JPS61165685A - Method of evaluating stress corrosion crack sensibility of fuel coated tube - Google Patents

Method of evaluating stress corrosion crack sensibility of fuel coated tube

Info

Publication number
JPS61165685A
JPS61165685A JP60005730A JP573085A JPS61165685A JP S61165685 A JPS61165685 A JP S61165685A JP 60005730 A JP60005730 A JP 60005730A JP 573085 A JP573085 A JP 573085A JP S61165685 A JPS61165685 A JP S61165685A
Authority
JP
Japan
Prior art keywords
stress corrosion
corrosion cracking
crack
fuel
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60005730A
Other languages
Japanese (ja)
Inventor
高瀬 磐雄
吉田 寿美
池田 伸三
正岡 功
中島 潤二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60005730A priority Critical patent/JPS61165685A/en
Publication of JPS61165685A publication Critical patent/JPS61165685A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ジルコニウム基合金の燃料被覆管の応力腐食
割れ感受性評価方法に関するものであろう〔発明の背景
〕 ジルコニウム基合金は、その優れた耐食性と非常に小さ
い中性子吸収断面積によシ原子カプラントの燃料被覆管
に用いられている。燃料被覆管は原子炉内で長期間使用
されるが、燃料ベレットの燃焼による焼結が被覆管内面
を拡管する応力として加わシ、かつ燃料ベレットから腐
食性ガス(主にヨウ素)の放出によって応力腐食割れが
起こる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for evaluating stress corrosion cracking susceptibility of zirconium-based alloy fuel cladding [Background of the Invention] Zirconium-based alloys are known for their excellent corrosion resistance. Because of its extremely small neutron absorption cross section, it is used in fuel cladding tubes for atomic couplants. Fuel cladding tubes are used for long periods in nuclear reactors, but sintering due to combustion of the fuel pellets causes stress to expand on the inner surface of the cladding tubes, and stress is generated by the release of corrosive gases (mainly iodine) from the fuel pellets. Corrosion cracking occurs.

このような応力腐食割れは燃料棒の破損の主原因となシ
、原子炉の安全性及び信頼性の点で十分対処せねばなら
ない。
Such stress corrosion cracking is a major cause of fuel rod failure and must be adequately addressed from the standpoint of reactor safety and reliability.

前記のような観点から、この応力腐食割れを防止する方
法が検討され、かつその材料の耐食性を原子炉外で判別
する方法が重要課題となっている。
From the above-mentioned viewpoints, methods for preventing stress corrosion cracking have been studied, and methods for determining the corrosion resistance of materials outside the reactor have become important issues.

すなわち、応力腐食割れ防止方法にはジルカロイ−Z(
Zrに約L518n、0.1*1i’e、0.1%Or
及び0.051Niを添加した合金)、ジルカロイ−4
(ZrK約L5%Sn、oytspe及び0.1%Or
を添加した合金)の被覆管の内面に7、rライナ部を設
けて応力腐食割れを防止する方法が注目されている〔昭
55−164396.昭58−147680、昭58−
195185 )。また材料評価法として、衆面組織観
察によって材料の健全性度を判定する方法もある〔特開
昭59−208541゜一方、原子炉内において炉水に
接する被覆管外面のノジューラ腐食防止対策として、4
1債f製造時にβ焼入する方法がある。しかしこの場合
での耐応力腐食割れ感受性については必ずしも明らかで
ない。
In other words, Zircaloy-Z (
Approximately L518n, 0.1*1i'e, 0.1% Or to Zr
and 0.051Ni-added alloy), Zircaloy-4
(ZrK approx. L5%Sn, oytspe and 0.1%Or
A method of preventing stress corrosion cracking by providing a liner section on the inner surface of the cladding tube of 7. 147680, 1982
195185). In addition, as a material evaluation method, there is also a method of determining the soundness of the material by observing the surface structure [JP-A-59-208541] On the other hand, as a measure to prevent nodular corrosion on the outer surface of the cladding tube in contact with reactor water in a nuclear reactor, 4
There is a method of β-quenching during the production of 1 bond f. However, the stress corrosion cracking susceptibility in this case is not necessarily clear.

このようにジルコニウム合金の応力腐食割れ防止法とし
ては被覆管内面の表面処理と管自体の組織改善等によっ
て達成しようとしている。これらの#性評価は原子炉内
で行うかあるいは原子炉外の試験で判定する。
As described above, attempts are being made to prevent stress corrosion cracking of zirconium alloys by treating the inner surface of the cladding tube and improving the structure of the tube itself. These #evaluations are carried out inside the reactor or determined by tests outside the reactor.

原子炉内の実証試験はより確かな評価法であるが、苛酷
な試験条件の設定ができないこと、燃料破損に対し安全
面の配慮が十分に行う必要があることなどから、安易に
試験体を原子内に入れられない制約がある。
Although demonstration tests inside a nuclear reactor are a more reliable evaluation method, it is not possible to set test specimens easily because it is not possible to set severe test conditions and it is necessary to take sufficient safety precautions against fuel damage. There is a restriction that it cannot be placed inside an atom.

一方、原子炉外での特性評価は被覆管内側を腐食gi境
にして、その後(1)内圧を上昇させて割れが貫通する
ときの応力と時間の関係から判定する方法、(2)被覆
管内面の中子を膨出させて、ひずみ量と割れ貫通の有無
によって判定する方法に大別される。しかし前方法(1
)は実炉割れが燃料ぺVットの膨出によるのに対し、内
圧の負荷で計画するため模擬試験として十分でない。前
方法(匂は中子の膨出て応力を負荷させる方法で歪制御
が容易、応力集中を加えられる等、模擬試験として有効
であるが、主に貫通割れの有無で判定しており、割れの
発生及びその進展に関しては評価でき難い。
On the other hand, characteristics evaluation outside the reactor involves placing the inside of the cladding tube in a corrosive state, and then (1) increasing the internal pressure and determining from the relationship between stress and time when a crack penetrates; (2) inside the cladding tube. There are two main types of methods: bulging the surface core and determining the amount of strain and the presence or absence of crack penetration. However, the previous method (1
) is not sufficient as a simulation test because actual furnace cracking is caused by the swelling of fuel PV, but it is planned based on the internal pressure load. The previous method (the former method applies stress by bulging the core, which makes it easy to control strain and allows stress concentration to be applied, etc., is effective as a mock test, but it is mainly judged by the presence or absence of through cracking, and cracks are It is difficult to evaluate the occurrence and progress of the disease.

ただし、試験途中で被覆管断面を切断して割れを測定す
ることも可能ではあるが、これには膨大な試験体と労力
を必要とするからである。
However, although it is possible to measure cracks by cutting a cross section of the cladding tube during the test, this requires a huge amount of test material and labor.

次に従来方法の問題点と、割れ発生及びその進展を検出
し、応力腐食割れ感受性評価する効果点について述べる
。従来方法での貫通割れ判定は変形量によって異なるも
のの貫通割れとして判定し、それらは下位にランク付さ
れる。一方、貫通割れなしと判定した被覆管はすべて同
一の応力腐食割れ感受性として区分され便用される。し
かしながら、それらの中で貫通割れには至っているが、
割れがかなシ進展する材料もあり、実機において不慮の
トラブルを引起こしかねない。
Next, we will discuss the problems of the conventional method and its effectiveness in detecting the occurrence and progression of cracks and evaluating stress corrosion cracking susceptibility. In the conventional method, the determination of a through crack differs depending on the amount of deformation, but it is determined as a through crack, and these are ranked lower. On the other hand, all cladding tubes determined to have no through cracking are classified as having the same stress corrosion cracking susceptibility and are used for convenience. However, although some of them have resulted in through cracking,
Some materials have a tendency to crack quickly, which can cause unexpected problems in actual equipment.

これに対し、割れ発生及び進展の計画ができれば、その
程度によって、将来運転が予定される高熱焼度型燃料被
覆管、現行の被覆管あるいは使用条件がきびしくない機
器への適用が判断できよう。
On the other hand, if a plan for the occurrence and propagation of cracks can be made, depending on the extent of the cracks, it will be possible to decide whether to apply the method to high-temperature fuel cladding tubes scheduled for future operation, current cladding tubes, or equipment whose operating conditions are not severe.

つまシそれぞれの被覆管は機器使用条件に合わせた適用
が可能となる。これによシ機器の安全性が飛躍的に向上
させると共に低コス)+2)被覆管を供給できる見込み
が立つ。
Each cladding tube can be applied to suit the equipment usage conditions. This will dramatically improve the safety of the equipment and has the potential to supply cladding tubes at low cost.

このようなことから被覆管の応力腐食割れ感受性を原子
炉外で確実に判別する方法でかつ簡便な評価法が強く望
まれていた。前記のような観点から、この応力腐食割れ
を防止する方法が検討され、かつその材料の耐食性を原
子炉外で詳細に判別する方法が強く望まれている。
For this reason, there has been a strong desire for a simple evaluation method that can reliably determine the stress corrosion cracking susceptibility of cladding outside the reactor. From the above-mentioned viewpoints, methods for preventing this stress corrosion cracking have been studied, and a method for determining the corrosion resistance of materials in detail outside the nuclear reactor is strongly desired.

〔発明の目的〕[Purpose of the invention]

本発明の目的は原子炉の環境中における応力腐食割れ感
受性を原子炉外の評価試験で判別する方法を提供するこ
とにあろう 〔発明の概要〕 本発明は応力腐食割れの発生及びその深さが電位差の変
化から検出でき、その割れ深さから応力腐食割れ感受性
を判定できることを見いだした。
The purpose of the present invention is to provide a method for determining stress corrosion cracking susceptibility in a nuclear reactor environment by an evaluation test outside the reactor. It was discovered that the stress corrosion cracking susceptibility can be determined from the crack depth, which can be detected from the change in potential difference.

以下本発明の詳細を述べる。The details of the present invention will be described below.

本発明は第1図に示すようにジルカロイ燃料被覆管のS
CC感受性を判定する方法において、電極の構成は被覆
管外表面の円周方向に複数の電極を設け、その肉量隣接
する2ケ所の電極を測定端子とし、それに隣接する外側
2ケ所の電極を定電流端子とする。電位差は定電流端子
間に所定の電流を流し、そのときの測定端子間の電位差
を計測し、その変化から被覆管内面の割れ深さを推定し
、その値の大小から、被覆管のSCC感受性を判定する
方法である。なお被覆管の全周を判定するには接点切替
方式によ9周方向に1ブロツク移動させ上述の電位差測
定を繰返し行うことで達成できる。
As shown in FIG. 1, the present invention is based on the S
In the method for determining CC sensitivity, the electrode configuration is such that multiple electrodes are provided in the circumferential direction on the outer surface of the cladding tube, two electrodes adjacent to each other are used as measurement terminals, and two electrodes adjacent to the outer surface are used as measurement terminals. Use constant current terminal. The potential difference is determined by passing a predetermined current between the constant current terminals, measuring the potential difference between the measuring terminals, estimating the crack depth on the inner surface of the cladding tube from the change, and determining the SCC susceptibility of the cladding tube from the magnitude of the value. This is a method of determining. Note that the determination of the entire circumference of the cladding tube can be achieved by moving one block in nine circumferential directions using a contact switching method and repeating the above-mentioned potential difference measurement.

電極は第2図に示すよりに導線を被覆管に直接スポット
溶接する方法がよシ安定した計測ができるが、第4図及
第5図に示す接触減の電極でも可能である。この接触型
電極はそれぞれの電極が絶縁体で固定され、かつ、スプ
リングによって被覆管に均等に接触可能とし、また電極
の脱着はロック(第4図のロック部13)方式で行い、
また任意に移動できる構造からなる。
More stable measurements can be made by spot welding the conducting wire directly to the cladding tube than shown in FIG. 2, but electrodes with reduced contact as shown in FIGS. 4 and 5 can also be used. In this contact type electrode, each electrode is fixed with an insulator, and a spring allows it to contact the cladding tube evenly, and the electrode can be attached and detached using a lock method (lock part 13 in Fig. 4).
It also has a structure that allows it to be moved arbitrarily.

本発明で検出作動時間を制限した事項は次の理由からな
る。腐食の進行は電気化学反応の速度に依存するところ
が多い。したがって本発明においては前述の電位差測定
時における負荷電流が腐食そのものに影響を及ぼさない
範囲で実施するのが望ましく、その検出時間の範囲とし
て1領域で5x以下、−周全領域で100′HJ以下と
した。それ以上の検出時間では応力腐食割れ感受性の判
定にばらつきが生じゃすいっ 〔発明の実施例〕 実施例1 便用したジルカロイ−2燃料被覆管は1゜41チSn、
0.151Fe、0.12%Cr、0.06%及び残Z
rなる化学組成を有するインゴットを用いて製造した。
The reason why the detection operation time is limited in the present invention is as follows. The progress of corrosion largely depends on the rate of electrochemical reactions. Therefore, in the present invention, it is desirable to carry out the above-mentioned potential difference measurement in a range where the load current does not affect the corrosion itself, and the detection time range is 5x or less in one area and 100'HJ or less in the entire circumference area. did. If the detection time is longer than that, there will be variations in the judgment of stress corrosion cracking susceptibility. [Embodiment of the invention] Example 1 The Zircaloy-2 fuel cladding used for convenience was 1°41mm Sn,
0.151Fe, 0.12% Cr, 0.06% and balance Z
It was manufactured using an ingot having a chemical composition of r.

用いた被覆管は従来の製造法によって製造したものであ
る。第6図”は本発明法の特性確認を行った一例でスリ
ット深さく応力腐食割れ深さを模擬)と測定端子間(図
中の(B)−(C))の電位差との関係を範囲で示した
ものでおる。それによると、スリット深さの増加は電位
差を著しく上昇させるものであシ、この関係は、本発明
が応力腐食割れの発生及びその進展を定量的に検出でき
ることを示唆する。
The cladding tube used was manufactured by conventional manufacturing methods. Figure 6 is an example of confirming the characteristics of the method of the present invention, and shows the relationship between the slit depth (simulating stress corrosion cracking depth) and the potential difference between the measurement terminals ((B)-(C) in the figure). According to this, an increase in the slit depth significantly increases the potential difference, and this relationship suggests that the present invention can quantitatively detect the occurrence and progression of stress corrosion cracking. do.

一方、上記材料を本発明法でヨウ素環境下の応力割れ試
験を中子拡管方式で行った。(試験条件は350C,a
つ素中(1mg/crn2)、負荷速度L7 X 10
− ’ g/sea )その結果、第7図に示すように
1直径歪(E)が10チ以上になるまで、負荷しても貫
通割れを起こしていなかった。しかし電位差の変化から
被覆管の内面に0.45w程度の微小割れが生じたこと
が第6図の関係から推定された。またその後の試験体の
破壊検査では管内面に深さ0.4wasの割れが確認さ
れ、本発明法による推定値と比較的よい一致をみた。
On the other hand, the above material was subjected to a stress cracking test in an iodine environment using the method of the present invention using a core tube expansion method. (Test conditions are 350C, a
(1mg/crn2), loading speed L7 x 10
-' g/sea) As a result, as shown in FIG. 7, no through cracking occurred even when the load was applied until the 1 diameter strain (E) reached 10 inches or more. However, it was estimated from the relationship shown in FIG. 6 that micro-cracks of about 0.45 W were generated on the inner surface of the cladding tube due to the change in potential difference. Further, in the subsequent destructive inspection of the test specimen, a crack with a depth of 0.4 was was confirmed on the inner surface of the tube, which was in relatively good agreement with the estimated value by the method of the present invention.

このように本発明法は管内面の応力腐食割れの発生及び
その深さを逐次計測できることが判明した。
As described above, it has been found that the method of the present invention can successively measure the occurrence and depth of stress corrosion cracking on the inner surface of a tube.

実施例2 材料はジルカロイ−2であり、製造の異なる4種類の燃
料被覆管を用いた。応力腐食割れ試験は350C,ヨウ
素中(1m g/z”  ) 、1.7 xlO−4關
/式負荷速度の中子拡管方式であシ、本発明法と従来法
で実施した。
Example 2 The material was Zircaloy-2, and four types of fuel cladding tubes of different manufacture were used. The stress corrosion cracking test was carried out using the method of the present invention and the conventional method using a core tube expansion method at 350C, iodine (1 mg/z"), and a loading rate of 1.7 x lO-4.

その結果、第8図に示したように本発明ではロット間で
応力腐食割れ感受性の差を割れ深さ等で詳細に判定で惠
た。一方、従来法では貫通割れの有無で評価することか
ら、その判定は大まかである。このように本発明はロッ
ト間の応力腐食割れ感受性を未貫通の割れ呆さでも判別
することが可能となシ、従来法に比べよシ詳細に材料選
定ができる。特に新しい材料の適用に際しは設計の裕度
を適切に評価できる。
As a result, as shown in FIG. 8, in the present invention, differences in stress corrosion cracking susceptibility between lots were determined in detail based on crack depth, etc. On the other hand, in the conventional method, the evaluation is based on the presence or absence of penetrating cracks, so the judgment is rough. As described above, the present invention makes it possible to determine the stress corrosion cracking susceptibility between lots even by non-penetrating cracking, and allows for more detailed material selection than conventional methods. Especially when applying new materials, design margins can be appropriately evaluated.

〔発明の効果〕〔Effect of the invention〕

本発明によれば原子炉用ジルカロイ燃料被覆管の応力腐
食割れ抵抗をよシ正確に判定することがきる。したがっ
て、この効果は燃料破損を未然に防止し、かつ低コスト
の燃料被覆管を供給することができる。
According to the present invention, the stress corrosion cracking resistance of a Zircaloy fuel cladding tube for a nuclear reactor can be determined more accurately. Therefore, this effect can prevent fuel damage and provide a low-cost fuel cladding tube.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の燃料被覆管の応力腐食割れ感要性評価
方法の実施時の電位差測定の模式図、第2図は第1図の
電極の設定位置説明図、第3図は第2図の燃料被覆管軸
方向断面の応力腐食割れの模式図、第4図は第1図の接
触盤電極の模式図、第5図は第1図の接触型電極の詳細
図、第6図(イ)は第1図の電極のスリット位置詳細図
、(ロ)は(イ)の測定領域における電位差とスリット
深さとの関係説明図、第7図(イ)は第6図の(イ)の
腐食割れ部位説明図、(o)は(イ)の応力割れ試験結
果説明図、(ハ)は(イ)の試験体のC−0間の内面か
らの割れの断面出点、第8図は本発明と従来法による応
力腐食割れ感受性評価の比較図である。 1・・・燃料被覆管、2・・・電極、3・・・リード線
、4・・・すV−スイッチ、5・・・定電流電源、6・
・・アンプ、7・・・切替制御器、8・・・内圧、9・
・・周心力。
Fig. 1 is a schematic diagram of potential difference measurement during the implementation of the stress corrosion cracking susceptibility evaluation method of fuel cladding of the present invention, Fig. 2 is an explanatory diagram of the setting positions of the electrodes in Fig. 1, and Fig. 3 is the Figure 4 is a schematic diagram of stress corrosion cracking in the axial cross section of the fuel cladding tube, Figure 4 is a schematic diagram of the contact plate electrode in Figure 1, Figure 5 is a detailed diagram of the contact type electrode in Figure 1, Figure 6 is A) is a detailed diagram of the slit position of the electrode in Figure 1, (B) is an explanatory diagram of the relationship between the potential difference and the slit depth in the measurement area of (A), and Figure 7 (A) is a detailed diagram of the slit position of the electrode in Figure 6. (o) is an explanatory diagram of the stress cracking test results in (a), (c) is the cross-sectional origin of the crack from the inner surface between C and 0 of the test specimen in (a), and Figure 8 is an explanatory diagram of the corrosion cracking site. FIG. 2 is a comparison diagram of stress corrosion cracking susceptibility evaluation according to the present invention and a conventional method. DESCRIPTION OF SYMBOLS 1... Fuel cladding tube, 2... Electrode, 3... Lead wire, 4... V-switch, 5... Constant current power supply, 6...
...Amplifier, 7.Switching controller, 8.Internal pressure, 9.
...Zhou Xinli.

Claims (1)

【特許請求の範囲】[Claims] 1、ジルコニウム基合金燃料被覆管の応力腐食割れ感受
性を判定する方法において、その管外表面の周方向に複
数の電極を設け、任意の最隣接する2ケの電極を一定端
子とし、それに隣接する外側の電極間に一定の直流電流
を流して、そのときの測定端子間の電位差の変化からそ
の領域の内面割れ深さを検出し、さらに次の領域に移動
、割れ検出を繰返して管全体の最大割れ深さを比較する
ことを特徴とする燃料被覆管の応力腐食割れ感受性評価
方法。
1. In a method for determining the stress corrosion cracking susceptibility of a zirconium-based alloy fuel cladding tube, a plurality of electrodes are provided in the circumferential direction on the outer surface of the tube, and any two nearest adjacent electrodes are used as constant terminals, and A constant DC current is passed between the outer electrodes, and the depth of the inner crack in that area is detected from the change in potential difference between the measurement terminals.Then, the depth of the inner crack is detected by moving to the next area and repeating the crack detection. A method for evaluating stress corrosion cracking susceptibility of fuel cladding tubes, which is characterized by comparing maximum crack depths.
JP60005730A 1985-01-18 1985-01-18 Method of evaluating stress corrosion crack sensibility of fuel coated tube Pending JPS61165685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60005730A JPS61165685A (en) 1985-01-18 1985-01-18 Method of evaluating stress corrosion crack sensibility of fuel coated tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60005730A JPS61165685A (en) 1985-01-18 1985-01-18 Method of evaluating stress corrosion crack sensibility of fuel coated tube

Publications (1)

Publication Number Publication Date
JPS61165685A true JPS61165685A (en) 1986-07-26

Family

ID=11619231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60005730A Pending JPS61165685A (en) 1985-01-18 1985-01-18 Method of evaluating stress corrosion crack sensibility of fuel coated tube

Country Status (1)

Country Link
JP (1) JPS61165685A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031148A (en) * 2007-07-27 2009-02-12 Nippon Nuclear Fuel Dev Co Ltd Method and device for testing fuel-cladding tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031148A (en) * 2007-07-27 2009-02-12 Nippon Nuclear Fuel Dev Co Ltd Method and device for testing fuel-cladding tube

Similar Documents

Publication Publication Date Title
Brachet et al. Behavior under LOCA conditions of enhanced accident tolerant chromium coated zircaloy-4 claddings
Jones et al. Evaluation of stress corrosion crack initiation using acoustic emission
Bennett et al. In-core corrosion monitoring in the Halden test reactor
JPS61165685A (en) Method of evaluating stress corrosion crack sensibility of fuel coated tube
US20060193425A1 (en) Apparatus and method for limiting and analyzing stress corrosion cracking in pressurized water reactors
Herbst et al. Investigations on the effect of chloride on the general corrosion behavior of low‐alloy steels in oxygenated high‐temperature water
JPH0658903A (en) Crack tip potential measuring method and water quality controlling method
JP2856524B2 (en) Health monitoring device
Syrett et al. The effect of axial stress to hoop stress ratio on the susceptibility of unirradiated Zircaloy-4 to iodine stress corrosion cracking
Shack et al. Environmentally assisted cracking in light water reactors
Bevard et al. Post-Irradiation Examinations of High Burnup PWR Fuel Rods-Initial Results
JP4342715B2 (en) Intergranular corrosion diagnostic method for nickel base alloys
Shack et al. Environmentally Assisted Cracking in Light Water Reactors
Meyer et al. Advanced Instrumentation, Information, and Control System Technologies: Nondestructive Examination Technologies-FY11 Report
Crescimanno et al. A Fracture Mechanics Model for Iodine Stress Corrosion Crack Propagation in Zircaloy Tubing
Bush Impact of inservice inspection on the reliability of pressure vessels and piping
Lifeng et al. In-Service Inspection Technology Research on CANOPY Seal Weld of Control Rod Drive Mechanism in PWR
Rudland et al. Complex Crack Stability in Dissimilar Metal Welds: Background and Test Plan
Bowerman et al. Metallurgical evaluation of a feedwater nozzle to safe-end weld
Haddad Materials Degradation Assessment of Power Reactor Spent Fuel and Installations during Long Interim Dry Storage. Annex II
Sleptsov et al. Complex methods of estimation technological strength of welded joints in welding at low temperatures
Orlenkov et al. Radiochemical monitoring in life tests of fuel for new reactor cores
Rozhnov et al. Stress corrosion cracking of zirconium cladding tubes: I. Proximate local SCC testing method
Edgemon et al. Problems, Pitfalls and Probes: Welcome to the Jungle of Electrochemical Noise Technology
Vitanza Development of in-core test capabilities for material characterisation