JPS61167229A - Adaptive equalizing system - Google Patents

Adaptive equalizing system

Info

Publication number
JPS61167229A
JPS61167229A JP797085A JP797085A JPS61167229A JP S61167229 A JPS61167229 A JP S61167229A JP 797085 A JP797085 A JP 797085A JP 797085 A JP797085 A JP 797085A JP S61167229 A JPS61167229 A JP S61167229A
Authority
JP
Japan
Prior art keywords
code
equalization
transmission line
circuits
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP797085A
Other languages
Japanese (ja)
Inventor
Kenji Ogami
大上 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP797085A priority Critical patent/JPS61167229A/en
Publication of JPS61167229A publication Critical patent/JPS61167229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To improve the information transmission speed by applying once equalizing processing to all quantized transmission characteristics in variance to reduce the adaptive equalizing processing time. CONSTITUTION:An input digital base band signal from an input terminal 11 at the transmission side is converted into a transmission line code from which a code error and block synchronization are detected by a transmission line code converting circuit 21. The converted base band signal is converted (12) into a carrier modulation signal and transmitted to a time constant change transmission line 13. The signal is converted into a base band signal subjected to waveform distortion by a demodulation circuit 14 at the reception side, fed to quantized transmission parameter equalizing circuits 11-1N in parallel, subjected respectively to equalizing processing and the waveform distortion is compensated.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は移動通信系のように伝送路特性が時間的に変
化する時変伝送路を伝送されたディジタル信号に対する
適応等化方式に関するものである。
[Detailed Description of the Invention] "Industrial Application Field" This invention relates to an adaptive equalization method for digital signals transmitted through a time-varying transmission line in which channel characteristics change over time, such as in a mobile communication system. be.

「従来の技術」 等化は伝送路の伝達関数H(f)の逆関数1/H(f)
を等化関数とすることにより伝送路で生じた信号の波形
ひずみを補正するもので波形伝送において用いられる波
形整形技術である。
"Prior art" Equalization is the inverse function 1/H(f) of the transfer function H(f) of the transmission line.
This is a waveform shaping technique used in waveform transmission that corrects the waveform distortion of the signal that occurs in the transmission line by using the equalization function as an equalization function.

第4図は時間的に特性が変化する伝送路に対する従来の
代表的な適応等化方式を示したものである。(*とえば
、宮用洋他:゛ディジタル信号処理・pp、233.電
子通信学会論文誌50年11月)。送信側において入力
端子11からの入カデイジタルペイスバンド信号は変調
回路12によって、伝送媒体に適した搬送波変調信号に
変換され、時変伝送路13に送り出される。一方、受信
側においては復調回路14によって搬送波変調信号はペ
イスパント信号に変換される。伝送路特性推定制御回路
15は伝送路13によって波形ひずみ金受けたペイスパ
ント信号から相関処理によって伝送路特性を推定し、等
化回路16の等化パラメータを決定する。等化パラメー
タが決定され72:等化回路16は復調回路14からの
ペイスパント信号に対し、伝送路13によって受けた波
形ひずみを補償し、識別回路17に送出する。識別回路
14Fi等化回路からの出力等化波形f:識別し、その
識別出力を出力端子18に再生ディジタル信号として送
出する。
FIG. 4 shows a typical conventional adaptive equalization method for a transmission line whose characteristics change over time. (*For example, Hiroshi Miyayo et al.: Digital Signal Processing, pp. 233. Journal of the Institute of Electronics and Communication Engineers, November 1950). On the transmitting side, the input digital paceband signal from the input terminal 11 is converted by the modulation circuit 12 into a carrier wave modulation signal suitable for the transmission medium, and sent to the time-varying transmission line 13. On the other hand, on the receiving side, the demodulation circuit 14 converts the carrier modulation signal into a paypant signal. The transmission path characteristic estimation control circuit 15 estimates the transmission path characteristics by correlation processing from the paypant signal received by the waveform distortion signal through the transmission path 13, and determines the equalization parameters of the equalization circuit 16. Equalization parameters are determined 72: the equalization circuit 16 compensates for the waveform distortion received by the transmission line 13 on the payspunt signal from the demodulation circuit 14, and sends it to the identification circuit 17. The identification circuit 14Fi identifies the output equalized waveform f from the equalization circuit, and sends the identification output to the output terminal 18 as a reproduced digital signal.

「発明が解決しようとする問題点」 この従来の方式は伝送路出力信号系列の相関情報から伝
送路パラメータを推定するので、相変のよい伝送路パラ
メータを抽出するのに多くのザンプルを必要とし最適値
全見出すのに長い時間を要する。このため移動通信系の
ように伝送路特性の時間的変化が早い時変伝送路13の
伝送路特性の変動に等化回路16の等化特性金追尾させ
ることができない欠点がめった・ U問題点t−解決するための手段J この発明によれば送信側において入力デイジタルイぎ号
を符号誤り検出可能な伝送路符号に変換して送出し、受
信側ではN個(Nは2以上の整数)の量子化伝送路パラ
メータ等化回路により受信符号系列を等化し、これら量
子化伝送路パラメータ等化回路は、その伝送路において
伝送路パラメータの変化可能な範囲jkN個の空間に分
割した時に、その空間と対応する受信信号に対する等化
残による劣化は所定値以下のつまり符号誤シが生じない
値とされ、従って受信符号列FiN個の量子化伝送路パ
ラメータ等化回路の何れかで正しく識別できる程度に等
化される。これらN個の量子化伝送パラメータ等化回路
の各出力はそれぞれ各別の識別回路で符号識別され、こ
れらN個の識別回路の出力符号系列はそれぞれ各別の符
号誤り検出回路で符号誤り率が検出され、これら検出さ
れた符号誤9率から符号誤シ率が最小の等化系列が等化
系列選択スイッチ制御部により判定され、その等化系列
選択スイッチ制御部によりスイッチ回路部が制御されて
N個の識別回路の出力符号系列の中から時間軸上で区分
的に最小の符号誤り符号系列の一つが選択され、この選
択された符号系列は、送信側における符号誤り検出可能
な伝送路符号の前のディジタル信号に伝送路符号逆変換
部で変換されるO 「実施例」  ゛ 第1図はこの発明の一実施例の適応等化方式の構成図で
ある。送信側で入力端子11からの入力デイジタルベイ
スバンド信号は、伝送路符号変換回路21において符号
誤り検出可能でかつブロック同期検出可能な伝送路符号
に変換される。この回路21で直流平衡mB−nB符号
変換を行えば、この符号はワード ディジタル サム(
WordDigital Sum  )が必ず零となる
のでこの規則に反するモードの符号誤りを検出すること
ができる(天上、大竹:“直流平衡mB−nB符号を用
いたアナログ・ディジタル撮幅多重通信方式”電子通信
学会論文誌(B)vol、J66−B、412 、pp
−1470〜1477.1983年12月)。
"Problems to be Solved by the Invention" This conventional method estimates transmission path parameters from correlation information of transmission path output signal sequences, so it requires many samples to extract transmission path parameters with good phase variation. It takes a long time to find all the optimal values. For this reason, the equalization characteristic of the equalization circuit 16 is rarely able to track fluctuations in the transmission path characteristics of the time-varying transmission path 13, where the transmission path characteristics change quickly over time, such as in a mobile communication system. t-Means for solving the problem J According to the present invention, on the transmitting side, the input digital signal is converted into a transmission line code that can detect code errors and sent out, and on the receiving side, N (N is an integer of 2 or more) are transmitted. A received code sequence is equalized by a quantized transmission line parameter equalization circuit, and these quantized transmission line parameter equalization circuits calculate the range of changeable transmission line parameters in the transmission line when the space is divided into jkN spaces. The deterioration due to the equalization residual for the received signal corresponding to is set to be less than a predetermined value, that is, a value that does not cause code errors, and is therefore to the extent that it can be correctly identified by any of the received code string FiN quantized transmission line parameter equalization circuits. is equalized to Each of the outputs of these N quantized transmission parameter equalization circuits is code-identified by a separate identification circuit, and the output code series of these N identification circuits is subjected to a code error rate detection circuit, respectively, by a separate code error detection circuit. The equalization sequence selection switch control unit determines the equalization sequence with the minimum code error rate based on the nine code error rates detected, and the switch circuit unit is controlled by the equalization sequence selection switch control unit. One of the code sequences with the smallest code error piecewise on the time axis is selected from among the output code sequences of the N identification circuits, and this selected code sequence is a transmission line code that can detect code errors on the transmitting side. Embodiment FIG. 1 is a block diagram of an adaptive equalization system according to an embodiment of the present invention. On the transmitting side, the input digital baseband signal from the input terminal 11 is converted by the transmission line code conversion circuit 21 into a transmission line code in which code errors can be detected and block synchronization can be detected. If this circuit 21 performs DC balanced mB-nB code conversion, this code becomes the word digital sum (
Since WordDigitalSum) is always zero, code errors in modes that violate this rule can be detected (Tenjo, Otake: “Analog-digital width multiplexing communication system using DC balanced mB-nB codes” Institute of Electronics and Communication Engineers) Journal (B) vol, J66-B, 412, pp
-1470 to 1477. December 1983).

符号誤り検出可能でかつブロック同期検出可能な伝送路
符号に変換されたペイスパント信号は変調回路12にお
いてたとえばAM変調信号のような搬送波変調信号に変
換されて時変伝送路13に送出される。
The payspant signal converted into a transmission line code capable of detecting code errors and detecting block synchronization is converted into a carrier modulation signal such as an AM modulation signal in a modulation circuit 12 and sent to a time-varying transmission line 13.

一方、受信側においては復調回路14によって搬送波変
調信号は伝送路によって波形ひずみを受けたペイスパン
ト信号に変換される。波形ひずみを受けたペイスパント
信号ViN個の量子化伝送路パラメータ等化回路11〜
INに並列に供給され、それぞれ等化処理され波形ひず
みが補償される。
On the other hand, on the receiving side, the carrier modulated signal is converted by the demodulation circuit 14 into a paypant signal which has undergone waveform distortion through the transmission path. quantized transmission line parameter equalization circuit 11 for payspunt signals ViN that have undergone waveform distortion;
They are supplied in parallel to IN and are each subjected to equalization processing to compensate for waveform distortion.

ここで、量子化伝送路パラメータ等化回路の等化特性は
以下のように決定される。
Here, the equalization characteristics of the quantization transmission line parameter equalization circuit are determined as follows.

伝送路特性はM個の%徴パラメータで表現できるものと
し、それを伝送路パラメータベクトルは(1)式で表わ
せる。
It is assumed that the transmission path characteristics can be expressed by M percentage parameters, and the transmission path parameter vector can be expressed by equation (1).

IK= (X”、 X”、 X(@、−,x(M)) 
(: K      (1)この時、この伝送路の伝達
関数はH(oc、f)で表わされる。例えばマルチパス
によって生じる選択性フェージングの伝達関数は、 H(f)=l−Σ 1(1) e J 2 K f t
f+1i=1 で表わされる。この場合の伝送路特性の特徴パラメータ
Xは反射係数r(i)と遅延時間差τ(i)との2個で
あシ、伝送路パラメータベクトルXは次式となる。
IK= (X", X", X(@, -, x(M))
(: K (1) At this time, the transfer function of this transmission path is expressed as H(oc, f).For example, the transfer function of selective fading caused by multipath is H(f)=l−Σ 1(1 ) e J 2 K f t
It is expressed as f+1i=1. In this case, the characteristic parameters X of the transmission path characteristics are two, the reflection coefficient r(i) and the delay time difference τ(i), and the transmission path parameter vector X is expressed by the following equation.

x== (r(1)、 、y−(2) 、  、、、、
  1ω  y(1)、  7C2)、  、、、、 
 r(k) )   (1)/(1)式で表わした伝送
路パラメータベクトルの伝送路に応じて取シ得る範囲を
伝送路パラメータ空間Sと呼ぶ。この伝送路パラメータ
空間Sを第2図に示すようにN個(Nは2以上の整数)
)の部分空間$1r’PNH・・INに分割し、その各
伝送路パラメータ部分空間$1 e$*e・・INにお
いてそれぞれ取り得る伝送路パラメータベクトルQ(K
)をそれぞれ式表示して斂子化伝送路パラメータγ工。
x== (r(1), ,y-(2), ,,,,
1ω y(1), 7C2), ,,,,
r(k) ) (1) The range that can be obtained depending on the transmission path of the transmission path parameter vector expressed by the equation (1) is called a transmission path parameter space S. As shown in Fig. 2, this transmission line parameter space S has N (N is an integer of 2 or more)
) is divided into subspaces $1r'PNH...IN, and the transmission line parameter vectors Q(K
) are expressed as the respective formulas to calculate the transmission line parameters γ.

111 + ”’ * YNとすると、伝送路バラメー
タ空間Xから重子化伝送路パラメータ空間Yの再縁とし
て表わせる。つま9(1)式の関係を作る。
111 + "' * YN, it can be expressed as the re-edge of the multiplexed transmission line parameter space Y from the transmission line parameter space X. In other words, the relationship of equation 9 (1) is created.

この時、伝送路パラメータ空間Sの分別数Nがなるべく
小さく、シかも、その各部分空間$iで取シ得る伝送路
パラメータをもつ信号をその量子化伝送路パラメータY
iで等化した際の等化残による信号の劣化d(DC・y
l )が一定値C以下になるようにする。つまり代表点
数Nが ゾ N=min (N’ l X −、U $ 1 )  
   (3)1=1 であル、かつ等化残による劣化d(llK+v4)が(
d(IX、vH)≦ε(定数)lor($4(i=i、
2,3.・・・・・・、N))(4) となるようにする。このgは等化出力符号を誤りなく識
別できる値でなるべく大きなものとする。
At this time, if the number of fractions N of the transmission path parameter space S is as small as possible, then the signal with the transmission path parameter that can be taken in each subspace $i is converted to its quantized transmission path parameter Y.
Signal deterioration d(DC・y
l ) is below a certain value C. In other words, the number of representative points N is N=min (N' l X -, U $ 1)
(3) 1=1, and the degradation due to equalization residual d(llK+v4) is (
d(IX, vH)≦ε(constant)lor($4(i=i,
2, 3. ......, N)) (4). This g is set to a value as large as possible so that the equalized output code can be identified without error.

このように伝送路パラメータ′t−量子化しその童子化
点に対する等化回路を並列に設けることにより、伝送路
パラメータ空間内のどの点の信号に対しても劣化を8以
下とする等化系列を、N個の等化系列の中で少なくとも
1つ存在することになる。
In this way, by quantizing the transmission path parameter 't and providing an equalization circuit for its doji-ized point in parallel, an equalization sequence that reduces the deterioration to 8 or less for the signal at any point in the transmission path parameter space can be created. , at least one of the N equalization sequences exists.

第1図中の受信側のN個の醇化回路11の等化関数E(
yH,f)は1/)((vi、f)とされる。
The equalization function E(
yH, f) is 1/)((vi, f).

H(yl、f)は各部分空間$iと対応する伝達関数で
ある。識別回路21〜2Nにおいて量子化伝送路パラメ
ータ等化回路11〜INの各出力信号がそれぞれ識別さ
れてディジタル符号に変換される。これら識別回路21
〜2Nの出力ディジタル符号は符壱誤す検出回路31〜
3Nにおいてそれぞれディジタル符号系列のブロック同
期をと9、各ディジタル符号系列のブロック内の符号の
符号′誤りが検出されてその数がそれぞれ計数される。
H(yl, f) is a transfer function corresponding to each subspace $i. In the identification circuits 21 to 2N, each output signal of the quantized transmission line parameter equalization circuits 11 to IN is identified and converted into a digital code. These identification circuits 21
The output digital code of ~2N is a sign error detection circuit 31~
At 3N, block synchronization of each digital code sequence is performed, and code errors in codes within blocks of each digital code sequence are detected and counted.

ここで、量子化伝送路パラメータ等化回路11〜INの
出力信号の劣化はε以下であるものが少なくとも1つは
存在するので1ブロツク内で伝送路特性の変化が定常と
見なせるようにブロック長金選んでおくと、1ブロック
時間の符号誤りの観測において少なくとも1つ符号誤シ
のない等化系列が存在する。
Here, since there is at least one deterioration of the output signal of the quantized transmission line parameter equalization circuits 11 to IN that is less than or equal to ε, the block length is set so that the change in the transmission line characteristics can be regarded as steady within one block. If you choose gold, there will be an equalized sequence without at least one code error in the observation of code errors in one block time.

等化系列選択スイッチ制御回路22は符号誤υ検出回路
部31〜3Nにおいて検出した各ディジタル符号系列の
符号誤多情報をもとにブロック単位ごとに最小符号誤り
率を有するディジタル符号系列を判定する。等化系列選
択スイッチ制御回路22の判定信号によりスイッチ回路
23を制御してN個の等化系列の中から符号誤り率を最
小とする一つの等化系列をブロック単位ごとに選択する
The equalization sequence selection switch control circuit 22 determines the digital code sequence having the minimum code error rate for each block based on the code error information of each digital code sequence detected by the code error υ detection circuit units 31 to 3N. . The switch circuit 23 is controlled by the determination signal from the equalization sequence selection switch control circuit 22, and one equalization sequence that minimizes the bit error rate is selected for each block from among the N equalization sequences.

ブロック内の符号誤シ検出には1ブロツク長の符号誤り
検出には1ブロツク長の時間全必要とするので符号誤フ
ヲ計数したそのブロックをスインテ回路23において選
択できるように識別回路21〜2Nとスイッチ回路23
との間に1ブロツク長の遅延時間を有する遅延回路41
〜4N’にそれぞれ挿入する。
Since the entire time of one block length is required to detect a code error in a block, the identification circuits 21 to 2N are used to select the block whose code errors have been counted in the integer circuit 23. switch circuit 23
A delay circuit 41 having a delay time of one block length between
~4N' respectively.

スイッチ回路23によってN個の等化系列の中から選択
された最小の符号誤シ率を有する等化系列のディジタル
符号は伝送路符号逆変換回路24において符号誤り検出
およびブロック同期検出可能な伝送路符号から元のディ
ジタル信号に後光されて出力端子18に出力される。
The digital code of the equalized sequence having the minimum code error rate selected from the N equalized sequences by the switch circuit 23 is converted into a transmission line in which code errors can be detected and block synchronization can be detected in the transmission line code inverse conversion circuit 24. The code is converted into an original digital signal and output to the output terminal 18.

マルチパスにより生じる選択性フエージン特性をもつ時
変伝送路13にこの発明を適用した例の一部の構成を第
3図に示す。この例は2波干渉による場合でその二つの
通路による伝送路13の伝達関数HH(f)=1−r−
e刊2″frテ表ワスコトができ伝送路パラメータ空間
■は Xに〔O≦r<1.0≦τ〕 であって、缶等化回路11〜12は等化出力tτeiだ
け遅延回路25で遅延すると共に、反射係数reiを乗
算回路26で乗算したもAD算回路27で入力と加算す
る構成とされる。
FIG. 3 shows a partial configuration of an example in which the present invention is applied to a time-varying transmission line 13 having selectivity fading characteristics caused by multipath. This example is a case of two-wave interference, and the transfer function of the transmission line 13 due to the two paths HH(f)=1-r-
The transmission path parameter space ■ in the e-edition 2″fr table is given by X [O≦r<1.0≦τ], and the can equalization circuits 11 and 12 are delayed by the equalization output tτei in the delay circuit 25. At the same time, the reflection coefficient rei is multiplied by the multiplier circuit 26 and the resultant signal is added to the input signal by the AD calculation circuit 27.

「発明の効果」 以上説明したようにこの発明の適応等化方式は変動する
全ての量子化された伝送路特性に対する等化処理を一度
に行うことができ、多くの処理時間を必要とする伝送路
出力信号の相関情報を用いて伝送路特性を推定する処理
を行う必要がないので伝送路特性が時間的に変化する時
変伝送路に対する適応等化処理時間を大幅に短縮するこ
とができる。従ってこの発明方式によシ、移動通信方式
のような伝送路特性の変化が極めて速いディジタル通信
方式に適用することによりその情報伝送速度を大幅に向
上させることができる。
``Effects of the Invention'' As explained above, the adaptive equalization method of the present invention can perform equalization processing for all fluctuating quantized transmission path characteristics at once, which eliminates the need for transmission that requires a lot of processing time. Since there is no need to perform processing for estimating transmission channel characteristics using correlation information of channel output signals, it is possible to significantly shorten the adaptive equalization processing time for a time-varying transmission channel whose transmission channel characteristics change over time. Therefore, by applying the method of the present invention to a digital communication system, such as a mobile communication system, in which transmission path characteristics change extremely quickly, the information transmission speed can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による適応等化方式構成例を示すブロ
ック図、第2図は伝送路パラメータ空間と量子化伝送路
パラメータ空間の関係を示す図、第3因はこの発明を2
波干渉伝送路に適用しfc場合の等化回路の具体例を示
す図、第4図は従来の適応等化方式の構成を示すブロッ
ク図である。 11〜IN・・・等化回路、21〜2N・・・識別回路
、31〜3N・・・符号誤シ検出回路、41〜4N・・
・遅延回路、11・・・信号入力端子、12・・・変調
回路、13・・・時変伝送路、14・・・復調回路、1
8・・・信号出力端子、21・・・伝送路符号変換回路
、22・・・等化系列選択スイッチ制御回路、23・・
・スイッチ回路、24・・・伝送路符号逆変換回路。 特許出顯入  日本電信電話公社
FIG. 1 is a block diagram showing an example of the configuration of an adaptive equalization system according to the present invention. FIG. 2 is a diagram showing the relationship between the transmission path parameter space and the quantized transmission path parameter space.
FIG. 4 is a block diagram showing a configuration of a conventional adaptive equalization system. 11-IN... Equalization circuit, 21-2N... Identification circuit, 31-3N... Code error detection circuit, 41-4N...
・Delay circuit, 11... Signal input terminal, 12... Modulation circuit, 13... Time-varying transmission line, 14... Demodulation circuit, 1
8... Signal output terminal, 21... Transmission line code conversion circuit, 22... Equalization sequence selection switch control circuit, 23...
- Switch circuit, 24... Transmission line code inverse conversion circuit. Patent issued by Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)時間的に変動する伝送路パラメータを抽出して等
化を行う適応等化方式において、 送信装置に入力ディジタル信号を符号誤り検出可能な伝
送路符号に変換する伝送路符号変換回路が設けられ、 受信装置に設けられ、N個(Nは2以上の整数)の並列
に設置された量子化伝送路パラメータ等化回路と、これ
ら量子化伝送路パラメータ等化回路は、上記伝送路パラ
メータの変動範囲をN個の空間に分割した1つの空間と
対応する入力符号に対する等化残による劣化が一定値以
下とされたものであり、 これら量子化伝送路パラメータ等化回路の各等化出力信
号を識別するN個の識別回路と、これら識別回路の出力
符号系列の符号誤り率をそれぞれ検出するN個の符号誤
り検出回路と、これら検出されたN個の符号誤り率の最
小な等化系列を判定する等化系列選択スイッチ制御部と
、 この等化系列選択スイッチ制御部の等化系列選択信号に
より、上記N個の識別回路の出力符号系列の中から時間
軸上で区分的に一つの最小符号誤り符号系列を選択する
スイッチ回路と、そのスイッチ回路の出力信号である符
号誤り検出可能な伝送路符号を元のディジタル信号に変
換する伝送路符号逆変換回路とが設けられたことを特徴
とする適応等化方式。
(1) In an adaptive equalization method that extracts and equalizes transmission path parameters that vary over time, the transmitting device is equipped with a transmission path code conversion circuit that converts the input digital signal into a transmission path code that can detect code errors. N (N is an integer of 2 or more) quantized transmission line parameter equalization circuits installed in the receiving device and installed in parallel, and these quantized transmission line parameter equalization circuits The fluctuation range is divided into N spaces, and the deterioration due to the equalization residual for the corresponding input code is set to be below a certain value, and each equalized output signal of these quantized transmission line parameter equalization circuits N identification circuits that identify the code, N code error detection circuits that respectively detect the code error rates of the output code sequences of these identification circuits, and a minimum equalization sequence of these detected N code error rates. and an equalization sequence selection switch control unit that determines one of the output code sequences of the N discrimination circuits on the time axis based on the equalization sequence selection signal of the equalization sequence selection switch control unit. It is characterized by being provided with a switch circuit that selects the minimum code error code sequence, and a transmission line code inverse conversion circuit that converts the transmission line code that can detect code errors, which is the output signal of the switch circuit, into the original digital signal. Adaptive equalization method.
JP797085A 1985-01-18 1985-01-18 Adaptive equalizing system Pending JPS61167229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP797085A JPS61167229A (en) 1985-01-18 1985-01-18 Adaptive equalizing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP797085A JPS61167229A (en) 1985-01-18 1985-01-18 Adaptive equalizing system

Publications (1)

Publication Number Publication Date
JPS61167229A true JPS61167229A (en) 1986-07-28

Family

ID=11680321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP797085A Pending JPS61167229A (en) 1985-01-18 1985-01-18 Adaptive equalizing system

Country Status (1)

Country Link
JP (1) JPS61167229A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007274022A (en) * 2006-03-30 2007-10-18 Nippon Telegr & Teleph Corp <Ntt> Receiving circuit and transmission system
JP2010154496A (en) * 2008-11-21 2010-07-08 Sony Corp Communication apparatus and signal processing method
JP2011010159A (en) * 2009-06-29 2011-01-13 Sony Corp Non-contact communication apparatus and method of non-contact communication

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007274022A (en) * 2006-03-30 2007-10-18 Nippon Telegr & Teleph Corp <Ntt> Receiving circuit and transmission system
JP4481266B2 (en) * 2006-03-30 2010-06-16 日本電信電話株式会社 Reception circuit and transmission system
JP2010154496A (en) * 2008-11-21 2010-07-08 Sony Corp Communication apparatus and signal processing method
US8335287B2 (en) 2008-11-21 2012-12-18 Sony Corporation Communication apparatus and signal processing method
JP2011010159A (en) * 2009-06-29 2011-01-13 Sony Corp Non-contact communication apparatus and method of non-contact communication

Similar Documents

Publication Publication Date Title
US5191598A (en) System for reducing the affects of signal fading on received signals
JP2715662B2 (en) Method and apparatus for diversity reception of time division signals
US5787118A (en) Adaptive equalizer and adaptive diversity equalizer
CN1053075C (en) A method and apparatus for receiving and decoding communication signals in a CDMA receiver
CA1221749A (en) Fractionally spaced equalization using nyquist-rate coefficient updating
US6330294B1 (en) Method of and apparatus for digital radio signal reception
JP2556179B2 (en) Diversity reception system
US8094709B2 (en) Equalizer and equalization method
US8477894B2 (en) Method and system for communication channel characterization
JPH03208421A (en) Receiver for digital transmission system
WO1993026106A1 (en) Maximum likelihood sequence estimating device and method therefor
US7039104B2 (en) Adaptive coefficient signal generator for adaptive signal equalizers with fractionally-spaced feedback
JPH0511449B2 (en)
EP3997795B1 (en) Adaptive hopping equalizer
US7173976B1 (en) Frequency-domain method for joint equalization and decoding of space-time block codes
Ding Multipath channel identification based on partial system information
JPH06334567A (en) Transmission system comprising receivers with improved timing means
US20030236072A1 (en) Method and apparatus for estimating a channel based on channel statistics
Ye et al. Fractionally spaced equalizer for next generation terahertz wireless communication systems
JPS61167229A (en) Adaptive equalizing system
CN108521311B (en) Signal-to-noise ratio estimation method based on Gray sequence
ITMI20000833A1 (en) METHOD AND APPARATUS FOR THE AUTOMATIC DELAY OF THE DELAY FOR RADIO TRANSMISSIONS IN DIFFERENT SPACE.
JPH0614071A (en) Transmission equipment
US7035358B1 (en) Method and apparatus for receiving a wideband signal in the presence of multipath channel imperfections and frequency offset
KR100363382B1 (en) Apparatus for compensating multipath fading channels in wireless personal area network