JPS61165609A - Measuring strain of optical transmission line - Google Patents

Measuring strain of optical transmission line

Info

Publication number
JPS61165609A
JPS61165609A JP582585A JP582585A JPS61165609A JP S61165609 A JPS61165609 A JP S61165609A JP 582585 A JP582585 A JP 582585A JP 582585 A JP582585 A JP 582585A JP S61165609 A JPS61165609 A JP S61165609A
Authority
JP
Japan
Prior art keywords
optical
wave
signal
optical fiber
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP582585A
Other languages
Japanese (ja)
Inventor
Hiroshi Kajioka
博 梶岡
Takeyoshi Takuma
託摩 勇悦
Tatsuya Kumagai
達也 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP582585A priority Critical patent/JPS61165609A/en
Publication of JPS61165609A publication Critical patent/JPS61165609A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure strain at on-line and with an excellent precision by using a wave length multiplex transmission of a strain measuring signal composed of a different wave length than that of an information transmitting signal utilizing an optical wave mixer and an optical wave divider. CONSTITUTION:An optical wave mixer 8 combines an information transmitting pulse signal overlapped on a carrier optical wave with a wave length lambda1 and a strain measuring sine wave signal overlapped on a carrier optical wave with a wave length lambda2 and inputs to an optical fiber 3. An optical wave divider 9 divides the mixed optical signal to wave lengths lambda1 and lambda2 and the sine wave signal coming from a transmitter 10 is transmitted to a receiver 11. The strain epsilonof the optical fiber 3 or a multiple conductor optical fiber 7 can be calculated from a phase shift DELTAtheta in the strain measuring sine wave signal received by the receiver 11 applying an equation I. In the equation, l: length of optical fiber 3, f: modulated frequency, K: a constant (in case of nylon coated fiber conductor, approx. 7.1X10<5>).

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は光伝送路の歪測定方法に係り、特に光合波器・
光分波器を介して光ファイバに情報伝送用信号とは異な
る波長の歪測定用信号を挿入・分離し、その位相の変化
から光伝送路の歪を測定するようになした光伝送路の歪
測定方法に関する。
[Detailed Description of the Invention] [Industrial Application Field 1] The present invention relates to a method for measuring distortion of an optical transmission line, and particularly relates to an optical multiplexer/
An optical transmission line in which a distortion measurement signal of a wavelength different from that of the information transmission signal is inserted and separated into an optical fiber via an optical demultiplexer, and the distortion of the optical transmission line is measured from the change in the phase. Concerning strain measurement method.

〔従来の技術〕[Conventional technology]

光ケーブルにおける光フrイバの残留歪の設計、或いは
光ケーブル布設後の風や積’f′8の気象条件の変化に
よる光ファイバの伸び歪の計測は、光ファイバの破断を
防止し、光通信システムの信頼性を知る上で重要である
。従来、これら歪を測定するために、光ケーブルに歪抵
抗線を配設するという提案がある。
Designing residual strain in optical fibers in optical cables, or measuring elongation strain in optical fibers due to changes in wind and weather conditions after optical cable installation, can prevent optical fiber breakage and improve optical communication systems. This is important in knowing the reliability of the system. Conventionally, in order to measure these strains, there has been a proposal to provide a strain resistance wire in an optical cable.

[発明が解決しようとする問題点] ところが、歪抵抗線による歪測定では高価な歪抵抗線を
光ケーブルに別途設けなければならない。
[Problems to be Solved by the Invention] However, in strain measurement using a strain resistance wire, an expensive strain resistance wire must be separately provided on the optical cable.

また、布設後の光ケーブルの長距離にわたる歪を精度よ
く測定するのには歪抵抗線は適していない。
Furthermore, strain resistance wires are not suitable for accurately measuring strain over long distances in optical cables after installation.

このため、布設後の光ケーブルの歪測定は現在はとんど
実施されていない状況にある。
For this reason, measurement of strain on optical cables after installation is rarely carried out at present.

[発明の目的] 本発明は以上の従来技術の問題点を解消すべく創案れた
ものであり、本発明の目的は光ケーブル等の光伝送路の
歪をオンラインで精iよく且つ簡易に測定することがで
きる光伝送路の歪測定方法を提供することにある。
[Object of the Invention] The present invention has been devised to solve the above-mentioned problems of the prior art, and the purpose of the present invention is to precisely and easily measure the distortion of an optical transmission line such as an optical cable online. An object of the present invention is to provide a method for measuring distortion of an optical transmission line.

[発明の概要] 上記の目的を達成するために、本発明は、光ファイバに
光合波器を介して情報伝送用信号とは異なる波長の歪測
定用信号を挿入し、これを光ファイバに所定距離伝播さ
せた後、光分波器を介して分離し、分離した歪測定用信
号の位相の変化から歪を測定するようになしたものであ
る。波長の異なる歪測定用信号を入力しており、情報伝
送用信号に何ら影響を与えることなく光伝送路の歪を常
時モニタすることができる。
[Summary of the Invention] In order to achieve the above object, the present invention inserts a distortion measurement signal of a wavelength different from that of an information transmission signal into an optical fiber via an optical multiplexer, and inserts the distortion measurement signal into the optical fiber at a predetermined wavelength. After propagating over a distance, the signals are separated via an optical demultiplexer, and the distortion is measured from the change in phase of the separated distortion measurement signals. Distortion measurement signals of different wavelengths are input, and the distortion of the optical transmission line can be constantly monitored without any effect on the information transmission signal.

[実施例] 以下に本発明の実施例を添付図面に従って詳述する。[Example] Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

まず、実施例の説明に先立ち、本発明方法の歪測定の原
理を第2図の測定装置に基づき説明する。
First, prior to explaining the embodiments, the principle of strain measurement according to the method of the present invention will be explained based on the measuring apparatus shown in FIG.

第2図において、1は発振器、2は発振器1からの変調
用電気信号を歪測定用光信号に変換する電気/光変換器
、3はその歪が測定される光ファイバ、4は光ファイバ
3から出射される歪測定用光信号を電気信号に変換する
光/m気変換器、5は光/′rri気変換器4からの電
気信号を増幅し位相計(ベクトルボルトメータ)6に入
力する増幅器である。位相計6には発振器1からの電気
信号と、電気/光変換器2、光ファイバ3、光/[気安
換器4および増幅器5を経由してきた電気信号とがそれ
ぞれ入力される。位相計6ではこれら電気信号の位相差
が検出される。
In FIG. 2, 1 is an oscillator, 2 is an electric/optical converter that converts the modulation electric signal from the oscillator 1 into an optical signal for strain measurement, 3 is an optical fiber whose strain is measured, and 4 is an optical fiber 3. An optical/molar converter 5 converts the optical signal for strain measurement emitted from the optical signal into an electrical signal, and 5 amplifies the electrical signal from the optical/molar converter 4 and inputs it to a phase meter (vector voltmeter) 6. It's an amplifier. The electrical signal from the oscillator 1 and the electrical signals that have passed through the electrical/optical converter 2, the optical fiber 3, the optical/exchanger 4, and the amplifier 5 are input to the phase meter 6, respectively. The phase meter 6 detects the phase difference between these electrical signals.

光ファイバ3に光信号を入射すると、その出射光の位相
変化は光ファイバ3の長さに比例する。
When an optical signal is input into the optical fiber 3, the phase change of the output light is proportional to the length of the optical fiber 3.

従って、入射光と出射光との位相差の変化を位相計6か
ら計測すれば、光ファイバ3の長さの変化、即ち光ファ
イバ3の歪を測定できることになる。
Therefore, by measuring the change in the phase difference between the incident light and the output light using the phase meter 6, it is possible to measure the change in the length of the optical fiber 3, that is, the strain in the optical fiber 3.

光ファイバ3の歪εと、位相差Δθとの間には次の関係
がある。
The following relationship exists between the strain ε of the optical fiber 3 and the phase difference Δθ.

ここに、βは光ファイバ3の長さ、fは変調周波数であ
り、またKは定数であってナイロン被覆ファイバ心線の
場合的7.1x105 となる。
Here, β is the length of the optical fiber 3, f is the modulation frequency, and K is a constant, which is 7.1×10 5 in the case of a nylon-coated fiber core.

次に、多心光フアイバケーブルに上記歪測定原理を適用
した例を第1図に示す。
Next, FIG. 1 shows an example in which the above strain measurement principle is applied to a multi-core optical fiber cable.

第1図において、7は多心光フアイバケーブルであり、
多心光フアイバケーブル7の1心の光ファイバ3の一端
には光合波器8が、他端には光分波器9がそれぞれ設け
られている。光合波器8は、波長λ1の光源のキャリア
に乗せた情報伝送用パルス信号と、波長λ2の光源のキ
ャリアに乗せた歪測定用正弦波信号とを合波して光ファ
イバ3に入力する。また、光分波器9は、これら合波さ
れた光信号を波長λ」、λ2に分離する。歪測定用正弦
波信号は送信部10から光合波器8に送信されると共に
、光分波器9で分離された歪測定用正弦信号は受信部1
1に送られるようになっている。
In FIG. 1, 7 is a multi-core optical fiber cable,
An optical multiplexer 8 is provided at one end of the single optical fiber 3 of the multi-core optical fiber cable 7, and an optical demultiplexer 9 is provided at the other end. The optical multiplexer 8 multiplexes the information transmission pulse signal carried on the carrier of the light source with the wavelength λ1 and the sine wave signal for distortion measurement carried on the carrier of the light source with the wavelength λ2, and inputs the combined signal to the optical fiber 3. Further, the optical demultiplexer 9 separates these multiplexed optical signals into wavelengths λ'' and λ2. The sine wave signal for distortion measurement is transmitted from the transmitter 10 to the optical multiplexer 8, and the sine wave signal for distortion measurement separated by the optical demultiplexer 9 is sent to the receiver 1.
1.

送信部10は上述した発振器1と電気/光変換器2とを
有し、また受信部11は光/電気変換器4と増幅器5と
位相計6とを有している。
The transmitting section 10 has the above-mentioned oscillator 1 and the electric/optical converter 2, and the receiving section 11 has the optical/electrical converter 4, the amplifier 5, and the phase meter 6.

波長λ1のキャリアに乗せた情報伝送用パルス信号に対
し波長λ2のキャリアに乗せた歪測定用正弦波信号が光
合波器8にて合波され、合波された光信号は2波長子重
で光ファイバ3を伝送される。波長多重伝送された光信
号は光分波器9で波長λ1.λ2に分離され、情報伝送
用パルス信号は受信側へと伝送され、歪測定用正弦波信
号は受信部11により受信される。光ファイバ3ないし
多心光フアイバケーブル7の歪は受信部11で受信され
た歪測定用正弦波信号の位相変化から上記(1)式を用
いて算出される。
An information transmission pulse signal carried on a carrier with a wavelength λ1 is combined with a sine wave signal for distortion measurement carried on a carrier with a wavelength λ2 in an optical multiplexer 8, and the combined optical signal is a two-wavelength molecule. It is transmitted through the optical fiber 3. The wavelength-multiplexed optical signal is sent to an optical demultiplexer 9 to separate wavelengths λ1. λ2, the pulse signal for information transmission is transmitted to the receiving side, and the sine wave signal for distortion measurement is received by the receiving section 11. The distortion of the optical fiber 3 or multi-core optical fiber cable 7 is calculated from the phase change of the distortion measuring sine wave signal received by the receiving section 11 using the above equation (1).

このように、本発明方法では、情報伝送用信号とは異な
る波長の歪測定用信号を光合波器8、光分波器9を用い
て波長多重伝送しているので、情報伝送と並行して情報
伝送用信号に何ら影響を与えることなくオンラインで光
ファイバ3の全長の平均的な歪の測定を精度よく行なう
ことができる。
As described above, in the method of the present invention, the distortion measurement signal having a wavelength different from that of the information transmission signal is wavelength-multiplexed and transmitted using the optical multiplexer 8 and the optical demultiplexer 9. The average strain over the entire length of the optical fiber 3 can be accurately measured online without affecting the information transmission signal in any way.

また多心光フアイバケーブル7の情報伝送用の光ファイ
バ3を歪測定用にも併用する方式であり、歪抵抗線方式
に比し、簡易且つ安価な歪測定ができる。
In addition, this method uses the optical fiber 3 for information transmission of the multi-core optical fiber cable 7 also for strain measurement, and compared to the strain resistance wire method, strain measurement can be performed more easily and at lower cost.

上記実施例において、λt −0,85μ鍋、λ2−0
.79μlの発光ダイオードを用い、光ファイバ3の長
さR−1km、歪測定用正弦波信号の周波数f−IMH
z、情報伝送用パルス信号の伝送速度を6.3Mb/s
として実験を行なったところ、歪測定用正弦波信号の位
相変化1〜2度を測定した。これは光ファイバ3の歪ε
に換算すると0.07〜0.14%に相当する。
In the above example, λt -0, 85μ pot, λ2-0
.. Using a 79 μl light emitting diode, the length of the optical fiber 3 is R-1 km, and the frequency of the sine wave signal for strain measurement is f-IMH.
z, the transmission speed of pulse signals for information transmission is 6.3 Mb/s
When we conducted an experiment, we measured a phase change of 1 to 2 degrees in the sine wave signal for distortion measurement. This is the strain ε of optical fiber 3
This corresponds to 0.07 to 0.14%.

なお、上記実施例では多心光フアイバケーブル7であっ
たが、その他光ファイバ入り架空地線や光ファイバ/M
力線複合ケーブルなどの光伝送路にも適用することがで
きる。更に、情報伝送用信号は波長λ1だけでなく 2
波以上の多重なものであっても勿論よい。また送信側で
歪測定用正弦波信号の特定の位相、例えば零位相に対応
して波長λ3のキャリヤに乗せた同期パルスを混入し、
受信側で同期パルスを抽出し、同期パルスと歪測定用正
弦波信号との位相差の変化から光ファイバの歪を測定す
るようにしてもよい。
In the above embodiment, the multi-core optical fiber cable 7 was used, but other optical fiber-containing overhead ground wires and optical fiber/M
It can also be applied to optical transmission lines such as field line composite cables. Furthermore, the information transmission signal has not only a wavelength of λ1 but also a wavelength of λ2.
Of course, it may be multiplexed than waves. Also, on the transmitting side, a synchronization pulse placed on a carrier of wavelength λ3 is mixed in corresponding to a specific phase, for example, zero phase, of the sine wave signal for distortion measurement.
The synchronization pulse may be extracted on the receiving side, and the distortion of the optical fiber may be measured from the change in the phase difference between the synchronization pulse and the sine wave signal for measuring distortion.

[発明の効果] 以上要するに本発明によれば次のような優れた効果を発
揮する。
[Effects of the Invention] In summary, the present invention exhibits the following excellent effects.

(1)  情報伝送用信号とは異なる波長の歪測定用信
号を光合波器および光分波器を使用して波長多重伝送し
ているため、情報伝送用信号に何ら影響を与えることな
く情報伝送と同時にしかもオンラインで精度よく歪を測
定することができる。
(1) Since the distortion measurement signal with a different wavelength from the information transmission signal is wavelength-multiplexed using an optical multiplexer and optical demultiplexer, information can be transmitted without affecting the information transmission signal in any way. At the same time, distortion can be measured online with high precision.

(お 光ケーブル等の光伝送路の歪をオンラインで精度
よくモニタすることができ、光通信システム全体の信頼
性の向上が期待できる。
(Distortion in optical transmission lines such as optical cables can be monitored online with high accuracy, and the reliability of the entire optical communication system can be expected to improve.)

(3)  光伝送路(光ケーブル)の歪と気象条件(風
・雪など)との対応関係の明確な知見が得られ、より信
頼性の高い光ケーブルの設δ1・製造が可能となる。
(3) Clear knowledge of the correspondence between distortion in the optical transmission line (optical cable) and weather conditions (wind, snow, etc.) can be obtained, making it possible to design and manufacture more reliable optical cables.

(4)  光ファイバを情報伝送用と歪測定用とに01
用でき、歪抵抗線方式のように歪抵抗線を別途配設する
必要もなく、簡易に且つ安価に歪測定を行なうことがで
きる。
(4) Using optical fibers for information transmission and strain measurement
Unlike the strain resistance wire method, there is no need to separately provide a strain resistance wire, and strain measurement can be easily and inexpensively performed.

(5]  光フアイバ/電力線複合ケーブルに本発明を
適用すれば、高電圧の予防保全が可能となる。
(5) If the present invention is applied to optical fiber/power line composite cables, high voltage preventive maintenance becomes possible.

[F]) 光ファイバ入り架空地線に本発明を適用すれ
ば送電線の保守システムに利用できる。
[F]) If the present invention is applied to an optical fiber-containing overhead ground wire, it can be used in a power transmission line maintenance system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するための測定システムの構
成図、第2図は本発明の歪測定の基礎となる測定原理を
説明するためのシステムの構成図である。 図中、1は発振機、2は電気/光変換器、3は光フフイ
バ、4は光/電気変換器、5は増幅器、6は位相計、7
は多心光フアイバケーブル、8は光合波器、9は光分波
器、10は送信部、11は受信部、λ寡は情報伝送用パ
ルス信号をのせるキャリアの波長、λ2は歪測定用正弦
波信号をのせるキャリアの波長である。 特許出願人   日立電線株式会社 代理人弁理士  絹  谷  信  雄第1図 第2図
FIG. 1 is a block diagram of a measurement system for implementing the method of the present invention, and FIG. 2 is a block diagram of a system for explaining the measurement principle that is the basis of strain measurement of the present invention. In the figure, 1 is an oscillator, 2 is an electrical/optical converter, 3 is an optical fiber, 4 is an optical/electrical converter, 5 is an amplifier, 6 is a phase meter, and 7
is a multi-core optical fiber cable, 8 is an optical multiplexer, 9 is an optical demultiplexer, 10 is a transmitter, 11 is a receiver, λ is the wavelength of the carrier carrying the pulse signal for information transmission, and λ2 is for distortion measurement. This is the wavelength of the carrier carrying the sine wave signal. Patent Applicant Hitachi Cable Co., Ltd. Representative Patent Attorney Nobuo Kinutani Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 光ファイバに光合波器と光分波器とを設け、光ファイバ
に光合波器を介して情報伝送用信号とは異なる波長の歪
測定用信号を挿入しこれを光分波器を介して分離し、分
離した歪測定用信号の位相の変化から歪を測定するよう
にしたことを特徴とする光伝送路の歪測定方法。
An optical multiplexer and an optical demultiplexer are installed in the optical fiber, and a distortion measurement signal with a wavelength different from that of the information transmission signal is inserted into the optical fiber via the optical multiplexer, and then separated via the optical demultiplexer. A method for measuring distortion in an optical transmission line, characterized in that the distortion is measured from a change in the phase of the separated distortion measurement signal.
JP582585A 1985-01-18 1985-01-18 Measuring strain of optical transmission line Pending JPS61165609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP582585A JPS61165609A (en) 1985-01-18 1985-01-18 Measuring strain of optical transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP582585A JPS61165609A (en) 1985-01-18 1985-01-18 Measuring strain of optical transmission line

Publications (1)

Publication Number Publication Date
JPS61165609A true JPS61165609A (en) 1986-07-26

Family

ID=11621838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP582585A Pending JPS61165609A (en) 1985-01-18 1985-01-18 Measuring strain of optical transmission line

Country Status (1)

Country Link
JP (1) JPS61165609A (en)

Similar Documents

Publication Publication Date Title
US4648083A (en) All-optical towed and conformal arrays
EP0342847B1 (en) Apparatus for measuring dispersion characteristics of an optical fiber
CN101874194B (en) Fibre-optic sensor for measuring deformations on wind power installations
CN100552520C (en) A kind of method and apparatus of multiplexing and demodulating long period optical fiber optical grating array
CN109839616A (en) Radar system and method for running radar system
CN102064884A (en) Long-distance distributed optical fiber positioning interference structure based on wavelength division multiplexing (WDM)
NO310125B1 (en) System for monitoring high voltage cables in air tension
CN101267254B (en) Two-line optical sensing network and its method based on spectrum division multiplexing method
CN100576049C (en) A kind of method and apparatus of optical fiber optical grating sensing network demodulation
JP3492346B2 (en) Method and apparatus for measuring strain and temperature distribution
CN112368584A (en) Method and apparatus for time synchronized phasor measurement
CN1138163C (en) Array waveguide grating assembly and apparatus for monitoring light signals using same
CN108225387A (en) System and method for is monitored for the fully distributed fiber of linear engineering safety monitoring
JP2014229925A (en) Branched optical path characteristic analysis device and analysis method thereof
CN209296054U (en) A kind of distributed fiber grating detection pipeline and system
CN1888834B (en) Optical fiber grating sensor wave length measuring system
JPS61165609A (en) Measuring strain of optical transmission line
RU2533178C1 (en) System of mechanical load control at extended elements of overhead transmission line
CA1282832C (en) Method for optical communication of information
CN110086537B (en) Optical fiber pickup system based on Sagnac interference principle
US20030016422A1 (en) Hyper-dense wavelength multiplexing system
CN209386023U (en) A kind of distal end Distributed Detection pipeline
JPS61173129A (en) Method for measuring strain of optical transmission path
JPH04305111A (en) Method for measuring elongation of light compound overhead earth wire
JPS61173130A (en) Method for measuring strain of optical transmission path