pd (0), Cu (
2)/Cu(1) redox system is employed to enable continuous oxidation of ethylene. However, this oxidation is not a direct oxidation of ethylene with oxygen, but a reaction with P dissolved in water.
d (2) ion oxidation, Cu (1) CI
The oxidative regeneration of is the rate-limiting factor. Further, since the solubility of oxygen in water is low, the solubility must be increased, and the oxygen treatment is performed at a high temperature and pressure of 100° C. and 10 atm.

また、高級オレフィンの場合は酸化速度が遅く長い反応
時間を要するため、1−ブテン以上では実用化されてい
ないとされている(円柱、触媒、!上 167  (1
979))。さらに、高濃度のHC7!水溶液を用いる
ため、チタン、ハステロイ等の耐食性材料が必要となる
In addition, in the case of higher olefins, the oxidation rate is slow and the reaction time is long, so it is said that they have not been put to practical use with 1-butene or higher (cylindrical, catalyst, !167 (1
979)). Furthermore, high concentration of HC7! Since an aqueous solution is used, corrosion-resistant materials such as titanium and Hastelloy are required.

このように反応が高温、高圧下で行なわれておりより温
和な条件下でオレフィンを酸化できる方法が望まれてい
た。
In this way, the reaction is carried out at high temperatures and pressures, and there has been a desire for a method that can oxidize olefins under milder conditions.

本発明の目的は、これらの課題を解決し、より温和な条
件下でオシ9フイン類を酸化して含酸素化合物を合成す
る方法を提供することにある。
An object of the present invention is to solve these problems and to provide a method for synthesizing oxygen-containing compounds by oxidizing oxidation compounds under milder conditions.

(問題点を解決するための手段) 要するに本発明は、前記オレフィンを配位結合し、オレ
フィン錯体を形成し得る白金族錯体を用い、水の存在下
、錯体生成によって活性化されたオレフィンを酸化し、
さらに遷移金属に配位し、活性化された酸素により、還
元された白金族錯体を酸化し、含水混合溶媒系で温和な
条件下で含酸素化合物を合成する方法である。
(Means for Solving the Problems) In short, the present invention uses a platinum group complex capable of forming an olefin complex by coordinately bonding the olefin, and oxidizes the olefin activated by complex formation in the presence of water. death,
This method further oxidizes the reduced platinum group complex with activated oxygen that coordinates with a transition metal, and synthesizes an oxygen-containing compound under mild conditions in a water-containing mixed solvent system.

本発明者らは先に、酸素が配位結合することによって酸
素錯体を形成し得る遷移金属錯体を少なくとも触媒成分
の1つとして、さらにエチレンの例で述べるなら、エチ
レンを配位結合し、エチレン錯体を形成し得る白金族錯
体とからなる複合触媒を用い、錯体生成によって活性化
された結合酸素により、錯体生成によって活性化された
エチレンを直接酸素酸化し、非水溶媒系で温和な条件下
でアセトアルデヒドを合成する方法を提案した(特願昭
58−104291号、同59−41800号)。
The present inventors have previously proposed that at least one of the catalyst components is a transition metal complex capable of forming an oxygen complex through coordination bonding with oxygen. Using a composite catalyst consisting of a platinum group complex that can form complexes, ethylene activated by complex formation is directly oxidized with oxygen by bound oxygen activated by complex formation, and ethylene is oxidized under mild conditions in a non-aqueous solvent system. proposed a method for synthesizing acetaldehyde (Japanese Patent Application Nos. 58-104291 and 59-41800).

本発明は、その研究過程において上記発明における酸素
錯体が、pd (0)を効率よ<Pd(2)C7!2へ
と酸化する能力を有することを見出したことに基づくも
のである。すなわち、その代表例で述べるならば、Cu
 (1)C1lとリン酸の誘導体であるトリス(ジメチ
ルアミノ)ホスフィンオキシト(別名へキサメチルホス
ホルアミド、以下hmpaと記す)との錯体(Cu (
1)CJ −h m p a )から生成する酸素錯体
((Cu (1)C1−hmpa)2 ・02)と、例
えば、Pd(2)Cf2とhmpaおよびベンゾニトリ
ル(PhCN)から生成する錯体(Pd (2)cz2
・P h CN−h m p a )のエチレン錯体(
Pd (2)C7!、・P h CN−C2H4)を水
の存在下で反応させるものであり、次のような反応機構
で進むものと考えられる。
The present invention is based on the discovery in the course of its research that the oxygen complex in the above invention has the ability to efficiently oxidize pd(0) to <Pd(2)C7!2. In other words, to give a typical example, Cu
(1) A complex (Cu (
1) An oxygen complex ((Cu(1)C1-hmpa)2 .02) generated from CJ-hmpa) and a complex ((Cu(1)C1-hmpa)2.02) generated from, for example, Pd(2)Cf2, hmpa, and benzonitrile (PhCN). Pd (2) cz2
・Ethylene complex (P h CN-h m pa ) (
Pd (2) C7! , .P h CN-C2H4) in the presence of water, and is thought to proceed according to the following reaction mechanism.

(a)エチレン錯体の生成およびエチレンの酸化Pd 
(2)C12・PhCN−hmpa+C2H4−’Pd
 (2)Cjlz ・PhCN−C2H4+hmpa 
 (4P d (2) ci2’ P hCN ’ C
1H4”H20−CHz  CHO+pd  (0) 
 ↓+2HCIt+PhCN   (5)(b)Pd 
(0)の再生 Pd (0)+    (Cu (1)C1・hmpa
)2 ・Oz+ 2 HC1+ P h CN + h
 m p a→Pd (2)CA2 ・PhCN−hm
pa+Cu (1)C1・hmpa+H20(6)(C
)酸素錯体の再生 Cu (1)C1−hmpa + −0゜−−−(Cu
 (1)Cjl−hmp a)x  ・02     
(7)本反応の触媒サイクルを模式的に示したものが第
1図であり、第2図のヘキスト・フッカ法とは全く異な
ることがわかる。また第3図は、本発明に用いられる錯
体に関する紫外吸収スペクトルを示す図、第4図は、本
発明における02錯体によるPd (0)酸化量とWa
cker法におけるCucllによるpa (0)酸化
量の時間変化を比較した図である。
(a) Generation of ethylene complex and Pd oxidation of ethylene
(2) C12・PhCN-hmpa+C2H4-'Pd
(2) Cjlz ・PhCN-C2H4+hmpa
(4P d (2) ci2' P hCN ' C
1H4”H20-CHz CHO+pd (0)
↓+2HCIt+PhCN (5)(b)Pd
Regeneration of (0) Pd (0) + (Cu (1) C1・hmpa
)2 ・Oz+ 2 HC1+ P h CN + h
m p a → Pd (2) CA2 ・PhCN-hm
pa+Cu (1)C1・hmpa+H20(6)(C
) Regeneration of oxygen complex Cu (1) C1-hmpa + -0°---(Cu
(1) Cjl-hmp a)x ・02
(7) Fig. 1 schematically shows the catalytic cycle of this reaction, and it can be seen that it is completely different from the Hoechst-Fucka method shown in Fig. 2. Furthermore, FIG. 3 shows the ultraviolet absorption spectrum of the complex used in the present invention, and FIG. 4 shows the amount of Pd(0) oxidized by the 02 complex in the present invention and Wa
FIG. 3 is a diagram comparing changes over time in the amount of pa (0) oxidation due to Cucll in the Cucker method.

さらに各反応の特徴をより詳しく説明すると、(6)式
に示すPd (0)のPd (2)C12への酸化再生
反応の80℃における速度は、先に述べたCu (2)
C12による再生((2)式)速度の約10倍の速さで
あった。なお、ここで、上述のごとき酸素錯体を形成す
る錯体を一般式MmXn−Llで示した場合、Cu (
1)CI −hmpaは、m=1、n−1、z=1の場
合に相当する。また、例えば、Ti  (3)あるいは
v(3)を中心金属とし陰イオンをC1−とした場合、
生成錯体は、Ti  (3)C13・hmpa、V (
3)C23・h m p aであり、いずれの場合も、
m=1、n=3、l=1に相当する。
Furthermore, to explain the characteristics of each reaction in more detail, the rate at 80°C of the oxidation regeneration reaction of Pd (0) to Pd (2) C12 shown in equation (6) is the same as that of Cu (2)
This was about 10 times faster than the regeneration speed by C12 (formula (2)). In addition, here, when the complex forming the above-mentioned oxygen complex is represented by the general formula MmXn-Ll, Cu (
1) CI-hmpa corresponds to the case where m=1, n-1, z=1. For example, when Ti (3) or v (3) is the central metal and the anion is C1-,
The resulting complex is Ti(3)C13・hmpa,V(
3) C23・h m p a, and in either case,
This corresponds to m=1, n=3, and l=1.

ところで、(7)式で生成するCu (1)CI・h 
m p aは空気から選択的に酸素を吸収して酸素錯体
に戻るが、その速度は80℃において、先に述べたCu
 (1)(lの02によるCu (2)CZ2への再酸
化反応((3)式)の約8倍の速度を有する。したがっ
て、前記エチレンをエチレン錯体の形成によって活性化
させ、水の存在下で反応させれば、エチレンからのアセ
トアルデヒド合成が効率よく行なえることになる。その
ため、種々の白金族錯体について検討した。その結果、
代表例で述べるならば、Pd (2)C12は前記h 
m p aに修飾配位子としてPhCNを加えると次の
ような新しい混合配位子からなる錯体が生成した。
By the way, Cu generated by equation (7) (1) CI・h
m p a selectively absorbs oxygen from the air and returns to an oxygen complex, but the rate at 80°C is the same as that of Cu mentioned earlier.
(1) The reoxidation reaction of Cu (2) to CZ2 by (l of 02) is about 8 times faster than the reoxidation reaction (equation (3)). Acetaldehyde synthesis from ethylene can be carried out efficiently if the reaction is carried out under
To give a representative example, Pd (2) C12 is the h
When PhCN was added as a modifying ligand to m p a , a complex consisting of the following new mixed ligands was generated.

P d  (2) Cjl2  (hrnp a) 2
 +P h CN  ;′Pd(2)Cf2 ・PhC
N−hmpa+hmpa   (8)なお、本錯体を一
般式M ’ m″X n ?・L′β。
P d (2) Cjl2 (hrnp a) 2
+P h CN ;'Pd(2)Cf2 ・PhC
N-hmpa+hmpa (8) The general formula for this complex is M'm''Xn?・L'β.

で示した場合、m′=1、n′=2)l゛=1となる。In this case, m'=1, n'=2) l'=1.

この新しいpa (2)錯体は例えばエチレンと(4)
式に従いエチレン錯体を形成するが、生成したエチレン
錯体ではエチレンが著しく活性化されているため錯体中
のPd (2)による酸化反応((5)式)が容易に進
み、アセトアルデヒドが温和な条件下、1段で合成でき
ることになる。
This new pa (2) complex can be combined with ethylene (4) for example.
An ethylene complex is formed according to the formula, but in the generated ethylene complex, ethylene is significantly activated, so the oxidation reaction (formula (5)) by Pd (2) in the complex proceeds easily, and acetaldehyde is oxidized under mild conditions. , it can be synthesized in one step.

Pd (2)C1lt ・PhCN−hmpa+c2 
H4Pd(2)Cffiz  ・ PhCN −CzH
4+hmpa   (4)Pd (2)C112・P 
h CN−Cz H4+l(、0−CH:I CHO+
Pd  (0)  ↓+2HCjl+phcN   (
5)生成したPd (0)は前述のごとく酸素錯体によ
り容易にもとのPd (2)錯体に戻る。
Pd (2) C1lt ・PhCN-hmpa+c2
H4Pd(2)Cffiz・PhCN-CzH
4+hmpa (4) Pd (2) C112・P
h CN-Cz H4+l(,0-CH:I CHO+
Pd (0) ↓+2HCjl+phcN (
5) The generated Pd (0) easily returns to the original Pd (2) complex by the oxygen complex as described above.

以上のように、本発明においては、エチレンを錯体とし
て活性化し、Pd (2)の酸化力によってエチレンを
酸化し生成するPd (0)を酸素錯体中の活性化され
た酸素で酸化再生できるため、例えば常圧下、80℃以
下のような温和な条件で短時間に高選択的、高収率でア
セトアルデヒドを合成できることになる。しかも1段法
で合成できるため、従来法に比較して装置、コスト、ユ
ーティリティを大幅に低減することが可能である。
As described above, in the present invention, ethylene is activated as a complex, and Pd (0) generated by oxidizing ethylene with the oxidizing power of Pd (2) can be oxidized and regenerated with the activated oxygen in the oxygen complex. For example, acetaldehyde can be synthesized with high selectivity and high yield in a short time under mild conditions such as under normal pressure and at 80° C. or lower. Moreover, since it can be synthesized using a one-stage method, it is possible to significantly reduce equipment, cost, and utility compared to conventional methods.

本発明の複合触媒系において、酸素錯体を形成し得る錯
体触媒としてのMmXn−LJにおけるMとしては、周
期律第1族のCu s A g、第■族のTi、Zr、
第V族の■、Nb、第■族のCr %M o s W 
%第■族のM n 、第■族のFe5(:、o等の遷移
金属が好ましく、Cu (1) 、Ti  (3)、■
(3)がより好ましい。また、Xとしては、Cl−1B
r−、Br−のハtllゲン化物イオン、BF4PI’
、−、CH3COO−、S042−等の陰イオンが好ま
しく、C12−、B r−、Br−がより好ましい。配
位子としては、ニトリル類、リン酸の誘導体であるトリ
フェニルホスフィンオキシト、ヘキサメチルホスホルア
ミドおよびリン酸とメタノール、エタノール等の反応か
らできるモノ、ジまたはトリエステル、さらにメチルホ
スホン酸ジメチル、ジメチルホスフィン酸メチル、ある
いは、亜リン酸の誘導体である、亜リン酸とメタノール
、エタノール等の反応からできる、モノ、ジまたはトリ
エステルおよびフェニル亜ホスホン酸エステル、ジメチ
ルホスフィン酸エステル、トリエチルホスフィン、トリ
フェニルホスフィン等で代表される有機リン化合物が好
ましいものとして挙げられ、特に、ヘキサメチルホスホ
ルアミド(h m pa)、ベンゾニトリル(PhCN
)が好ましい。
In the composite catalyst system of the present invention, M in MmXn-LJ as a complex catalyst capable of forming an oxygen complex includes Cu s A g of Group 1 of the periodic law, Ti, Zr of Group 2,
Group V ■, Nb, Group ■Cr %M o s W
Transition metals such as Mn of group ■, Fe5(:, o, etc. of group ■) are preferable, and Cu (1), Ti (3), ■
(3) is more preferred. In addition, as X, Cl-1B
r-, Br- tllgenide ion, BF4PI'
Anions such as , -, CH3COO-, and S042- are preferred, and C12-, Br-, and Br- are more preferred. Ligands include nitriles, phosphoric acid derivatives such as triphenylphosphine oxyto, hexamethylphosphoramide, and mono-, di-, or triester formed from the reaction of phosphoric acid with methanol, ethanol, etc., as well as dimethyl methylphosphonate, Methyl dimethylphosphinate, or derivatives of phosphorous acid, mono-, di-, or triesters produced by the reaction of phosphorous acid with methanol, ethanol, etc.; phenylphosphonite, dimethylphosphinate, triethylphosphine, Preferred examples include organic phosphorus compounds represented by phenylphosphine, and in particular, hexamethylphosphoramide (hm pa), benzonitrile (PhCN
) is preferred.

一方、エチレン錯体を形成し得る錯体触媒(M’m”X
n’・L”lo)におけるMoとしては白金族に属する
金属のうち、Pd、Ptが好ましい。
On the other hand, a complex catalyst (M'm"X
Among metals belonging to the platinum group, Pd and Pt are preferable as Mo in n'·L''lo).

また、配位子としては、アセトニトリル、プロピオニト
リル、ベンゾニトリル等のニトリル類、および上述の有
機リン化合物、さらにはフン化トルエン、ペンシトリフ
ロライド等の有機フッ素化合物が好ましいものとして挙
げられる。
Preferred examples of the ligand include nitriles such as acetonitrile, propionitrile, and benzonitrile, the above-mentioned organic phosphorus compounds, and organic fluorine compounds such as fluorinated toluene and pensitrifluoride.

なお、反応系の溶媒としては、複合触媒を溶かすととも
に、生成する含酸素化合物との分離が容易であり、かつ
、触媒溶液の粘度を下げ物質移動を促進するものが好ま
しく、例えば、ヘプタン、トルエン、メチルシクロヘキ
サン、ジオキサン、プロピレンカーボネート、クロロベ
ンゼン、N−メチルピロリドン、テトラヒドロフラン、
およびエチレングリコールジブチルエーテル、ジエチレ
ングリコールモノメチルエーテル等のエーテル類などの
各種溶媒から選ばれた少なくとも1種の溶媒または、こ
れらの混合物を用いるか、さらには、配位子りまたはL
“が液体の場合、そのものを溶媒として兼用することも
できる。
As the solvent for the reaction system, it is preferable to use a solvent that dissolves the composite catalyst, easily separates it from the generated oxygen-containing compound, and also reduces the viscosity of the catalyst solution and promotes mass transfer. For example, heptane, toluene, etc. , methylcyclohexane, dioxane, propylene carbonate, chlorobenzene, N-methylpyrrolidone, tetrahydrofuran,
and at least one solvent selected from various solvents such as ethers such as ethylene glycol dibutyl ether and diethylene glycol monomethyl ether, or a mixture thereof;
If “ is a liquid, it can also be used as a solvent.

また、反応の選択性および収率を高めるために後述の実
施例に示すように、スルホラン、ジメチルスルホラン、
ジメチルスルホキシド、ジメチルホルムアミド、トリメ
チルメタン、ジメチルスルホン等の塩基性(電子供与性
)化合物を反応系に共存させることが好ましい。
In addition, in order to increase the selectivity and yield of the reaction, sulfolane, dimethylsulfolane,
It is preferable to coexist a basic (electron-donating) compound such as dimethyl sulfoxide, dimethylformamide, trimethylmethane, dimethyl sulfone, etc. in the reaction system.

以上、酸素錯体およびオレフィン錯体を形成せしめ、水
の存在下、オレフィンを酸化し、含酸素化合物を合成す
る反応例を述べたが、次に本発明を実施例によりさらに
詳細に説明する。
Above, reaction examples have been described in which an oxygen complex and an olefin complex are formed, and an olefin is oxidized in the presence of water to synthesize an oxygen-containing compound.Next, the present invention will be explained in more detail with reference to Examples.

(実施例) 実施例1 内容積100m1のメスフラスコにCu (1)(1’
を35g(0,35モル)およびh m p aを10
0g仕込み、Cu (1)C1l−hmp a錯体溶液
97 m lを調製した。さらに、別の100mj!メ
スフラスコにPd (2) C1z  1.3g (7
,5ミlJモル)およびPhCNを15.5 gShm
p aを79g仕込み、Pd (2)cIt、・PhC
N・h m p a li体温溶液92mjlQ製シタ
。ソノ後、両者を11の反応器に移し、これにスルホラ
ンを392g添加し、Cu (1)C#としてQ、 7
 m 。
(Example) Example 1 Cu (1) (1'
35 g (0.35 mol) and 10 h m p a
0 g to prepare 97 ml of Cu (1) C1l-hmpa complex solution. Furthermore, another 100mj! Pd (2) C1z 1.3g (7
, 5 mlJ mol) and 15.5 gShm of PhCN.
Prepare 79g of p a, Pd (2) cIt, ・PhC
N・hmpa li body temperature solution 92mjlQ product. After sowing, both were transferred to reactor No. 11, 392 g of sulfolane was added thereto, and Q, 7 was added as Cu(1)C#.
m.

it/1、Pd (2)(12として0.015mo1
/7!の触媒溶液500mj!を調製した。これに49
g(9%)の水を添加し、30℃、常圧下で空気を導入
し、酸素錯体濃度0.145 m o j! / 12
の溶液を調製した。その後、40℃に加熱し窒素ガスを
通気したが反応器の気相部に残存していた酸素と物理熔
解していた酸素が除かれたのみで、液中の酸素錯体から
の結合酸素の脱離は認められず、酸素の吸収反応は不可
逆的であった。これは実プロセスにおける安全性の面で
極めて有利である。
it/1, Pd (2) (0.015mol as 12
/7! 500 mj of catalyst solution! was prepared. 49 for this
g (9%) of water was added, air was introduced at 30°C under normal pressure, and the oxygen complex concentration was 0.145 m o j! / 12
A solution was prepared. After that, it was heated to 40°C and nitrogen gas was passed through it, but only the oxygen remaining in the gas phase of the reactor and the physically dissolved oxygen were removed, and the combined oxygen was removed from the oxygen complex in the liquid. No separation was observed, and the oxygen absorption reaction was irreversible. This is extremely advantageous in terms of safety in the actual process.

この操作の後、40℃でエチレンを流量0.2J/mi
nの割合で通気したところ30分間で2.1gのアセト
アルデヒドが生成していることが、ガスクロマトグラフ
ィーで確認できた。
After this operation, ethylene was added at a flow rate of 0.2 J/mi at 40°C.
It was confirmed by gas chromatography that 2.1 g of acetaldehyde was produced in 30 minutes when aerated at a rate of n.

実施例2〜9 実施例1において第1表のような条件下で実験を行なっ
たところ、40℃、30分後におけるCH3CHOの生
成量は、第1表の最右欄のようになった。
Examples 2 to 9 When an experiment was conducted in Example 1 under the conditions shown in Table 1, the amount of CH3CHO produced after 30 minutes at 40°C was as shown in the rightmost column of Table 1.

第1表 これらの結果より、PhCN濃度が高い方がCH3CH
O生成量が大となる傾向がある。ただし、スルホラン濃
度をOMにするとCH3CHO生成量は減少する。
Table 1 From these results, the higher the concentration of PhCN, the higher the CH3CH
The amount of O produced tends to be large. However, when the sulfolane concentration is set to OM, the amount of CH3CHO produced decreases.

実施例10 PhCNの代わりにCH3CNを用いるほかは実施例8
と同様の実験を行なったところ、CH3CHO12gを
得た。
Example 10 Example 8 except that CH3CN is used instead of PhCN
When the same experiment was conducted, 12 g of CH3CHO was obtained.

実施例11 反応温度を40℃から60℃にあげるほかは実施例8と
同様の実験を行なったところ、反応時間20分でCH3
CHO12,8gを得た。
Example 11 An experiment similar to Example 8 was conducted except that the reaction temperature was increased from 40°C to 60°C.
12.8 g of CHO was obtained.

実施例12 Cu (1)CI!濃度0.7Mを0.5Mにし、ph
CN濃度6.0Mを5.0Mとし  02濃度0.35
Mを1.4Mとするほかは実施例8と同様の実施例を行
なったことろ、反応時間30分でCH3C8012,7
gを得た。
Example 12 Cu (1) CI! The concentration of 0.7M was changed to 0.5M, and the pH
Set CN concentration 6.0M to 5.0M, 02 concentration 0.35
The same example as Example 8 was carried out except that M was changed to 1.4M. CH3C8012,7
I got g.

実施例13 実施例8において、水添加量を15g(3%)としたと
ころ、30分間でCH3CHO9,0gを得た。また、
水添加量を88g (15%)としたところ、30分間
でCH3CHO8,6gを得た。本実施例および実施例
8より本反応系では水分量が9%前後が最適と考えられ
る。
Example 13 In Example 8, when the amount of water added was 15 g (3%), 9.0 g of CH3CHO was obtained in 30 minutes. Also,
When the amount of water added was 88 g (15%), 8.6 g of CH3CHO was obtained in 30 minutes. From this example and example 8, it is considered that a water content of around 9% is optimal for this reaction system.

実施例14 Cu (1)CI  0.7Mの代わりにTi  (3
)cj13 0.7Mを用いるほかは実施例8と同様の
実験を行なったところ、30分間でCH3CH09gを
得た。
Example 14 Ti (3) instead of Cu (1) CI 0.7M
) An experiment similar to Example 8 was conducted except that 0.7 M of cj13 was used, and 9 g of CH3CH0 was obtained in 30 minutes.

実施例15 Cu (1)C1O,7Mの代わりにV (3) C1
30,7Mを用いるほかは実施例8と同様の実験を行な
ったところ、30分間でCH3CHO9゜6gを得た。
Example 15 Cu (1) C1O, V (3) C1 instead of 7M
An experiment similar to Example 8 was conducted except that 30.7M was used, and 9.6 g of CH3CHO was obtained in 30 minutes.

実施例16 Pd (2)C1z  O,015Mの代わりにpt(
2)C1z  0.015Mを用いるほかは実施例8と
同様の実験を行なったところ、30分間でCH3CHO
12gを得た。
Example 16 Pd(2)C1zO,015M was replaced with pt(
2) When the same experiment as in Example 8 was conducted except that 0.015M of C1z was used, CH3CHO was
12g was obtained.

実施例17 実施例8の触媒液を40℃に保ち空気20%、エチレン
80%の混合ガスを流量Q、’l l / m i n
の割合で30分間通気したところ、CH3CHOO07
gを得た。
Example 17 The catalyst liquid of Example 8 was kept at 40°C, and a mixed gas of 20% air and 80% ethylene was fed at a flow rate Q, 'l l/min
When aerated for 30 minutes at the rate of CH3CHOO07
I got g.

実施例18〜29 エチレンの代わりにプロピレンを、反応温度40℃の代
わりに60℃を用いるほかは実施例1と同様の操作で実
験を行なったところ、30分後におけるCH3COCH
3の生成量は第2表の最右欄のようであった。
Examples 18-29 An experiment was conducted in the same manner as in Example 1, except that propylene was used instead of ethylene and the reaction temperature was 60°C instead of 40°C. After 30 minutes, CH3COCH
The amount of No. 3 produced was as shown in the rightmost column of Table 2.

第2表 実施例30 CuC10,7Mの代わりにIMを用いるほかは実施例
28と同様の操作を行なったところ、反応時間5分でア
セトン9gを得た。一定の0□濃度でCu (1)C1
濃度をあげると酸化速度は速くなる。
Table 2 Example 30 The same operation as in Example 28 was carried out except that IM was used instead of CuC10.7M, and 9 g of acetone was obtained in a reaction time of 5 minutes. Cu (1)C1 at a constant 0□ concentration
As the concentration increases, the oxidation rate increases.

実施例31〜41 エチレンの代わりに1−ブテンを、反応温度40℃の代
わりに60℃を、反応時間30分を20分で行なうほか
は実施例1と同様の操作を行なったところ、第3表に示
すような結果を得た。
Examples 31 to 41 The same operation as in Example 1 was performed except that 1-butene was used instead of ethylene, the reaction temperature was 60°C instead of 40°C, and the reaction time was 20 minutes instead of 30 minutes. The results shown in the table were obtained.

以下余白 第3表 実施例42 Cu(1!  0.7Mの代わりに0.5 Mを用い、
020.145Mの代わりに0.125Mを用い、ph
cN  6Mの代わりに5Mを用い、口S0□ 0.3
5Mの代わりに1.4Mを用いるほかは実施例41と同
様の操作を行なったところ、反応時間20分でMEK 
 17.5gを得た。
Below is a margin Table 3 Example 42 Cu (1! Using 0.5M instead of 0.7M,
Using 0.125M instead of 020.145M, ph
Use 5M instead of cN 6M, mouth S0□ 0.3
When the same operation as in Example 41 was performed except that 1.4M was used instead of 5M, MEK was obtained within 20 minutes of reaction time.
17.5g was obtained.

実施例43 エチレンの代わりに1−ペンテンを用い、反応温度40
℃の代わりに60℃で行なうほかは実施例8と同様の実
験を行なったところ、反応時間10分で2−ペンタノン
15gを得た。
Example 43 Using 1-pentene instead of ethylene, reaction temperature 40
The same experiment as in Example 8 was conducted except that the temperature was 60°C instead of 60°C, and 15g of 2-pentanone was obtained in a reaction time of 10 minutes.

実施例44 実施例43においてCu (1)C12の代わりにTi
(3)C1:+あるいはV (3)cz3を用いるほか
は同様に操作したところ、それぞれ2−ペンタノン10
g5 l1gを得た。
Example 44 In Example 43, Cu (1) Ti instead of C12
(3) C1: + or V (3) When the same operation was performed except that cz3 was used, 2-pentanone 10
1 g of g5 l was obtained.

実施例45 実施例43において、Cu (1)Cj2 0.7M、
phcN 6MS [)02 0.35Mの代わりにそ
れぞれ、0.5M、5M、1.4Mを用い、ほかは同様
に操作したところ、2−ペンタノン13.5gを得た。
Example 45 In Example 43, Cu (1) Cj2 0.7M,
phcN 6MS [)02 0.5M, 5M, and 1.4M were used in place of 0.35M, and the same procedure was repeated except that 13.5 g of 2-pentanone was obtained.

実施例46 実施例8の触媒液に1−ヘキセン4.2g(50ミリモ
ル)を熔解し、以下実施例1と同様の操作で酸素錯体0
.145 m o l / lを調製し、反応塩:1 度を60℃に保ったところ、反応時間10分で2−へキ
サノン4gを得た。
Example 46 4.2 g (50 mmol) of 1-hexene was dissolved in the catalyst solution of Example 8, and the same procedure as in Example 1 was performed to obtain 0 oxygen complex.
.. When 145 mol/l of the reaction salt was prepared and the reaction salt was kept at 60°C, 4 g of 2-hexanone was obtained in a reaction time of 10 minutes.

実施例47 実施例46において、1−ヘキセンの代わりに1−ヘプ
テン4.9g(50ミリモル)を用い、反応温度を80
℃に保ち、ほかは同様に操作したところ、反応時間10
分で5.1gの2−ヘプタノンを得た。
Example 47 In Example 46, 4.9 g (50 mmol) of 1-heptene was used instead of 1-hexene, and the reaction temperature was changed to 80 mmol.
When the temperature was maintained at ℃ and the other operations were carried out in the same manner, the reaction time was 10
5.1 g of 2-heptanone was obtained in minutes.

実施例48 実施例46において、1−ヘキセンの代わりに1−オク
テン5.6g(50ミリモル)を用い、反応温度を80
℃に保ち、ほかは同様に操作したところ、反応時間10
分で2−オクタノン5.8g、20分で6.3gを得た
Example 48 In Example 46, 5.6 g (50 mmol) of 1-octene was used instead of 1-hexene, and the reaction temperature was changed to 80 mmol.
When the temperature was maintained at ℃ and the other operations were carried out in the same manner, the reaction time was 10
5.8 g of 2-octanone was obtained in minutes, and 6.3 g in 20 minutes.

以上の結果から、本発明の触媒液は高級オレフィンの酸
化に対しても極めて有効であることがわかる。
From the above results, it can be seen that the catalyst liquid of the present invention is extremely effective for the oxidation of higher olefins.

実施例49 巨大網状型のスチレン・ジビニルベンゼンJl1合体の
ビーズ(粒径約1wmφ、比表面積700〜800rr
r/g、オルガノ社製アンバーライトXAD  4)5
0mlに実施例8に示した組成の酸素錯体を含む触媒溶
液を含浸させ吸引ろ過し、粒状触媒を開裂した。これを
内径20wφの硬質ガラス製反応管に充てんし、60℃
に加熱したのち、エチレンをl 1 / m i n通
気しく5V=1200hHz)、出口ガス中のアセトア
ルデヒドをガスクロマトグラフにて分析した。その結果
、生成物はアセトアルデヒドのみであり、エチレン基準
の収率は反応開始から30分まで60%であった。
Example 49 Giant reticulated styrene/divinylbenzene Jl1 combination beads (particle size approximately 1 wmφ, specific surface area 700 to 800 rr)
r/g, Amberlight XAD manufactured by Organo 4) 5
0 ml was impregnated with a catalyst solution containing an oxygen complex having the composition shown in Example 8, and filtered under suction to cleave the granular catalyst. This was filled into a hard glass reaction tube with an inner diameter of 20 wφ and heated to 60°C.
After heating, ethylene was aerated at l 1 /min (5 V = 1200 hHz), and acetaldehyde in the outlet gas was analyzed using a gas chromatograph. As a result, the product was only acetaldehyde, and the yield based on ethylene was 60% from the start of the reaction to 30 minutes.

その後、出口ガスをリサイクルさせて酸素錯体中の結合
酸素基準のアセトアルデヒド収率を求めたところ90%
に達した。さらに、一旦エチレンの供給を止め、空気を
通気し、反応で消費された結合酸素を再生し、上記の条
件で再び酸化実験を行なったが、同様な結果が得られた
After that, the exit gas was recycled and the acetaldehyde yield based on the combined oxygen in the oxygen complex was determined to be 90%.
reached. Furthermore, the oxidation experiment was carried out again under the above conditions by temporarily stopping the supply of ethylene and aerating air to regenerate the combined oxygen consumed in the reaction, but similar results were obtained.

以上より、本発明の錯体触媒を担体に担持しても酸素錯
体中の結合酸素による本酸化反応が進行することが明ら
かになった。
From the above, it has become clear that even if the complex catalyst of the present invention is supported on a carrier, the main oxidation reaction due to the bound oxygen in the oxygen complex proceeds.

なお、担体としては、珪酸塩、活性炭、ポーラスガラス
等の多孔質担体の使用が可能であり、また含浸後の処理
法としては、吸引ろ過以外に、加熱ガス通気、低温焼成
等種々の方法が使用可能であることが認められた。
Note that porous carriers such as silicates, activated carbon, and porous glass can be used as carriers, and as treatment methods after impregnation, various methods such as heated gas ventilation and low-temperature calcination can be used in addition to suction filtration. It was confirmed that it can be used.

(発明の効果) 本発明によれば、オレフィンガスと酸素ガスが直接接触
することなく、特定の複合触媒系によって、白金族錯体
に配位し活性化されたオレフィンが酸化され、さらに、
遷移金属錯体に配位し活性化された酸素によって還元さ
れた白金族元素を酸化するため、反応が常圧下、室温付
近で、高選択的、高収率で含酸素化合物を合成すること
ができる。本発明においては、酸素源として空気を用い
ても選択的に酸素を吸収するので、純酸素ガスを用いた
ものと全く同じ効果が得られる。また、酸素吸収は不可
逆的であるため、酸素錯体を形成させた後、過剰の遊離
酸素を容易に除去することができ安全性の面でも極めて
有利である。
(Effects of the Invention) According to the present invention, an olefin coordinated to a platinum group complex and activated is oxidized by a specific composite catalyst system without direct contact between olefin gas and oxygen gas, and further,
Since the reduced platinum group element is oxidized by oxygen coordinated to the transition metal complex and activated, oxygen-containing compounds can be synthesized with high selectivity and high yield under normal pressure and around room temperature. . In the present invention, even if air is used as an oxygen source, oxygen is selectively absorbed, so that exactly the same effect as using pure oxygen gas can be obtained. Further, since oxygen absorption is irreversible, excess free oxygen can be easily removed after forming an oxygen complex, which is extremely advantageous in terms of safety.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法を模式的に説明する図、第2図は
、従来方法(Pd (2)/Pd (0)、Cu (2
)/Cu (1)レドックス法)を模式的に示す図、第
3図は、本発明に用いられる錯体に関する紫外吸収スペ
クトルを示す図、第4図は、本発明における02錯体に
よるpa (0)酸化量とWacker法におけるCu
Cj!2によるPd(0)酸化量の時間変化を比較した
図である。 代理人 弁理士 川 北 武 長 、第1図   第2図 Oz(g) 14    訪ゑ那垢 第3図 第4図
FIG. 1 is a diagram schematically explaining the method of the present invention, and FIG. 2 is a diagram schematically explaining the method of the present invention (Pd (2)/Pd (0), Cu (2
)/Cu (1) Redox method), FIG. 3 is a diagram showing the ultraviolet absorption spectrum of the complex used in the present invention, and FIG. 4 is a diagram schematically showing the ultraviolet absorption spectrum of the complex used in the present invention. Oxidation amount and Cu in Wacker method
Cj! FIG. 2 is a diagram comparing changes over time in the amount of Pd(0) oxidized by No. 2. Agent: Patent Attorney Takenaga Kawakita, Figure 1 Figure 2 Oz (g) 14 Visiting Figure 3 Figure 4

Claims (7)

【特許請求の範囲】[Claims] (1)オレフィン類を金属錯体触媒の存在下で酸化し、
含酸素化合物を合成する方法において、酸素と配位結合
することにより酸素錯体を形成し得る錯体(MmXn・
Ll)と、オレフィン類と配位結合し、オレフィン錯体
を形成し得る錯体(M′m′Xn′・L′l′)とを含
む複合触媒および水(ここでMは周期律第 I 族、第IV
〜VII族または第VIII族の鉄族に属する遷移金属、Xは
Cl^−、Br^−、I^−等のハロゲンまたはBF_
4^−、PF_6^−、CH_3COO−、SO_4^
2^−等の陰イオン、配位子Lは有機リン化合物、ニト
リル類、L′はニトリル類、有機フッ素化合物または有
機リン化合物、M′は周期律第VIII族の白金族に属する
遷移金属、L′はニトリル類、有機フッ素化合物または
有機リン化合物、m、m′、n、n′は原子価バランス
によって決まる定数、l、l′は配位数を示す)を触媒
成分として用いることを特徴とする、オレフィン類から
含酸素化合物を合成する方法。
(1) Oxidizing olefins in the presence of a metal complex catalyst,
In the method of synthesizing oxygen-containing compounds, a complex (MmXn.
A composite catalyst containing a complex (M'm' Chapter IV
~A transition metal belonging to the iron group of Group VII or Group VIII, where X is a halogen such as Cl^-, Br^-, I^- or BF_
4^-, PF_6^-, CH_3COO-, SO_4^
Anion such as 2^-, the ligand L is an organic phosphorus compound, a nitrile, L' is a nitrile, an organic fluorine compound or an organic phosphorus compound, M' is a transition metal belonging to the platinum group of Group VIII of the periodic law, L' is a nitrile, an organic fluorine compound, or an organic phosphorous compound, m, m', n, n' are constants determined by the valence balance, l, l' indicate the coordination number) as the catalyst component. A method for synthesizing oxygen-containing compounds from olefins.
(2)特許請求の範囲第1項において、前記配位子Lお
よびL′としての有機リン化合物は、リン酸または亜リ
ン酸のアルコキシ、アルキルもしくはアミド誘導体で代
表される化合物であることを特徴とする方法。
(2) In claim 1, the organic phosphorus compound as the ligands L and L' is a compound represented by an alkoxy, alkyl or amide derivative of phosphoric acid or phosphorous acid. How to do it.
(3)特許請求の範囲第1項または第2項において、塩
基性(電子供与性)化合物であるスルホラン、ジメチル
スルホラン、ジメチルスルホキシド、ジメチルホルムア
ミド等を触媒溶液に添加することを特徴とする方法。
(3) The method according to claim 1 or 2, characterized in that a basic (electron-donating) compound such as sulfolane, dimethylsulfolane, dimethylsulfoxide, dimethylformamide, etc. is added to the catalyst solution.
(4)特許請求の範囲第1項ないし第3項のいずれかに
おいて、前記錯体の溶媒として、脂肪族、芳香族、脂環
式炭化水素類、含酸素有機化合物、有機ハロゲン化物、
含窒素化合物、有機イオウ化合物、有機フッ素化合物お
よび複素環化合物から選ばれた少なくとも1種の化合物
を用いることを特徴とする方法。
(4) In any one of claims 1 to 3, the solvent for the complex is an aliphatic, aromatic, or alicyclic hydrocarbon, an oxygen-containing organic compound, an organic halide,
A method characterized in that at least one compound selected from nitrogen-containing compounds, organic sulfur compounds, organic fluorine compounds, and heterocyclic compounds is used.
(5)特許請求の範囲第1項ないし第4項のいずれかに
おいて、配位子L、L′が液体であり、かつ該配位子そ
のものを溶媒として兼用することを特徴とする方法。
(5) The method according to any one of claims 1 to 4, characterized in that the ligands L and L' are liquids, and the ligands themselves also serve as a solvent.
(6)特許請求の範囲第1項ないし第5項のいずれかに
おいて、前記錯体の溶液に含有酸素混合ガスを通気して
酸素錯体を生成させ、これにオレフィン類を導入して水
の存在下で反応を行なうことを特徴とする方法。
(6) In any one of claims 1 to 5, an oxygen-containing mixed gas is passed through the solution of the complex to form an oxygen complex, and an olefin is introduced into the solution in the presence of water. A method characterized by carrying out a reaction.
(7)特許請求の範囲第1項ないし第6項のいずれかに
おいて、前記錯体を溶媒に熔解し、多孔質担体に含浸担
持させ、これに含酸素ガスとオレフィン類を接触させて
水の存在下で反応を行なうとこを特徴とする方法。
(7) In any one of claims 1 to 6, the complex is dissolved in a solvent, impregnated and supported on a porous carrier, and an oxygen-containing gas and an olefin are brought into contact with the complex in the presence of water. A method characterized by carrying out the reaction below.
JP60008862A 1985-01-21 1985-01-21 Synthesis of oxygen-containing compound from olefin Pending JPS61167627A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60008862A JPS61167627A (en) 1985-01-21 1985-01-21 Synthesis of oxygen-containing compound from olefin
KR1019860000361A KR870002102B1 (en) 1985-01-21 1986-01-21 Preparation process of organic compound containing oxygen from olefin
EP86300406A EP0189312B1 (en) 1985-01-21 1986-01-21 Process for producing an oxygen-containing organic compound from olefins
CA000499978A CA1311495C (en) 1985-01-21 1986-01-21 Process for producing an oxygen-containing organic compound from olefins
DE8686300406T DE3680927D1 (en) 1985-01-21 1986-01-21 METHOD FOR PRODUCING OXYGEN ORGANIC COMPOUND FROM OLEFINS.
US06/820,004 US4806692A (en) 1985-01-21 1986-01-21 Process for producing an oxygen-containing organic compound from olefins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60008862A JPS61167627A (en) 1985-01-21 1985-01-21 Synthesis of oxygen-containing compound from olefin

Publications (1)

Publication Number Publication Date
JPS61167627A true JPS61167627A (en) 1986-07-29

Family

ID=11704506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60008862A Pending JPS61167627A (en) 1985-01-21 1985-01-21 Synthesis of oxygen-containing compound from olefin

Country Status (1)

Country Link
JP (1) JPS61167627A (en)

Similar Documents

Publication Publication Date Title
Brodzinsky et al. Kinetics and mechanism for the catalytic oxidation of sulfur dioxide on carbon in aqueous suspensions
JPS5818392A (en) Complex of fluorinated diketonate of copper or silver and unsaturated hydrocarbon
Larsson et al. A catalytic system for allylic acetoxylation consisting of palladium (II) and nitrate and using oxygen as final oxidant
KR870001163B1 (en) Synthesis process fo acetylamide
Chou et al. Effect of interface mass transfer on the liquid-phase oxidation of acetaldehyde
JPS61167627A (en) Synthesis of oxygen-containing compound from olefin
US4322562A (en) Oxidation process using metal nitro or nitrosyl complex
KR870002102B1 (en) Preparation process of organic compound containing oxygen from olefin
KR920001789B1 (en) Process for producing methylethyl ketone
Fuchita et al. Activation of benzene carbon–hydrogen bonds by palladium (II) acetate–dialkyl sulphide systems
US4605776A (en) Process for producing acetone
EP0156498B1 (en) Process for producing acetic acid
US4691053A (en) Process for producing organic compounds by utilizing oxygenic complexes
Tsuruya et al. Homogeneous copper (II) chelates and heterogeneous Cu (II)-poly (vinylpyridine) complexes as catalysts for 3, 5-di-tert-butylcatechol oxidation
JPS611635A (en) Synthesis of methyl ethyl ketone
JPS60181032A (en) Synthesis of organic compound using oxygen complex
KR870001164B1 (en) Synthesis process for organic compounds used oxygen complex materials
JPS6281350A (en) Circulating use of catalyst
Arai et al. The catalysis of palladium and cupric ion-exchanged zeolite for oxidation of ethylene
KR870000802B1 (en) Preparation of nitrite esters
Park et al. Oxidation of 2-propanol over cobalt-Y zeolites
US4060499A (en) Copper chloride/boron nitride catalyst for substitution chlorination
JPS6230733A (en) Synthesis of acetaldehyde
JPS6216456A (en) Synthesis of urea
JPS61221146A (en) Production of difluorobenzophenone