JPS61167151A - Exhaust-recirculation amount controller for internal-combustion engine - Google Patents
Exhaust-recirculation amount controller for internal-combustion engineInfo
- Publication number
- JPS61167151A JPS61167151A JP60007475A JP747585A JPS61167151A JP S61167151 A JPS61167151 A JP S61167151A JP 60007475 A JP60007475 A JP 60007475A JP 747585 A JP747585 A JP 747585A JP S61167151 A JPS61167151 A JP S61167151A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- valve opening
- exhaust gas
- gas recirculation
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/0077—Control of the EGR valve or actuator, e.g. duty cycle, closed loop control of position
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust-Gas Circulating Devices (AREA)
Abstract
Description
【発明の詳細な説明】
(技術分野)
本発明は内燃エンジンの排気還流量制御装置に関し、特
に、長期間に亘るエンジン作動後でも適正量の排気還流
制御が可能な排気還流量制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an exhaust gas recirculation amount control device for an internal combustion engine, and more particularly to an exhaust gas recirculation amount control device that is capable of controlling an appropriate amount of exhaust gas recirculation even after a long period of engine operation.
(発明の技術的背景とその問題点)
内燃エンジンの排気ガスの一部を吸気通路に還流させ、
エンジンから発生する有害ガスの一つである窒素酸化物
(NOx)を低減する方法は広く行われている。また、
この吸気通路に還流させる排気ガスの排気還流量をエン
ジン運転状態に応じた適宜量とするため、排気還流通路
途中に配設された排気還流弁の弁開度を検出し、排気還
流弁の実弁開度値が排気還流量が適宜量となる弁開度目
標値となるように排気還流弁を制御する方法が知られて
いる。(Technical background of the invention and its problems) A part of the exhaust gas of an internal combustion engine is recirculated to the intake passage,
BACKGROUND ART Methods for reducing nitrogen oxides (NOx), which is one of the harmful gases generated from engines, are widely used. Also,
In order to adjust the amount of exhaust gas recirculated to the intake passage to an appropriate amount depending on the engine operating condition, the valve opening degree of the exhaust recirculation valve disposed in the middle of the exhaust recirculation passage is detected, and the actual amount of exhaust gas recirculation is detected. A method is known in which the exhaust gas recirculation valve is controlled so that the valve opening value becomes a valve opening target value at which the exhaust gas recirculation amount is an appropriate amount.
斯かる方法において、上記実弁開度値は弁開度センサ、
例えばリフ1−センサにより検出される。In such a method, the actual valve opening value is determined by a valve opening sensor,
For example, it is detected by a riff 1 sensor.
しかしながら、熱膨張、摩耗等によって排気還流弁の全
閉基準位置、即ち、全閉時のリフトセンサの検出値が変
化することがあり、この結果、実際の弁開度とリフ1〜
センサの検出値との間に誤差が生じ、例えば実際の弁開
度が零であっても検出器の検出値が零でない値を示すこ
とになり、弁開度目標値に基づいて行われる排気還流制
御作動に支障を来す。However, due to thermal expansion, wear, etc., the fully closed reference position of the exhaust recirculation valve, that is, the detected value of the lift sensor when fully closed, may change, and as a result, the actual valve opening and the lift 1 to
An error may occur between the detected value of the sensor and, for example, even if the actual valve opening is zero, the detected value of the detector will indicate a non-zero value, and the exhaust will be performed based on the target value of the valve opening. This will interfere with the reflux control operation.
斯かる不具合を解消するために、エンジン回転数Ne及
び吸気道路内負圧PBに応じて予め設定されているリフ
トマツプから読み出された基本弁リフト値が零となる状
態が所定時間に亘り継続した場合は、該所定時間経過時
の弁開度検出値を新しい全閉基準位置とし、この新しい
全閉基準位置を実際の弁開度検出値又は基本弁リフト値
の夫々一方から減算又は加算することにより排気還流弁
の弁開度目標値を自動補正するようにした装置が本出願
人により提案されている。(特開昭57−188753
号)。In order to eliminate such a problem, a state in which the basic valve lift value read out from a lift map preset according to the engine speed Ne and the intake road negative pressure PB continued to be zero for a predetermined period of time. In this case, the valve opening detection value after the predetermined period of time has elapsed shall be used as the new fully closed reference position, and this new fully closed reference position shall be subtracted from or added to either the actual valve opening detection value or the basic valve lift value, respectively. The applicant has proposed a device that automatically corrects the valve opening target value of the exhaust gas recirculation valve. (Unexamined Japanese Patent Publication No. 57-188753
issue).
斯かる従来装置では例えば該装置の故障等による排気還
流量過多に起因する排気ガス特性及びエンジン運転性の
悪化を防止するため、第19図の実線工しに示すように
、排気還流弁の最大スI−ローク長LMAXIを予め設
定されている基本弁リフト値LMAPの最大値LMAP
MAXに対応する長さに設計し、第1図の実線工。に示
すように、排気還流量Qの最大量QMAXを機械的に規
制している。In such conventional devices, in order to prevent deterioration of exhaust gas characteristics and engine operability due to an excessive amount of exhaust gas recirculation due to a malfunction of the device, for example, the maximum exhaust gas recirculation valve is Stroke length LMAXI is the maximum value LMAP of the preset basic valve lift value LMAP
Designed to a length that corresponds to MAX, the actual line work shown in Figure 1. As shown in the figure, the maximum amount QMAX of the exhaust gas recirculation amount Q is mechanically regulated.
ところで、エンジンが長期間作動すると、排気還流弁の
弁座周辺には排気ガス中のカーボン、鉛成分等が堆積す
る。今、第1図の実線■、に示すように、全閉基準位置
り、、が排気還流弁の開弁方向に例えば値ΔLだけ変位
したとすると、排気還流弁のストローク長の最大値が値
LMAXIに制限されているので、LMAP値がLMA
PMAX値からΔL値相当分を減算した値LT1を超え
ると、排気還流弁の実弁開度LACTはΔL値で補正さ
れた弁開度目標値(第1図の破線II’L)を達成でき
なくなる。この結果、排気還流量Qも又、第1図の実線
■Qに示すように、目標量(第1図の破線Il’o)に
到達できなくなる。そして、LM AP値が最大値LM
AFMAXの場合、実弁開度LACTにおいて値ΔLが
不足し、これに伴い、排気還流量Qにおいて量ΔQが不
足し、この結果、エンジンの排気ガス特性が悪化すると
いう問題点が従来装置にはあった。By the way, when an engine operates for a long period of time, carbon, lead components, etc. in the exhaust gas accumulate around the valve seat of the exhaust gas recirculation valve. Now, as shown by the solid line ■ in Fig. 1, if the fully closed reference position is displaced by a value ΔL in the opening direction of the exhaust recirculation valve, the maximum stroke length of the exhaust recirculation valve is the value Since it is limited to LMAXI, the LMAP value is LMA
When the actual valve opening LACT of the exhaust recirculation valve exceeds the value LT1 obtained by subtracting the ΔL value equivalent from the PMAX value, the actual valve opening LACT of the exhaust recirculation valve cannot achieve the valve opening target value (broken line II'L in Figure 1) corrected by the ΔL value. It disappears. As a result, the exhaust gas recirculation amount Q also becomes unable to reach the target amount (broken line Il'o in FIG. 1), as shown by the solid line ■Q in FIG. Then, the LM AP value is the maximum value LM
In the case of AFMAX, the conventional device has the problem that the value ΔL is insufficient in the actual valve opening LACT, and accordingly, the amount ΔQ is insufficient in the exhaust gas recirculation amount Q, and as a result, the exhaust gas characteristics of the engine are deteriorated. there were.
(発明の目的)
本発明は斯かる問題点を解決するためになされたもので
、長期間に亘るエンジン作動後でも所要の最大排気還流
量を確保できる装置を提供することを目的とする。(Object of the Invention) The present invention was made to solve the above-mentioned problems, and it is an object of the present invention to provide a device that can ensure the required maximum exhaust gas recirculation amount even after a long period of engine operation.
(発明の構成)
斯かる目的を達成するために、本発明に依れば、内燃エ
ンジンの排気管を吸気管に接続する排気還流通路と、排
気還流通路の途中に途中に設けられ、前記排気管から吸
気管への許容し得る最大許容排気還流量を規定する最大
弁開度位置を有する排気還流弁と、排気還流を行なうべ
きエンジンの運転状態を検出する運転状態検出手段と、
エンジンの運転状態に応じた排気還流弁の要求弁開度を
予め記憶する記憶装置と、排気還流弁の実際の弁開度を
検出する弁解度検出器と、記憶装置から読み出された要
求弁開度が全閉を指示しているか否かを判別する全閉指
示判別手段と、全閉指示判別手段からの全閉判別信号の
発生時間が所定時間を越えるとき信号を発生するタイマ
手段と、タイマ手段からの前記信号を入力された時の前
記弁解度検出器の検出値を記憶する基準位置記憶手段と
、前記基準位置記憶手段の記憶値で前記弁解度検出器に
より検出された実弁開度検出値及び前記要求弁開度のい
ずれか一方を補正する演算手段と、該演算手段により補
正された前記一方の弁開度値と他方の弁開度値との開度
差を判別する開度差判別手段と、前記開度差を零にする
ように前記排気還流弁を制御する弁開度制御手段とから
成る排気還流量制御装置において、前記最大弁開度位置
は、エンジンの所定期間に亘る運転後において、前記記
憶装置から読み出された要求弁開度に基づき還流させる
べき最大要求排気還流量を還流させる弁開度位置より大
きいことを特徴とする内燃エンジンの排気還流量制御装
置が提供される。(Structure of the Invention) In order to achieve such an object, the present invention provides an exhaust gas recirculation passage that connects an exhaust pipe of an internal combustion engine to an intake pipe, and an exhaust gas recirculation passage that is provided in the middle of the exhaust gas recirculation passage. an exhaust recirculation valve having a maximum valve opening position that defines the maximum permissible amount of exhaust gas recirculation from the pipe to the intake pipe; an operating state detection means for detecting an operating state of the engine in which exhaust gas recirculation is to be performed;
A memory device that stores in advance the required valve opening degree of the exhaust recirculation valve according to the operating state of the engine, a valve opening degree detector that detects the actual valve opening degree of the exhaust recirculation valve, and a request valve read out from the memory device. a fully closed instruction determining means for determining whether the opening degree indicates fully closed; and a timer means for generating a signal when the generation time of the fully closed determining signal from the fully closed instruction determining means exceeds a predetermined time; a reference position storage means for storing a detected value of the excuse degree detector when the signal from the timer means is input; and an actual valve opening detected by the excuse degree detector based on the stored value of the reference position storage means. calculation means for correcting either one of the valve opening degree detection value and the required valve opening degree; In the exhaust gas recirculation amount control device comprising a degree difference determining means and a valve opening degree control means for controlling the exhaust gas recirculation valve so as to make the opening degree difference zero, the maximum valve opening degree position is determined for a predetermined period of the engine. An exhaust gas recirculation amount control device for an internal combustion engine, wherein the maximum required exhaust gas recirculation amount to be recirculated is larger than the valve opening position for recirculation based on the required valve opening read out from the storage device after operation for a period of is provided.
(発明の実施例) 以下本発明の実施例を図面を参照して説明する。(Example of the invention) Embodiments of the present invention will be described below with reference to the drawings.
第2図は本発明に係る排気還流制御装置を装備した内燃
エンジンを示す全体構成図であり、符号1は例えば4気
筒の内燃エンジンを示し、エンジン1には吸気管2が接
続され、吸気管2の途中にはスロットル弁3が設けられ
ている。スロットル弁3にはスロットル弁開度(OT
H)センサ4が連結されてスロットル弁3の弁開度を電
気的信号に変換し電子コントロールユニット(以下rE
CU」という)5に送るようにされている。FIG. 2 is an overall configuration diagram showing an internal combustion engine equipped with an exhaust gas recirculation control device according to the present invention. Reference numeral 1 indicates, for example, a four-cylinder internal combustion engine, and an intake pipe 2 is connected to the engine 1. A throttle valve 3 is provided in the middle of the valve 2. Throttle valve 3 has throttle valve opening (OT
H) A sensor 4 is connected to convert the opening degree of the throttle valve 3 into an electrical signal and an electronic control unit (rE
CU").
吸気管2のエンジン1とスロットル弁3間には燃料噴射
弁6が設けられている。この燃料噴射弁6は吸気管2の
図示しない吸気弁の少し上流側に各気筒ごとに設けられ
ており、各噴射弁6は図示しない燃料ポンプに接続され
ていると共にECU3に電気的に接続されて、ECU3
からの信号によって燃料噴射の開弁時間が制御される。A fuel injection valve 6 is provided in the intake pipe 2 between the engine 1 and the throttle valve 3. This fuel injection valve 6 is provided for each cylinder slightly upstream of an intake valve (not shown) in the intake pipe 2, and each injection valve 6 is connected to a fuel pump (not shown) and electrically connected to the ECU 3. Well, ECU3
The valve opening time of the fuel injection is controlled by the signal from the.
一方、スロットル弁3の下流には負圧(PB)センサ8
が管7を介して設けられており、この負圧センサ8よっ
て電気的信号に変換された負圧信号は前記ECU3に送
られる。On the other hand, a negative pressure (PB) sensor 8 is located downstream of the throttle valve 3.
is provided via a pipe 7, and a negative pressure signal converted into an electrical signal by this negative pressure sensor 8 is sent to the ECU 3.
エンジン本体1にはエンジン水温(Tw)センサ9が設
けられ、このセンサ9はザーミスタ等から成り、冷却水
が充満したエンジン気筒周壁内に挿着されて、その検出
水温信号をECU3に供給する。The engine body 1 is provided with an engine water temperature (Tw) sensor 9, which is made of a thermister or the like, and is inserted into the circumferential wall of the engine cylinder filled with cooling water, and supplies its detected water temperature signal to the ECU 3.
エンジン回転数センサ(以下rNeセンサ」という)1
0がエンジンの図示しないカム軸周囲又はクランク軸周
囲に取付けられている。Neセンサ10はエンジンのク
ランク軸180’回転毎に所定のクランク角度位置で、
即ち、各気筒の吸気行程開始時の上死点(T D C)
に関し所定クランク角度前のクランク角度位置でクラン
ク角度位置信号(以下これをrTDC信号」という)を
出力するものであり、このTDC信号はECU3に送ら
れる。Engine speed sensor (hereinafter referred to as rNe sensor) 1
0 is attached around the camshaft or crankshaft (not shown) of the engine. The Ne sensor 10 is set at a predetermined crank angle position every 180' rotation of the engine crankshaft.
In other words, the top dead center (TDC) at the start of the intake stroke of each cylinder
Regarding this, a crank angle position signal (hereinafter referred to as "rTDC signal") is output at a crank angle position before a predetermined crank angle, and this TDC signal is sent to the ECU 3.
エンジン1の排気管11には三元触媒12が配置され排
気ガス中のHC,GoおよびNOx成分の浄化作用を行
なう。A three-way catalyst 12 is disposed in the exhaust pipe 11 of the engine 1, and performs a purifying action on HC, Go, and NOx components in the exhaust gas.
排気管11を吸気管2に接続するように排気還流通路1
4が設けられ、この通路14の途中には排気還流弁15
が設けられている。この排気還流弁15は負圧応動弁で
あって、主として、通路14を開閉可能に配され、弁軸
15cの一端に連結された弁体15aと、弁軸15cを
気密且つ摺動自在に支持するシール部15dと、弁軸1
5cに固設され、シール部15d下面に当接したとき弁
体15aの最大弁開度位置、即ち最大許容排気還流量を
規定するストッパー15eと、弁軸15Cの他端に連結
され、後述する電磁制御弁17を介して導入される大気
圧または後述する連通路16を介して導入される負圧と
の合成圧力により作動するダイアフラム15fと、ダイ
アフラム15fを弁座15b方向に付勢するばね15g
とより成る。The exhaust recirculation passage 1 connects the exhaust pipe 11 to the intake pipe 2.
4, and an exhaust gas recirculation valve 15 is provided in the middle of this passage 14.
is provided. The exhaust gas recirculation valve 15 is a negative pressure responsive valve, and is mainly arranged to open and close the passage 14, and supports a valve body 15a connected to one end of the valve shaft 15c and the valve shaft 15c in an airtight and slidable manner. The seal portion 15d and the valve stem 1
5c, and is connected to a stopper 15e that defines the maximum valve opening position of the valve body 15a, that is, the maximum allowable exhaust gas recirculation amount when it comes into contact with the lower surface of the seal portion 15d, and the other end of the valve shaft 15C, which will be described later. A diaphragm 15f operated by a combined pressure of atmospheric pressure introduced via the electromagnetic control valve 17 or negative pressure introduced via a communication passage 16 described later, and a spring 15g urging the diaphragm 15f toward the valve seat 15b.
It consists of
尚、前述の最大弁開度位置は後述するようにエンジンの
所定期間(例えば走行距離にして10万Km)に亘る長
期間試験運転により、この所定期間に亘る運転後でも最
大要求排気還流量を還流させることができる弁開度位置
に決定される。ダイアフラム15fにより画成される負
圧室15hには連通路16が接続され、吸気管2内の絶
対圧が該連通路16を介して導入されるようにされてい
る。更に、連通路16には大気連通路18が接続され、
該連通路18の途中に設けられた常開型電磁制御弁17
を介して大気圧が連通路16に、次いで上記負圧室15
eに導入されるようにされている。前記電磁制御弁17
はECU3に接続され、ECU3からの信号によって作
動し、排気還流弁15の弁体15aのリフト動作および
その速度を制御する。The above-mentioned maximum valve opening position is determined by long-term test operation of the engine over a predetermined period of time (for example, 100,000 km in terms of mileage), as will be described later. The valve opening position is determined to allow reflux. A communication passage 16 is connected to the negative pressure chamber 15h defined by the diaphragm 15f, and the absolute pressure within the intake pipe 2 is introduced through the communication passage 16. Further, an atmospheric communication path 18 is connected to the communication path 16,
A normally open electromagnetic control valve 17 provided in the middle of the communication path 18
Atmospheric pressure is supplied to the communication passage 16 via the negative pressure chamber 15
It is intended to be introduced in e. The electromagnetic control valve 17
is connected to the ECU 3, is operated by a signal from the ECU 3, and controls the lift operation and speed of the valve body 15a of the exhaust gas recirculation valve 15.
排気還流弁15にはリフト(Lv)センサ19が設けら
れており、弁15の弁体15aの作動位置を検出し、そ
の検出値信号をECU3に送るようにされている。The exhaust gas recirculation valve 15 is provided with a lift (Lv) sensor 19 that detects the operating position of the valve body 15a of the valve 15 and sends a detected value signal to the ECU 3.
又、ECU3には、大気圧(PA)センサ13が接続さ
れており、その検出値信号をECU3に送るようにされ
ている。Further, an atmospheric pressure (PA) sensor 13 is connected to the ECU 3, and a detected value signal thereof is sent to the ECU 3.
更に、排気還流弁15のカーボン堆積等に起因する実開
口面積の減少分を補償するための排気還流弁15の実開
口面積に関連する補正値を人為的に調整する弁開度目標
値調整用可変電圧電源20がECU3に接続されている
。Furthermore, a valve opening target value adjustment function is used to artificially adjust a correction value related to the actual opening area of the exhaust gas recirculation valve 15 to compensate for a decrease in the actual opening area due to carbon deposition, etc. of the exhaust gas recirculation valve 15. A variable voltage power supply 20 is connected to the ECU 3.
ECU3は各種センサ及び可変電圧電源20からの入力
信号波形を整形し、電圧レベルを所定レベルに修正し、
アナログ信号値をデジタル信号値に変換する等の機能を
有する入力回路5a、中央演算処理回路(以下rCPU
Jという)5b、CPU5bで実行される各種演算プロ
グラム及び演算結果等を記憶する記憶手段5c、並びに
前記燃料噴射弁6及び電磁制御弁17に駆動信号を供給
する出力回路5d等から構成される。The ECU 3 shapes input signal waveforms from various sensors and the variable voltage power supply 20, corrects the voltage level to a predetermined level,
The input circuit 5a has functions such as converting analog signal values into digital signal values, and the central processing circuit (rCPU)
5b, a storage means 5c for storing various calculation programs and calculation results executed by the CPU 5b, and an output circuit 5d for supplying drive signals to the fuel injection valve 6 and the electromagnetic control valve 17.
CPU5bは入力回路5aを介した前述の各種センサか
らのエンジンパラメータ信号等に基づいてエンジン運転
状態を判別し、記憶手段5cに記憶された後述する第3
図のプログラムに従って、吸気管内負圧PB、エンジン
回転数Ne、大気圧PA、及び可変電圧電源20により
設定される補正値に応じた排気還流弁】5の弁開度指令
値IJCMDを設定し、斯く設定される弁開度指令値L
(IMDと、リフトセンサ19によって検出された排気
還流弁15の弁開度検出値LAOTを全閉基準位置値り
、で補正した値との偏差を零にするように前記電磁制御
弁17に出力回路5dを介して駆動信号を供給すると共
に、以下に示す式で与えられる燃料噴射弁6の燃料噴射
時間T o u Tを演算する。The CPU 5b determines the engine operating state based on the engine parameter signals etc. from the various sensors mentioned above via the input circuit 5a, and determines the engine operating state based on the engine parameter signals etc. from the various sensors mentioned above via the input circuit 5a, and determines the third
According to the program shown in the figure, the valve opening command value IJCMD of the exhaust recirculation valve]5 is set according to the intake pipe negative pressure PB, the engine speed Ne, the atmospheric pressure PA, and the correction value set by the variable voltage power supply 20, Valve opening command value L thus set
(The valve opening detection value LAOT of the exhaust recirculation valve 15 detected by the lift sensor 19 is output to the electromagnetic control valve 17 so as to reduce the deviation from the value corrected by the fully closed reference position value to zero. A driving signal is supplied via the circuit 5d, and a fuel injection time T o u T of the fuel injection valve 6 given by the formula shown below is calculated.
TouT=TiXK1XK2− (1)ここに、Tiは
基本燃料噴射時間を示し、この基本燃料噴射時間Tiは
吸気管内負圧PB、エンジン回転数Ne及び排気還流弁
15が作動中か否かに応じて設定される。K1及びに2
は夫々前述の各種センサ、即ちスロワ[・ル弁開度セン
サ4、負圧センサ8、エンジン水温センサ9、Neセン
サ10及び大気圧センサ13からのエンジンパラメータ
信号に応じて演算される補正係数及び補正変数であって
、エンジン運転状態に応じ、始動特性、排気ガス特性、
燃費特性、エンジン加速特性等の諸特性が最適なものと
なるように所定の演算式に基づいて演算される。Tout = Ti Set. K1 and 2
are a correction coefficient and a correction coefficient calculated according to engine parameter signals from the various sensors described above, namely, the throat valve opening sensor 4, the negative pressure sensor 8, the engine water temperature sensor 9, the Ne sensor 10, and the atmospheric pressure sensor 13, respectively. It is a correction variable that changes starting characteristics, exhaust gas characteristics,
It is calculated based on a predetermined calculation formula so that various characteristics such as fuel efficiency characteristics and engine acceleration characteristics are optimized.
CPU5bは、上述のようにして求めた燃料噴射時間T
ouTに基づいて燃料噴射弁6を開弁させる駆動信号を
出力回路5dを介して燃料噴射弁6に供給する。The CPU 5b calculates the fuel injection time T obtained as described above.
A drive signal for opening the fuel injection valve 6 based on outT is supplied to the fuel injection valve 6 via the output circuit 5d.
第3図は排気還流弁15の制御量の設定手順を示すフロ
ーチャートであり1本プログラムは前記Neセンサ10
によるTDC信号発生毎に実行される。FIG. 3 is a flowchart showing the procedure for setting the control amount of the exhaust gas recirculation valve 15, and one program includes the aforementioned Ne sensor 10.
This is executed every time the TDC signal is generated.
先ず、Neセンサ10、負圧センサ8及び大気圧センサ
13の各検出値であるエンジン回転数値Ne、吸気管内
負圧値PB及び大気圧値PA、並びに可変電圧電源20
からの補正値り。0をECU3内に読み込み、記憶手段
5Cに記憶する(ステップ1)。上述の補正値し。0は
例えば内燃エンジンの出荷時あるいは整備時等に可変電
圧電源20により所定値(例えば0)に設定される。First, the engine rotation value Ne, the intake pipe negative pressure value PB and the atmospheric pressure value PA, which are the values detected by the Ne sensor 10, the negative pressure sensor 8, and the atmospheric pressure sensor 13, and the variable voltage power source 20
Correction value from. 0 is read into the ECU 3 and stored in the storage means 5C (step 1). The correction value mentioned above. 0 is set to a predetermined value (for example, 0) by the variable voltage power supply 20, for example, at the time of shipping or maintenance of the internal combustion engine.
次にステップ2に進み、記憶手段5Cに記憶されている
基本弁リスト値LMAPを読み出す6基本弁リスト値L
yオは例えば吸気管内負圧PBと工ンジン回転数Neの
関数として予め設定されている。第4図は基本弁リフト
値LMAPのマツプ図であり、吸気管内負圧Pnは例え
ば560乃至Omm)Igの範囲でPI3.〜PB1.
として10段階設けられ、また、回転数Neは例えば0
〜400Orpmの範囲でN、〜N□。として]O段階
設けられており、マツプ格子点以外のエンジン回転数N
e及び負圧PBに対応する基本弁リフト値LMAPは補
間計算で求められる。Next, proceed to step 2, and read out the basic valve list value LMAP stored in the storage means 5C.
yO is set in advance as a function of, for example, the intake pipe internal negative pressure PB and the engine rotational speed Ne. FIG. 4 is a map of the basic valve lift value LMAP, and the negative pressure Pn in the intake pipe is, for example, in the range of 560 to 0 mm (Ig) to PI3. ~PB1.
10 stages are provided, and the rotation speed Ne is, for example, 0.
N in the range of ~400 Orpm, ~N□. ] O stages are provided, and the engine speed N other than the map grid points
The basic valve lift value LMAP corresponding to e and negative pressure PB is obtained by interpolation calculation.
次に、ステップ3に進みリフト補正係数K。を算出する
。この補正係数KEは、例えば、大気圧PAの変化やリ
ーン化運転領域でエンジンに供給される混合気の燃料の
希薄化(リーン化)の度合等に応じて設定される係数で
ある。上述の大気圧PAの変化による補正係数KEの設
定方法を例に更に具体的に説明すれば、大気圧PAが低
下するに従って排気還流率(全吸気量に対する排気還流
量の割合)を一定に維持するために排気還流弁を開弁方
向に作動させる。すなわち補正係数KEは標準大気圧で
の補正係数KEoに対して大気圧PAが低下するに従っ
て大きい値になるように設定される。この様に大気圧P
Aの低下に伴って補正係数KEを増加させ排気還流率を
一定に保持するのは以下の理由による。Next, proceed to step 3 and calculate the lift correction coefficient K. Calculate. This correction coefficient KE is a coefficient that is set depending on, for example, a change in atmospheric pressure PA, a degree of dilution (leaning) of fuel in the air-fuel mixture supplied to the engine in a lean operating region, and the like. To explain in more detail using the above-mentioned method of setting the correction coefficient KE due to changes in atmospheric pressure PA as an example, as atmospheric pressure PA decreases, the exhaust gas recirculation rate (ratio of exhaust gas recirculation amount to total intake air amount) is maintained constant. To do this, operate the exhaust recirculation valve in the opening direction. That is, the correction coefficient KE is set to a larger value as the atmospheric pressure PA decreases with respect to the correction coefficient KEo at standard atmospheric pressure. In this way, atmospheric pressure P
The reason why the correction coefficient KE is increased to keep the exhaust gas recirculation rate constant as A decreases is as follows.
即ち、例えば、高地で運転する場合のように大気圧が変
化したとき大気圧の変化に応じてエンジンに供給される
燃料量を補正して、標準大気圧下での設定空燃比に保つ
ようにしないと最適な空燃比を得ることが出来ない。こ
のため、前記式(1)に基づいて得られた燃料噴射量に
は空燃比大気補正係数KPAによる補正が含まれる。し
かし排気還流を行うエンジンにおいて、大気圧が低下す
ると排気還流弁上流絶対圧(排気管背圧)が低下するた
め排気還流率が変化しく減少し)これに伴い空燃比は変
化するが排気還流をさせないときに大気圧が低下してリ
ーン化する場合に比しさらにり−ン側に変化する。従っ
て前述の空燃比大気圧補正係数KPAによ−る燃料量の
補正だけでは何ら大気圧補正が行われずに排気還流が行
われている場合には空燃比の制御を精度よく行うことが
出来ない。That is, for example, when the atmospheric pressure changes, such as when driving at high altitudes, the amount of fuel supplied to the engine is corrected according to the change in atmospheric pressure, and the air-fuel ratio is maintained at the set air-fuel ratio under standard atmospheric pressure. Otherwise, it will not be possible to obtain the optimum air-fuel ratio. Therefore, the fuel injection amount obtained based on the above equation (1) includes correction by the air-fuel ratio atmospheric correction coefficient KPA. However, in engines that perform exhaust recirculation, when the atmospheric pressure decreases, the absolute pressure upstream of the exhaust recirculation valve (exhaust pipe back pressure) decreases, so the exhaust recirculation rate decreases in a variable manner. It changes to the lean side compared to the case where the atmospheric pressure decreases and becomes lean when it is not turned on. Therefore, if only the fuel amount is corrected using the above-mentioned air-fuel ratio atmospheric pressure correction coefficient KPA, the air-fuel ratio cannot be controlled accurately if exhaust gas recirculation is performed without any atmospheric pressure correction. .
=15−
一方、大気圧変化があっても排気還流率を一定に保つよ
うにすれば排気還流量制御を行わない場合の空燃比補正
係数(KPA)がそのまま使用することが出来るのであ
る。尚、斯かる排気還流制御方法についての詳細は本出
願人により特開昭箱58−88430号において開示さ
れている。=15- On the other hand, if the exhaust gas recirculation rate is kept constant even if there is a change in atmospheric pressure, the air-fuel ratio correction coefficient (KPA) that is used when the exhaust gas recirculation amount control is not performed can be used as is. The details of such an exhaust gas recirculation control method are disclosed in Japanese Patent Application Laid-Open No. 58-88430 by the present applicant.
次に、ステップ4乃至ステップ8において、排気還流弁
15の全閉基準位置値り。を求める。先ず、ステップ4
では前記ステップ2で読み出した基本弁リスト値LMA
Pが零か否か、即ち基本弁リフト値LMAPが排気還流
弁15の全閉を指令する値であるか否かを判別し、判別
結果が否定(NO)の場合、即ちエンジンが排気還流運
転領域にあれば排気還流弁15の全閉基準位置値り。の
補正はできないので、CPU5b内のEGRタイマーを
所定値にリセットしくステップ8)、ステップ9に進む
。Next, in steps 4 to 8, the fully closed reference position value of the exhaust gas recirculation valve 15 is determined. seek. First, step 4
Now, the basic valve list value LMA read in step 2 above.
It is determined whether P is zero, that is, whether the basic valve lift value LMAP is a value that commands the exhaust recirculation valve 15 to be fully closed. If the determination result is negative (NO), that is, the engine is in exhaust recirculation operation. If it is in the range, it is the fully closed reference position value of the exhaust recirculation valve 15. Since this cannot be corrected, the EGR timer in the CPU 5b is reset to a predetermined value (Step 8), and the process proceeds to Step 9.
一方、ステップ4での判別結果が肯定(Yes)であれ
ば、ステップ5に進み、リフトセンサ19が検出する今
回ループの弁開度検出値LACT nが前回ループの弁
開度検出値LAQTn−+に等しいか否かを判別する。On the other hand, if the determination result in step 4 is affirmative (Yes), the process proceeds to step 5, and the valve opening detection value LACTn of the current loop detected by the lift sensor 19 is set to the valve opening detection value LAQTn-+ of the previous loop. Determine whether it is equal to or not.
ステップ5での判別結果が否定(No)であれば前記ス
テップ8に進み、肯定(Yes)の場合、即ちLAQT
n値とLAQTn−。If the determination result in step 5 is negative (No), the process proceeds to step 8, and if the determination result is affirmative (Yes), that is, LAQT
n value and LAQTn-.
値とが等しければステップ6に進み、LAQTn値とL
AQTn−1値とが等しい状態が所定時間t EGR(
例えば3秒)継続したか否かを判別する。ステップ6で
の判別結果が肯定(Yes)の場合、即ちLAC,Tn
値とL A Q T n−1値とが等しい状態が所定時
間t EG!!継続したならば今回ループの弁開度検出
値LAQTnを新たな全閉基準位置値L0(ステップ7
)とし、これをECU3内の記憶手段5cに記憶してス
テップ9に進み、否定(No)であれば引き続きEGR
タイマーによる計時を継続し、ステップ9に進む。If the values are equal, proceed to step 6 and compare the LAQTn value and L
A state in which the AQTn-1 value is equal is maintained for a predetermined time t EGR (
For example, for 3 seconds), it is determined whether or not it has continued. If the determination result in step 6 is affirmative (Yes), that is, LAC, Tn
The state in which the value and the L A Q T n-1 value are equal continues for a predetermined time t EG! ! If it continues, the current loop's valve opening detection value LAQTn is changed to the new fully closed reference position value L0 (step 7
), this is stored in the storage means 5c in the ECU 3, and the process proceeds to step 9. If the answer is negative (No), EGR is continued.
The timer continues measuring time and proceeds to step 9.
ステップ9ではステップ2で読み出した基本弁リフト値
L’MAPを、このLMAP値にECU S内の記憶手
段5cに記憶しである全閉基準位置値し。と可変電圧電
源20からの補正値り。0どの偏差(L o−L n
o )に応じて設定される補正係数f(r−n −L
n n )を乗算することにより補正し、補正弁リフI
−値L’MAPを求める。補正係数f (LLl−Lo
、)は、第5図に示すように、偏差(Lo−L[lG)
が増大するに従い増大するように設定される。In step 9, the basic valve lift value L'MAP read out in step 2 is converted into a fully closed reference position value stored in the storage means 5c in the ECU S. and the correction value from the variable voltage power supply 20. 0 which deviation (L o−L n
o ) is set according to the correction coefficient f(rn −L
n n ) by multiplying the correction valve lift I
- Find the value L'MAP. Correction coefficient f (LLl-Lo
, ) is the deviation (Lo-L[lG), as shown in FIG.
It is set to increase as the value increases.
次にステップ10に進み、ステップ9で設定された補正
弁リフト値L’MAPにステップ3で設定された補正係
数KEが乗算されて弁開度指令値LCMDが演算され、
ステップ11に進む。Next, the process proceeds to step 10, where the correction valve lift value L'MAP set in step 9 is multiplied by the correction coefficient KE set in step 3 to calculate the valve opening command value LCMD.
Proceed to step 11.
ステップ11では前記ステップ7及びステップ10にお
いて設定された全閉基準位置値り。及び弁開度指令値L
CMD、並びにリフトセンサ19により検出された弁開
度検出値LAcTnに基づき排気還流弁15の制御量S
、即ち偏差■が次式(2)により決定され、斯く求めた
偏差Vを零にするようにCPU5bが出力回路5dを介
して電磁制御弁17に供給する駆動時間を決定する。即
ち偏差Vを零にすべく負圧室15eに導入される大気又
は負圧を制御するように電磁制御弁17の駆動信号のデ
ユーティ比が求められる。In step 11, the fully closed reference position value set in step 7 and step 10 is determined. and valve opening command value L
The control amount S of the exhaust gas recirculation valve 15 is based on the CMD and the valve opening detection value LAcTn detected by the lift sensor 19.
That is, the deviation (2) is determined by the following equation (2), and the CPU 5b determines the drive time to be supplied to the electromagnetic control valve 17 via the output circuit 5d so as to make the deviation V thus obtained zero. That is, the duty ratio of the drive signal for the electromagnetic control valve 17 is determined so as to control the atmosphere or negative pressure introduced into the negative pressure chamber 15e so as to make the deviation V zero.
V= (LAcTn−Lo)−LCMI、−(2)上式
(2)において、弁開度検出値LAQ T nを全閉基
準位置値り。で補正しくLAQ T n −Ln)、該
補正値と弁開度指令値LCM+)との偏差Vを求めたが
、これに代えて、弁開度指令値LC,MDをり。V=(LAcTn-Lo)-LCMI,-(2) In the above equation (2), the valve opening detection value LAQTn is set to the fully closed reference position value. The deviation V between the corrected value and the valve opening command value LCM+) was calculated by correctly correcting LAQ T n -Ln), but instead of this, the valve opening command values LC and MD were calculated.
値で補正しくLCMD+Lo) 、この補正値と弁開度
検出値LAcTnとの偏差Vを次式(3)により求める
ようにしてもよい。The deviation V between this correction value and the detected valve opening value LAcTn may be calculated using the following equation (3).
V= (LcMf、+L。)−LAcTn ・= (
3)ここで、本発明に係る排気還流弁15の弁体15a
の最大ストローク長LMAXIIは、第1図に示すよう
に、エンジの長期間運転後の全閉基準位置り。V = (LcMf, +L.) - LAcTn ・= (
3) Here, the valve body 15a of the exhaust gas recirculation valve 15 according to the present invention
As shown in Fig. 1, the maximum stroke length LMAXII is the fully closed reference position of the engine after long-term operation.
(=ΔL)で補正した弁開度目標値(第1図の破線11
’L)の最大値よりも大きいので、長期間運転後でも最
大排気還流量Q M A Xが確保できる。(=ΔL) (dotted line 11 in Fig. 1)
'L), the maximum exhaust gas recirculation amount QMAX can be secured even after long-term operation.
尚、弁体15aの最大ストローク長LMAXπはエンジ
ンの長期間試験運転(例えば走行距離にして10万Km
)後の全閉基準位置り。に基づいて決定される。The maximum stroke length LMAXπ of the valve body 15a is determined by the long-term test operation of the engine (for example, 100,000 km in terms of mileage
) after fully closed reference position. Determined based on.
尚、全閉基準位置値り。のイグニッションスイッチ(図
示せず)の投入時の初期値としては記憶・ 手段5C
に記憶されている所定値(例えばO)が適用される。In addition, the fully closed reference position value. The initial value when the ignition switch (not shown) is turned on is memorized and means 5C.
A predetermined value (for example, O) stored in is applied.
(発明の効果)
以上詳述したように本発明の内燃エンジンの排気還流量
制御装置に依れば、排気還流弁の最大弁開度位置は、エ
ンジンの所定期間に亘る運転後において、記憶装置から
読み出された要求弁開度に基づき還流させるべき最大要
求排気還流量を還流させる弁開度位置より大きいので、
エンジンの長期間に亘る運転後でも所要の最大排気還流
量が確保でき、エンジンの良好な排気ガス特性を維持で
きる。(Effects of the Invention) As detailed above, according to the exhaust gas recirculation amount control device for an internal combustion engine of the present invention, the maximum valve opening position of the exhaust gas recirculation valve is stored in the memory after the engine has been operated for a predetermined period. Since the maximum required exhaust gas recirculation amount to be recirculated based on the required valve opening read out from is greater than the valve opening position for recirculation,
Even after long-term operation of the engine, the required maximum exhaust gas recirculation amount can be ensured, and good exhaust gas characteristics of the engine can be maintained.
第1図は排気還流量制御装置の特性図、第2図は本発明
に係る排気還流量制御装置を装備した内燃エンジンの全
体構成図、第3図は排気還流弁の制御量の設定手順を示
すフローチャート、第4図はエンジン回転数Ne及び吸
気管内負圧PBで決定される基本弁リフト値L M A
Fのマツプ図、第5図は補正係数f(L、−L、、)と
偏差り、、−L、。)との関係を示すグラフである。
1・・・内燃エンジン、2・・・吸気通路、5・・・電
子コントロールユニット(ECU) 、8・・・負圧セ
ンサ、10・・・エンジン回転数センサ(Neセンサ)
、11・・・排気通路、13・・・大気圧センサ、14
・・・排気還流通路、15・・・排気還流弁、16・・
・連通路、17・・・電磁制御弁、19・・・弁解度検
出器(リフトセンサ)、20・・・可変電圧電源。Fig. 1 is a characteristic diagram of the exhaust recirculation amount control device, Fig. 2 is an overall configuration diagram of an internal combustion engine equipped with the exhaust recirculation amount control device according to the present invention, and Fig. 3 is a procedure for setting the control amount of the exhaust recirculation valve. The flow chart shown in FIG. 4 shows the basic valve lift value LMA determined by the engine speed Ne and the intake pipe negative pressure PB.
The map of F, Figure 5, shows the correction coefficient f(L, -L, ,) and the deviation, -L,. ) is a graph showing the relationship between DESCRIPTION OF SYMBOLS 1... Internal combustion engine, 2... Intake passage, 5... Electronic control unit (ECU), 8... Negative pressure sensor, 10... Engine speed sensor (Ne sensor)
, 11... Exhaust passage, 13... Atmospheric pressure sensor, 14
...Exhaust recirculation passage, 15...Exhaust recirculation valve, 16...
・Communication path, 17...Solenoid control valve, 19...Deltitude detector (lift sensor), 20...Variable voltage power supply.
Claims (3)
流通路と、排気還流通路の途中に途中に設けられ、前記
排気管から吸気管への許容し得る最大許容排気還流量を
規定する最大弁開度位置を有する排気還流弁と、排気還
流を行なうべきエンジンの運転状態を検出する運転状態
検出手段と、エンジンの運転状態に応じた排気還流弁の
要求弁開度を予め記憶する記憶装置と、排気還流弁の実
際の弁開度を検出する弁開度検出器と、記憶装置から読
み出された要求弁開度が全閉を指示しているか否かを判
別する全閉指示判別手段と、全閉指示判別手段からの全
閉判別信号の発生時間が所定時間を越えるとき信号を発
生するタイマ手段と、タイマ手段からの前記信号を入力
された時の前記弁開度検出器の検出値を記憶する基準位
置記憶手段と、前記基準位置記憶手段の記憶値で前記弁
解度検出器により検出された実弁開度検出値及び前記要
求弁開度のいずれか一方を補正する演算手段と、該演算
手段により補正された前記一方の弁開度値と他方の弁開
度値との開度差を判別する開度差判別手段と、前記開度
差を零にするように前記排気還流弁を制御する弁開度制
御手段とから成る排気還流量制御装置において、前記最
大弁開度位置は、エンジンの所定期間に亘る運転後にお
いて、前記記憶装置から読み出された要求弁開度に基づ
き還流させるべき最大要求排気還流量を還流させる弁開
度位置より大きいことを特徴とする内燃エンジンの排気
還流量制御装置。1. An exhaust gas recirculation passage that connects the exhaust pipe of an internal combustion engine to the intake pipe, and a maximum valve opening that is provided in the middle of the exhaust gas recirculation passage and defines the maximum permissible amount of exhaust gas recirculation from the exhaust pipe to the intake pipe. an exhaust gas recirculation valve having a position, an operating state detection means for detecting an operating state of the engine in which exhaust gas recirculation is to be performed, a storage device that stores in advance a required valve opening degree of the exhaust recirculation valve according to the operating state of the engine; a valve opening degree detector that detects the actual valve opening degree of the reflux valve; a fully closed instruction determination means that determines whether the requested valve opening degree read from the storage device indicates a fully closed position; timer means for generating a signal when the generation time of the fully closed determination signal from the close instruction determination means exceeds a predetermined time; and a detection value of the valve opening degree detector when the signal from the timer means is inputted. a reference position storage means for correcting either the actual valve opening detection value detected by the excuse degree detector or the required valve opening with the stored value of the reference position storage means; an opening difference determining means for determining an opening difference between the one valve opening value and the other valve opening value corrected by the means; and controlling the exhaust gas recirculation valve so as to reduce the opening difference to zero. In the exhaust gas recirculation amount control device, the maximum valve opening position is determined based on the required valve opening read from the storage device after the engine has been operated for a predetermined period. An exhaust gas recirculation amount control device for an internal combustion engine, characterized in that the maximum required exhaust gas recirculation amount is larger than the valve opening position for recirculating the gas.
を備え、前記演算手段は前記補正した一方の弁開度値を
、前記パラメータ検出器により検出されたパラメータ検
出値に応じて更に補正するように構成されていることを
特徴とする特許請求の範囲第1項記載の内燃エンジンの
排気還流量制御装置。2. A detector for detecting a predetermined engine operating parameter is provided, and the calculation means is configured to further correct the corrected one valve opening value according to the parameter detection value detected by the parameter detector. An exhaust gas recirculation amount control device for an internal combustion engine according to claim 1, characterized in that:
ラメータは大気圧であることを特徴とする特許請求の範
囲第2項記載の内燃エンジンの排気還流量制御装置。3. 3. The exhaust gas recirculation amount control device for an internal combustion engine according to claim 2, wherein the engine operating parameter detected by the parameter detector is atmospheric pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60007475A JPS61167151A (en) | 1985-01-21 | 1985-01-21 | Exhaust-recirculation amount controller for internal-combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60007475A JPS61167151A (en) | 1985-01-21 | 1985-01-21 | Exhaust-recirculation amount controller for internal-combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61167151A true JPS61167151A (en) | 1986-07-28 |
Family
ID=11666802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60007475A Pending JPS61167151A (en) | 1985-01-21 | 1985-01-21 | Exhaust-recirculation amount controller for internal-combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61167151A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6355353A (en) * | 1986-08-22 | 1988-03-09 | Nippon Carbureter Co Ltd | Exhaust gas recirculation controller |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5741454A (en) * | 1980-08-25 | 1982-03-08 | Mazda Motor Corp | Exhaust gas returning device for engine |
JPS5837707A (en) * | 1981-08-28 | 1983-03-05 | Mitsubishi Electric Corp | Position controller |
JPS5888430A (en) * | 1981-11-20 | 1983-05-26 | Honda Motor Co Ltd | Electronic fuel injection controller of internal- combustion engine equipped with exhaust gas recirculation controller |
JPS5963356A (en) * | 1982-10-01 | 1984-04-11 | Mazda Motor Corp | Exhaust gas recirculator for engine |
-
1985
- 1985-01-21 JP JP60007475A patent/JPS61167151A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5741454A (en) * | 1980-08-25 | 1982-03-08 | Mazda Motor Corp | Exhaust gas returning device for engine |
JPS5837707A (en) * | 1981-08-28 | 1983-03-05 | Mitsubishi Electric Corp | Position controller |
JPS5888430A (en) * | 1981-11-20 | 1983-05-26 | Honda Motor Co Ltd | Electronic fuel injection controller of internal- combustion engine equipped with exhaust gas recirculation controller |
JPS5963356A (en) * | 1982-10-01 | 1984-04-11 | Mazda Motor Corp | Exhaust gas recirculator for engine |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6355353A (en) * | 1986-08-22 | 1988-03-09 | Nippon Carbureter Co Ltd | Exhaust gas recirculation controller |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7367320B2 (en) | Fuel control system for internal combustion engine | |
JP4251073B2 (en) | Control device for internal combustion engine | |
JP3011070B2 (en) | Intake air amount detection device for internal combustion engine with continuously variable valve timing mechanism | |
EP0893590B1 (en) | Air intake control system for engine equipped with exhaust gas recirculation feature | |
US6681567B2 (en) | Control system for internal combustion engine | |
JPH11210509A (en) | Valve opening/closing characteristic controller for internal combustion engine | |
US6609059B2 (en) | Control system for internal combustion engine | |
US20080167790A1 (en) | EGR Control Device For Internal Combustion Engine | |
JPS6011665A (en) | Egr valve control method for internal-combustion engine | |
JPS6256345B2 (en) | ||
US6564778B2 (en) | Fuel supply control system for internal combustion engine | |
JPH0481557A (en) | Exhaust reflex controller for internal combustion engine | |
JPS61167151A (en) | Exhaust-recirculation amount controller for internal-combustion engine | |
JP3785764B2 (en) | EGR control device for internal combustion engine | |
JPS6011664A (en) | Full-close referential position detecting method of egr valve in internal-combustion engine | |
JPS61108857A (en) | Method for controlling flow rate of exhaust reflux of internal-combustion engine | |
JP3096379B2 (en) | Catalyst temperature control device for internal combustion engine | |
JP3055378B2 (en) | Control device for internal combustion engine | |
JPS5828553A (en) | Method and device for electronically controlled fuel injection to internal combustion engine | |
JP3743078B2 (en) | In-cylinder internal combustion engine | |
JP2005171765A (en) | Control device and control method of internal combustion engine | |
JPS6224036Y2 (en) | ||
JPS61106961A (en) | Control method of exhaust gas recirculating quantity in internal-combustion engine | |
JPS61108858A (en) | Method for controlling flow rate of exhaust reflux of internal-combustion engine | |
JPH02221668A (en) | Egr rate detecting device for internal combustion engine |