JPS6116542B2 - - Google Patents

Info

Publication number
JPS6116542B2
JPS6116542B2 JP491582A JP491582A JPS6116542B2 JP S6116542 B2 JPS6116542 B2 JP S6116542B2 JP 491582 A JP491582 A JP 491582A JP 491582 A JP491582 A JP 491582A JP S6116542 B2 JPS6116542 B2 JP S6116542B2
Authority
JP
Japan
Prior art keywords
heat insulating
heat
insulating material
forging
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP491582A
Other languages
Japanese (ja)
Other versions
JPS58122142A (en
Inventor
Hiroaki Morya
Hisashi Kaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP491582A priority Critical patent/JPS58122142A/en
Publication of JPS58122142A publication Critical patent/JPS58122142A/en
Publication of JPS6116542B2 publication Critical patent/JPS6116542B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/06Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations

Description

【発明の詳細な説明】 本発明は、鍛造に際しての鍛造材の保温材によ
る保温方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of keeping a forged material warm during forging using a heat insulating material.

特願昭56年第24355号(特開昭57−140814号)
に加熱された金属材料の保温のために、主として
酸性リン酸塩からなる断熱性被覆形成用の材料
(断熱性被覆形成用の材料を以下保温材と称す。)
を熱間加工のために加熱された金属材料の表面に
吹付け、浸漬、ロールコートなどの方法により付
着させ、これを金属材料が持つ熱により加熱して
多孔質の硬化体に変換させて金属材料の表面に断
熱性被覆を形成することにより加工中の金属材料
を保温する法が提案されている。
Patent Application No. 24355 of 1982 (Japanese Patent Application No. 140814 of 1982)
A material for forming a heat insulating coating mainly made of acidic phosphate (the material for forming a heat insulating coating is hereinafter referred to as a heat insulating material) to keep metal materials heated to heat.
is attached to the surface of a metal material heated for hot processing by methods such as spraying, dipping, or roll coating, and is heated by the heat of the metal material to convert it into a porous hardened body. A method has been proposed for keeping metal materials warm during processing by forming a heat insulating coating on the surface of the material.

ところで、通常、加熱された金属材料は酸化に
基づく一次スケールにて覆われており、この上を
保温材にて直接被覆すると該金属材料の取扱中及
び鍛造加工中に保温材が脱落して種々の弊害を生
ずる。
By the way, heated metal materials are usually covered with primary scale caused by oxidation, and if this is directly coated with a heat insulating material, the heat insulating material will fall off during handling and forging of the metal material, causing various problems. This will cause harmful effects.

本発明は、保温材の鍛造材への被覆に際して鍛
造材に前処理を行なつて被覆した保温材の自然破
壊を防止し、ひいては鍛造効果の向上を図ること
を目的としている。
An object of the present invention is to pre-treat the forged material when coating the forged material with a heat insulating material to prevent natural destruction of the coated heat insulating material, thereby improving the forging effect.

本発明に係る鍛造のための保温方法の実施例と
してリング材への適用について説明する。
As an example of the heat retention method for forging according to the present invention, application to a ring material will be described.

オーステナイト鋼又はニツケル(Ni)基合
金、チタン(Ti)基合金等の大形リング材の孔
拡げ、据込み加工の温間又は熱間鍛造に際して
は、出炉から加工に到るまでに時間を要するのみ
ならず1工程終了までにも長時間を要するので、
この間放冷状態では変形抵抗を高めプレス力量の
不足を生じてその結果正味の加工可能時間を短縮
せざるを得なくなる。そこで放冷状態防止のため
に保温材をリング材の全表面に吹付けなどの方法
により付着させてこれをリング材が持つ熱により
加熱して多孔質の硬化体としてリング材を被覆す
るが、この場合に、リング材の一次スケールの存
在が問題となる。すなわち、リング材に一次スケ
ールが付着していると、鍛造加工中に多孔質の硬
化体となつた該保温材が一次スケールと共に局所
的に脱落し、保温材付着部との間に大きな温度差
を生じ、全体的に変形抵抗の増加を生じると共
に、温度の不均一性による結晶粒度の不均一をも
生じて品質上にも問題を生じる。
When performing warm or hot forging for hole expansion and upsetting of large ring materials such as austenitic steel, nickel (Ni)-based alloys, titanium (Ti)-based alloys, etc., it takes time from furnace removal to processing. Not only that, but it also takes a long time to complete one process, so
During this time, if the product is left to cool, the deformation resistance increases and press force becomes insufficient, resulting in a reduction in the net machining time. Therefore, in order to prevent the ring material from being left to cool, a heat insulating material is attached to the entire surface of the ring material by a method such as spraying, and this is heated by the heat of the ring material to cover the ring material as a porous hardened material. In this case, the presence of primary scale in the ring material poses a problem. In other words, if primary scale is attached to the ring material, the heat insulating material, which has become a porous hardened body during forging, will locally fall off together with the primary scale, creating a large temperature difference between it and the part where the heat insulating material is attached. This causes an overall increase in deformation resistance, and also causes non-uniformity in crystal grain size due to non-uniformity in temperature, which also causes quality problems.

本発明に係る鍛造のための保温方法のリング材
への適用においては、リング材の一次スケールの
発生のある場合に、出炉後直ちにリング材に一次
スケールが除去される程度に数%乃至30%の加工
率の軽加工を加えるか又はスケールブレーカ等に
よる機械的に一次スケール除去後直ちにリング材
の内外周面及び上下面に保温材を付着させて被覆
して鍛造加工を行なう。保温材の一例としては酸
性リン酸アルミニウム10〜75重量%、多価金属の
酸化物、水酸化物、ケイ酸塩又は炭酸塩の粉末5
〜70重量%及び水20〜80重量%からなる混合物が
ある。
When applying the heat retention method for forging according to the present invention to a ring material, if primary scale is generated in the ring material, it is necessary to reduce the heat retention method by several percent to 30% to the extent that the primary scale is removed from the ring material immediately after being ejected from the furnace. Immediately after the primary scale is removed mechanically with a scale breaker or the like, a heat insulating material is applied to cover the inner and outer circumferential surfaces and the upper and lower surfaces of the ring material, and then forging is performed. Examples of heat insulating materials include acidic aluminum phosphate 10 to 75% by weight, polyvalent metal oxide, hydroxide, silicate, or carbonate powder5.
There are mixtures consisting of ~70% by weight and 20-80% by weight of water.

なお鍛造加工中に多孔質の硬化体となつている
保温材が万一脱落した場合には保温材により適宜
補修を行なうことが望ましく、又一次スケールが
ほとんど発生していない場合には出炉後直ちにリ
ング材の全面に保温材を付着させてよいことは勿
論である。
If the heat insulator, which is a porous hardened body, falls off during the forging process, it is desirable to repair it with a heat insulator as appropriate, and if there is almost no primary scale, it should be removed immediately after leaving the furnace. Of course, the heat insulating material may be attached to the entire surface of the ring material.

次に実施例1を示す。 Next, Example 1 will be shown.

実施例 1 内径4690mmφ、外径5950mmφ、高さ1120mmの
SUS347鋼ステンレスリング荒地材の据込み鍛造
加工において、出炉後一次スケールを除去し、
Al2O3/P2O5=0.50(モル比)のオルトリン酸水
素アルミニウム35%を主成分とした水溶性保温材
を該リング荒地材の上下面、内外周面全面に吹き
付けた後に加工した。また加工中に脱落した保温
材の吹き付け補修を行ない内径5335mmφ、外径
6785mmφ、高さ905mmのリング材の加工を完了し
た。
Example 1 Inner diameter 4690mmφ, outer diameter 5950mmφ, height 1120mm
In upsetting forging of SUS347 steel stainless steel ring rough material, primary scale is removed after furnace removal,
A water-soluble heat insulating material mainly composed of 35% aluminum hydrogen orthophosphate with Al 2 O 3 /P 2 O 5 = 0.50 (molar ratio) was sprayed onto the upper and lower surfaces and the entire inner and outer peripheral surfaces of the ring rough material and then processed. . In addition, we sprayed and repaired the insulation material that fell off during processing, with an inner diameter of 5335 mmφ and an outer diameter of 5,335 mmφ.
Completed processing of ring material with diameter of 6785mm and height of 905mm.

第1図は上記のリング荒地材の出炉後の経過時
間と圧下量との関係を示す線図で実線は本方法を
適用した場合であり、点線は従来法、すなわち保
温処理を全く採らなかつた場合を示す。従来法に
おいては、鍛造加工中におけるリング荒地材の放
冷に伴う変形抵抗の増加により、リングの一周目
の加工においても、プレス容量の不足により途中
からして小圧下量しか得られず、しかも加工時間
もプレス容量の関係から50分程度となり圧下量も
約100mmにとどまつた。他方、本方法において
は、保温材により放冷を防止したので約70分程度
の加工が可能となり、またその圧下量も約150mm
まで得られた。また従来法では加工面が不均一高
さとなり成形上にも問題があつたが、本方法では
良好な成形をなしえた。第2図イは従来法の、ロ
は本方法による溶体化後の結晶粒度を示す写真で
ある。本方法においては長時間に亘り強加工が可
能であり、同図より明らかなように本方法によつ
たリング荒地材にあつてはASTMGSNO1.9で従
来法のASTMGSNO0.5と比較して細粒となつて
いる。
Figure 1 is a diagram showing the relationship between the elapsed time and the amount of reduction of the above-mentioned ring rough material after furnace removal. The solid line is the case when this method is applied, and the dotted line is the case when the conventional method is applied, that is, no heat insulation treatment is applied. Indicate the case. In the conventional method, due to the increase in deformation resistance due to cooling of the ring rough material during the forging process, only a small reduction amount can be obtained from the middle due to insufficient press capacity even in the first round of the ring process. Due to the press capacity, the processing time was about 50 minutes, and the reduction amount was only about 100 mm. On the other hand, with this method, the heat insulating material prevents cooling, making it possible to process in about 70 minutes, and the reduction amount is also about 150 mm.
obtained up to. In addition, in the conventional method, the processed surface had a non-uniform height, which caused problems in molding, but with this method, good molding could be achieved. FIG. 2A is a photograph showing the crystal grain size after solution treatment by the conventional method, and FIG. 2B is a photograph showing the crystal grain size after solution treatment by the present method. This method allows strong machining over a long period of time, and as is clear from the figure, the ring rough material produced by this method has a finer grain size of ASTMGSNO 1.9 compared to ASTMGSNO 0.5 of the conventional method. It is becoming.

次に大形の中空又は中実軸材への本方法の適用
について説明する。
Next, the application of this method to a large hollow or solid shaft member will be explained.

中空又は中実軸材の熱間鍛造に際し、特に大形
材にあつては酸化性雰囲気において軸材表面が厚
く、かつ密着性に劣る一次スケールにて覆われ
る。軸材にあつてはその一端部より鍛造加工がな
されるので、最初に加工される部分は保温材の付
着による保温被覆を行わずむくのままとし、後加
工となる部分のみを保温材の付着による保温被覆
を行うのであるが、一次スケールを除去せずに保
温材を軸材に吹付けなどの方法により付着させて
軸材が持つ熱により加熱して多孔質の硬化体とし
て軸材を被覆すると、軸材の移動等のハンドリン
グおよびむくのままの片側部を自由鍛造加工中に
後鍛造加工する部分に被覆して多孔質の硬化体と
なつた該保温材が一次スケールと共に剥離・脱落
して保温効果を十分に発揮できないのみならず、
むくのままの片側部加工に時間を要するために局
所的な保温材の剥離・脱落に伴う偏冷却により軸
材に曲りを生じ、また局所的に低温となり粒界脆
化を誘発する危険性が大である。例えば、Ni−
Cr−Mo中炭素鋼において、1250℃以上に加熱し
た加工材を900℃以下で第1回目の鍛造加工を行
う際に粒界の脆化現象が現われる。また加熱され
た軸材を出炉後直ちに保温材を付着させて被覆す
ると保温材下となつた表面欠陥を検出することは
できなく加工中に致命的な欠陥となる。
During hot forging of hollow or solid shaft materials, particularly for large-sized materials, the surface of the shaft material is thick in an oxidizing atmosphere and is covered with primary scale that has poor adhesion. Since the shaft material is forged starting from one end, the first part to be machined is left bare without being coated with heat insulating material, and only the part to be processed later is coated with heat insulating material. However, without removing the primary scale, the heat insulating material is attached to the shaft material by a method such as spraying, and then heated by the heat of the shaft material to coat the shaft material as a porous hardened material. Then, during handling such as movement of the shaft material, and during the free forging process, the heat insulating material, which has become a porous hardened body by covering the part to be post-forged during the free forging process, peels off and falls off together with the primary scale. Not only can the heat retention effect not be fully demonstrated,
Because it takes time to process one side of the shaft while it is bare, there is a risk that the shaft material will bend due to uneven cooling due to localized peeling or falling off of the insulation material, and the localized low temperature may induce grain boundary embrittlement. It's large. For example, Ni-
In Cr-Mo medium carbon steel, grain boundary embrittlement occurs when a workpiece heated above 1250°C is forged for the first time at below 900°C. Furthermore, if a heat insulating material is applied to cover the heated shaft material immediately after it is taken out of the furnace, surface defects under the heat insulating material cannot be detected, resulting in fatal defects during processing.

本発明に係る鍛造のための保温方法の軸材への
適用においては、軸材を出炉後、軸材に数%乃至
30%の加工率の軽加工を行なうか、又はスケール
ブレーカー等により機械的に一次スケールを除去
後、更に必要に応じて疵取り後に後加工となる軸
材の保温部分への保温材の吹付け等による付着を
行なう。かくすることにより、最初に鍛造加工さ
れるむくのままの部分の加工中に、後加工となる
保温部分を保温状態に保持でき、そして最初に鍛
造加工されたむくのままの部分に保温材を付着さ
せて多孔質の硬化体として該部分を被覆して、後
加工となつた保温部分の加工中、軸材の放冷を防
ぎ軸材の曲りを防ぐことができる。
In applying the heat retention method for forging according to the present invention to the shaft material, after the shaft material is taken out of the furnace, several percent to
After performing light machining with a processing rate of 30% or mechanically removing primary scale using a scale breaker, etc., and removing flaws as necessary, spray heat insulating material on the heat insulating part of the shaft material that will be post-processed. Attach by etc. By doing this, during the processing of the bare part that is first forged, the heat insulating part that will be processed later can be kept warm, and the heat insulating material can be applied to the bare part that is first forged. By adhering it and coating the part as a porous hardened body, it is possible to prevent the shaft material from cooling and to prevent the shaft material from bending during the post-processing of the heat-retaining part.

実施例2について説明する。 Example 2 will be explained.

Ni−Cr−Mo鋼よりなる直径1150mmφ、長さ
2600mmの素材を1250℃に加熱して直径550mmφ、
長さ10870mmとする軸材の鍛造加工において、出
炉後直ちに素材の約1/2長さを約15%程度の軽鍛
伸後、発生した表面疵を十分に除去し、Al2O3
P2O5=0.50(モル比)のオルトリン酸水素アルミ
ニウム35%を主成分とする水溶性保温材を吹き付
けて被覆保温して、残部約1/2長さの非保温部
(むくのままの部分)を仕上げ形状まで鍛造加工
後、引き続いて保温部の鍛造加工を行つた。その
結果は保温材の脱落はなく、また曲りもほとんど
発生しなかつたので1ヒートにて所定形状への鍛
造加工がなされた。これに反して、出炉後直ちに
一次スケールを除去することなく上記保温材を付
着させた軸材にあつては、非保温部の鍛造加工中
に該保温材は被覆表面積で約30%が脱落し、その
結果所定形状への鍛造加工には2ヒートを要し
た。
Made of Ni-Cr-Mo steel, diameter 1150mmφ, length
Heat the 2600mm material to 1250℃ and make it into a diameter of 550mmφ.
In forging a shaft material with a length of 10,870 mm, immediately after being taken out of the furnace, approximately 1/2 of the length of the material was lightly forged by approximately 15%, and any surface defects that occurred were thoroughly removed and Al 2 O 3 /
P 2 O 5 = 0.50 (molar ratio), a water-soluble heat insulating material mainly composed of 35% aluminum hydrogen orthophosphate was sprayed to cover and insulate the remaining part, which was about 1/2 the length of the non-insulated part (uncovered). After forging the part) to the finished shape, the heat retaining part was subsequently forged. As a result, the heat insulating material did not fall off, and there was almost no bending, so the forging process into the predetermined shape was completed in one heat. On the other hand, in the case of shaft materials to which the above heat insulating material was attached without removing the primary scale immediately after leaving the furnace, about 30% of the coated surface area of the heat insulating material fell off during the forging process of the non-heat insulating parts. As a result, two heats were required to forge it into a predetermined shape.

以上の説明により理解されるように、温間又は
熱間加工時に高変形抵抗を示すオーステナイト鋼
又はNi基合金又はTi基合金等によりなるリング
材の鍛造加工においては、一次スケールを除去後
にリング材の全表面に保温材による断熱被覆を施
こし、又軸材に対しては、後鍛造加工となる部分
の一次スケールを除去後に保温材による断熱被覆
を施こすという鍛造加工材の形状に応じて鍛造の
ための保温方法を採用することにより、鍛造加工
中の保温材の剥離・脱落を防止し、保温材による
保温効果を十分に発揮して工程数の低減、加工所
要時間の短縮を図り、併せて良品質の鍛造製品を
提供できる。
As can be understood from the above explanation, in forging of a ring material made of austenitic steel, Ni-based alloy, Ti-based alloy, etc. that exhibits high deformation resistance during warm or hot working, the ring material is Depending on the shape of the forged material, the entire surface of the shaft is coated with a heat insulating material, and the shaft material is coated with a heat insulating material after removing the primary scale of the part that will be post-forged. By adopting a heat retention method for forging, we prevent the heat insulating material from peeling off or falling off during the forging process, and fully utilize the heat retention effect of the heat insulating material, reducing the number of steps and processing time. At the same time, we can provide high quality forged products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はリング荒地材の鍛造加工における出炉
後の経過時間と圧下量との関係を示す線図、第2
図イは従来法の、ロは本発明に係る鍛造のための
保温方法を採用した場合の溶体化後の結晶粒度を
示す写真である。
Figure 1 is a diagram showing the relationship between the elapsed time after furnace removal and the amount of reduction in forging of ring rough material, Figure 2
Figure A is a photograph showing the grain size after solution treatment when the conventional method is used, and Figure B is a photograph showing the grain size after solution treatment when the heat retention method for forging according to the present invention is employed.

Claims (1)

【特許請求の範囲】 1 オーステナイト鋼又はNi基合金又はTi基合
金よりなるリング材の鍛造において、一次スケー
ルを除去後にリング材の内外周面及び上下面に保
温材を付着させ、該保温材をリング材の有する熱
により加熱して多孔質の硬化体としてリング材の
表面を断熱被覆することを特徴とするリング材の
鍛造のための保温方法。 2 軸材の鍛造加工において、むくのまま最初に
鍛造加工する部分と保温材にて被覆して後鍛造加
工する部分とに区分し、該保温材にて被覆する部
分について一次スケール及び表面欠陥を除去後に
保温材を付着させ、該保温材を軸材の有する熱に
より加熱して多孔質の硬化体として軸材の表面を
断熱被覆することを特徴とする軸材の鍛造のため
の保温方法。
[Claims] 1. In forging a ring material made of austenitic steel, a Ni-based alloy, or a Ti-based alloy, after removing the primary scale, a heat insulating material is attached to the inner and outer peripheral surfaces and upper and lower surfaces of the ring material, and the heat insulating material is 1. A heat retention method for forging a ring material, the method comprising heating the ring material using the heat it possesses to form a porous hardened body and heat-insulatingly coating the surface of the ring material. 2. When forging shaft materials, the parts are divided into the parts that are first forged as they are, and the parts that are coated with a heat insulating material and then forged, and the parts covered with the heat insulating material are checked for primary scale and surface defects. A heat retention method for forging a shaft material, characterized in that a heat insulating material is attached after removal, and the heat insulating material is heated by the heat possessed by the shaft material to form a porous hardened body and heat insulatingly coat the surface of the shaft material.
JP491582A 1982-01-18 1982-01-18 Heat insulating method for forging Granted JPS58122142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP491582A JPS58122142A (en) 1982-01-18 1982-01-18 Heat insulating method for forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP491582A JPS58122142A (en) 1982-01-18 1982-01-18 Heat insulating method for forging

Publications (2)

Publication Number Publication Date
JPS58122142A JPS58122142A (en) 1983-07-20
JPS6116542B2 true JPS6116542B2 (en) 1986-05-01

Family

ID=11596921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP491582A Granted JPS58122142A (en) 1982-01-18 1982-01-18 Heat insulating method for forging

Country Status (1)

Country Link
JP (1) JPS58122142A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179909A (en) * 1993-12-24 1995-07-18 Sumitomo Electric Ind Ltd Method for forging powder
CN111451436A (en) * 2020-05-13 2020-07-28 上海长特锻造有限公司 Forging process of high-strength internal star wheel

Also Published As

Publication number Publication date
JPS58122142A (en) 1983-07-20

Similar Documents

Publication Publication Date Title
RU2015142535A (en) METHODS FOR IMPROVING PROCESSABILITY IN THE HOT STATE OF METAL ALLOYS
US9180538B2 (en) Brazing process, braze assembly, and brazed article
US2900715A (en) Protection of titanium
US1963745A (en) Process of making composite metal articles
US4036670A (en) Tool steel
JPS6116542B2 (en)
JPS61147924A (en) Method of correcting rim of wheel made of aluminum
US3053689A (en) Process of coating austenitic steel with chromium alloy coatings
US3019513A (en) Method of manufacture
CN110000327B (en) Manufacturing process of heat shielding ring in nuclear turbine
JP3171053B2 (en) Hot rolling method of titanium slab
US3263310A (en) Method of bonding ferrous metal with aluminum
JP6540441B2 (en) Plug manufacturing method
JP6948560B2 (en) Forging material manufacturing method
JPH01266981A (en) Manufacture of composite material consisting of aluminum or aluminum alloy and stainless steel
JPS58387A (en) Production of composite roll
JP7209237B2 (en) Method for manufacturing nickel-based alloy product or titanium-based alloy product
US2187844A (en) Manufacture of coated strip for tubing production
JPS5849636B2 (en) Method for forming a fusion coating of nonferrous metal or alloy on the inner wall surface of a metal pipe member
JPS5839228B2 (en) Composite hot tool material and its manufacturing method
JPS62286636A (en) Forging method for titanium alloy
JPH1017940A (en) Method for heat treating weld zone in end plug of fuel rod
JPH0371943B2 (en)
CN116652098A (en) Forging forming method of double-crown blade
JP2849496B2 (en) Manufacturing method of high and low pressure integrated rotor