JPS6116517Y2 - - Google Patents

Info

Publication number
JPS6116517Y2
JPS6116517Y2 JP1977097799U JP9779977U JPS6116517Y2 JP S6116517 Y2 JPS6116517 Y2 JP S6116517Y2 JP 1977097799 U JP1977097799 U JP 1977097799U JP 9779977 U JP9779977 U JP 9779977U JP S6116517 Y2 JPS6116517 Y2 JP S6116517Y2
Authority
JP
Japan
Prior art keywords
gas
measurement cell
cell chamber
chamber
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1977097799U
Other languages
Japanese (ja)
Other versions
JPS5425881U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1977097799U priority Critical patent/JPS6116517Y2/ja
Publication of JPS5425881U publication Critical patent/JPS5425881U/ja
Application granted granted Critical
Publication of JPS6116517Y2 publication Critical patent/JPS6116517Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea] 【考案の属する技術分野】[Technical field to which the idea belongs]

本考案は、被測定ガス特に大気中の被分析成分
ガスたとえば炭酸ガスを、濃度に応じた赤外線吸
収量により分析する赤外線ガス分析装置に関す
る。
The present invention relates to an infrared gas analyzer that analyzes a gas to be measured, particularly a component gas to be analyzed in the atmosphere, such as carbon dioxide, by determining the amount of infrared absorption depending on the concentration.

【従来技術とその問題点】 赤外線ガス分析計の概略構成図を第2図に示
す。図において赤外線光源室L1,L2内の光源
L1A,L2Aにより発せられた2本の赤外線光
束1V,1Sは光透過窓R7,R8を透過したの
ち、モータMにより、回転駆動されているセクタ
ーCHによつて、周期的に断続される。その後、
一方の赤外線光束1Sは測定光線として測定槽
(測定セル室)Sへ案内され、また他方の赤外線
光束1Vは基準光線として基準槽(基準セル室)
Vへ案内される。測定槽Sには光透過窓R1,R
2が設けられ、導入管Z1,Z2を介して被分析
成分ガスを含む測定ガスが矢印方向へ導かれてい
る。測定光線はこの測定槽Sにおいて、その被分
析成分ガスの濃度に応じて赤外線吸収を受ける。
また基準槽Vには同様に光透過窓R3,R4が設
けられ、赤外線に対して吸収作用をもたないガ
ス、例えば窒素ガスが封入されている。測定槽S
を透過した測定光線1Sおよび基準槽Vを透過し
た基準光線IVは、それぞれガス封入式検出器D
に案内される。この検出器Dは第1検出槽(第1
検出室)D1、および第2検出槽(第2検出室)
D2とを有し、各検出槽D1,D2はそれぞれ光
透過窓R5,R6が設けられ、被分析成分ガスと
同じ種類のガスが充填されている。第1検出槽D
1には光透過窓R5を介して測定光線1Sが入射
し、また第2検出槽D2には光透過窓R6を介し
て基準光線IVが入射する。 従つて、第1検出槽D1および第2検出槽D2
はその測定光線ISおよび基準光線IVの強さに応
じて異なつた温度に加熱される。この各検出槽D
1,D2は導管Kにより連通される。この導管K
の中心部には熱線素子H1,H2が互に熱結合が
生じるように近接配置されている。各熱線素子H
1,H2は2つの抵抗と共にブリツジ回路を構成
し、電源によつて周囲温度よりも高い温度に加熱
されている。各検出槽D1,D2が測定光線LS
および基準光線IVによりそれぞれ加熱されるこ
とにより、各検出槽D1,D2に封入されたガス
が膨張し、導管Kには被分析成分ガスの濃度に応
じてガスの流れを生じる。このガスの流れは熱線
素子H1,H2により電気信号に変換される。 一般に、赤外線ガス分析装置により、被分析成
分ガスの濃度を測定する際、ガス抽出装置(ガス
サンプリング装置)が、被測定ガスをプラントの
ダクトから抽出し、この分析装置へ導入するため
に必要である。このガス抽出装置には各種の抽出
方式が採用されているが、第3図は従来例の概略
構成図を示す。図において被測定ガスは吸引ポン
プ1により吸引される。この吸引された被測定ガ
スはガス冷却器2により冷却されると、被測定ガ
ス中に含まれていた水蒸気はドレン(凝縮水)と
なつて、ドレンポツト3内へ収容される。このド
レンを分離した被測定ガスはフイルタ4および吸
引ポンプ1、保護箱5、絞弁付き流量計6および
監視フイルタ7を経由してガス分析計8に導入さ
れ、分析後大気へ放出される。なおフイルタ4と
吸引ポンプ1との間の導管から分岐されて保護器
9が設けられている。この保護器9は吸引ポンプ
1の吸引力が強すぎるために、もしフイルタ4ま
たは配管途中に、つまりが生じた際、つまり部分
から吸引ポンプ1までの配管内の圧力が低下し
て、ドレンポツト3内の水が吸上げられるのを防
止するために設けられるものである。また保護箱
5は吸引ポンプ1の脈動防止用である。 上述の標準的なガス抽出装置において、各種の
構成機器が被測定ガスの量的な必要度に応じて、
適宜選択されている。従つて、雰囲気内の被測定
成分ガスの濃度を測定する際、少なくとも吸引ポ
ンプ1、絞り弁付き流量計6などの機器が必要で
あつた。このために、これらの機器は取扱い上の
注意が必要で、取付けスペースを要し、経費が増
大するなどの欠点があつた。
[Prior art and its problems] Fig. 2 shows a schematic configuration diagram of an infrared gas analyzer. In the figure, two infrared beams 1V and 1S emitted by light sources L1A and L2A in infrared light source chambers L1 and L2 pass through light transmission windows R7 and R8, and then enter sectors CH that are rotationally driven by a motor M. Therefore, it is periodically interrupted. after that,
One infrared beam 1S is guided as a measurement beam to a measurement tank (measurement cell chamber) S, and the other infrared beam 1V is guided as a reference beam to a reference tank (reference cell chamber).
You will be guided to V. The measurement tank S has light transmission windows R1 and R.
2 is provided, and a measurement gas containing an analyte component gas is guided in the direction of the arrow through introduction pipes Z1 and Z2. The measurement light beam undergoes infrared absorption in this measurement tank S depending on the concentration of the gas to be analyzed.
Further, the reference tank V is similarly provided with light transmission windows R3 and R4, and is filled with a gas that does not absorb infrared rays, such as nitrogen gas. Measuring tank S
The measurement light beam 1S that has passed through the gas-filled detector D and the reference light IV that has passed through the reference tank V
will be guided to. This detector D is connected to the first detection tank (first
detection chamber) D1, and second detection tank (second detection chamber)
Each of the detection tanks D1 and D2 is provided with a light transmission window R5 and R6, respectively, and is filled with the same type of gas as the component gas to be analyzed. First detection tank D
The measurement light beam 1S enters into the second detection tank D2 through the light transmission window R5, and the reference light IV enters into the second detection tank D2 through the light transmission window R6. Therefore, the first detection tank D1 and the second detection tank D2
is heated to different temperatures depending on the intensity of its measurement beam IS and reference beam IV. Each detection tank D
1 and D2 are communicated by a conduit K. This conduit K
The hot wire elements H1 and H2 are arranged close to each other in the center so that they are thermally coupled to each other. Each hot wire element H
1 and H2 form a bridge circuit together with two resistors, and are heated by the power supply to a temperature higher than the ambient temperature. Each detection tank D1, D2 is the measurement light LS
By being heated by the reference beam IV and the reference beam IV, the gas sealed in each detection tank D1, D2 expands, and a gas flow is generated in the conduit K according to the concentration of the gas to be analyzed. This gas flow is converted into electrical signals by hot wire elements H1 and H2. Generally, when measuring the concentration of a component gas to be analyzed using an infrared gas analyzer, a gas extraction device (gas sampling device) is required to extract the gas to be measured from the duct of the plant and introduce it into the analyzer. be. Although various extraction methods are employed in this gas extraction device, FIG. 3 shows a schematic configuration diagram of a conventional example. In the figure, the gas to be measured is sucked by a suction pump 1. When this sucked gas to be measured is cooled by the gas cooler 2, the water vapor contained in the gas to be measured becomes drain (condensed water) and is stored in the drain pot 3. The gas to be measured from which the drain has been separated is introduced into a gas analyzer 8 via a filter 4, a suction pump 1, a protection box 5, a flow meter with a throttle valve 6, and a monitoring filter 7, and after analysis is released into the atmosphere. Note that a protector 9 is provided branching off from the conduit between the filter 4 and the suction pump 1. This protector 9 is used because the suction force of the suction pump 1 is too strong, so if a blockage occurs in the filter 4 or in the middle of the pipe, the pressure in the pipe from the blockage to the suction pump 1 will drop, and the drain pot 3 This is provided to prevent the water inside from being sucked up. Further, the protective box 5 is used to prevent the suction pump 1 from pulsating. In the above-mentioned standard gas extraction device, various components are used depending on the quantitative need for the gas to be measured.
Appropriately selected. Therefore, when measuring the concentration of the component gas to be measured in the atmosphere, at least devices such as the suction pump 1 and the flow meter 6 with a throttle valve are required. For this reason, these devices have drawbacks such as requiring care in handling, requiring installation space, and increasing costs.

【考案の目的】[Purpose of invention]

本考案は上述の点に鑑み、従来技術の欠点を除
き雰囲気ガスの導入、導出が簡単かつ安定に行
え、しかも製作費が節減される赤外線ガス分析装
置を提供することを目的とする。
In view of the above-mentioned points, it is an object of the present invention to provide an infrared gas analyzer that eliminates the drawbacks of the prior art, allows for simple and stable introduction and extraction of atmospheric gas, and reduces manufacturing costs.

【考案の要点】[Key points of the idea]

このような目的を達成するために、本考案は、
ガス取入口とこのガス取入口よりも上側に設けら
れたガス取出口とを有するケースと、このケース
内に配置され赤外線光源を有する光源室と、前記
ケース内に配置され前記赤外線光源から生じた赤
外線が照射される測定セル室と、前記測定セル室
を透過した赤外線が照射される検出室とを備え、
前記ケース内において前記測定セル室の下側に前
記光源室を設置し、かつ前記ケース内において前
記測定セル室の上側に前記検出室を設置し、前記
測定セル室の下部にガス導入口を設け、かつ前記
測定セル室の上部にガス導出口を設け、前記光源
を熱源とする前記測定セル室における煙突効果の
みに基づいて、前記ケースのガス取入口および前
記測定セル室のガス導入口を介して前記測定セル
室に被測定ガスが吸入され、前記測定セル室のガ
ス導出口から測定セル室内の被測定ガスが排出さ
れるようになしたものである。
In order to achieve this purpose, the present invention
a case having a gas inlet and a gas outlet provided above the gas inlet; a light source chamber disposed within the case and having an infrared light source; comprising a measurement cell chamber that is irradiated with infrared rays, and a detection chamber that is irradiated with infrared rays that have passed through the measurement cell chamber,
The light source chamber is installed below the measurement cell chamber in the case, the detection chamber is installed above the measurement cell chamber in the case, and a gas inlet is provided at the bottom of the measurement cell chamber. , and a gas outlet is provided in the upper part of the measurement cell chamber, and based only on the chimney effect in the measurement cell chamber using the light source as a heat source, the gas inlet of the case and the gas inlet of the measurement cell chamber are provided. The gas to be measured is sucked into the measurement cell chamber, and the gas to be measured in the measurement cell chamber is discharged from the gas outlet of the measurement cell chamber.

【考案の実施例】[Example of idea]

本考案の実施例を図面に基づき、詳細に説明す
る。 第1図は本考案の実施例を示す概略構成図であ
る。図において第2図と同一の機能を有する部分
は同一の符号が付されている。ケース11内には
最下部に光源室L1,L2、光源室L1,L2の
上部に測定セル室Sおよび基準セル室V、測定セ
ル室Sおよび基準セル室Vの上部に検出室D1,
D2が配置されている。第2図におけるセクター
CHおよび駆動モータMは本図では省略されてい
る。いま、測定セル室Sのガス導入口Z1および
ガス取出口Z2はケース11内に解放されてい
る。従つて、測定セル室S内部の被測定ガスはこ
の分析計に本来必要な光源を対流源として何ら付
加装置を要することなく加熱されて熱膨張を生
じ、密度が小さくなつて上昇し、上部に設けられ
たガス導出口Z2からケース11内へ放出され
る。一方、下部に設けられたガス導入口Z1から
は、ケース11内の雰囲気が導入される。従つ
て、この雰囲気は、測定セル室S内の煙突効果に
基づいて連続して放出され導入される。さらに、
このケース11内の雰囲気はガス取入口12およ
びガス取出口13を介して、外部雰囲気に導通す
る。このようにして、ポンプなどによつて強制的
に被測定ガスをサンプリングするガス抽出装置を
使用しなくても、外部雰囲気がケース11内へ導
入され、さらに測定セル室S内外の温度差により
連続して導入されて、被測定成分ガスの濃度が測
定される。また、測定セル室Sをケース11内に
収容したことによつて相互間の温度バランスを保
持して外気温度の変動の影響を抑え、かつ、風が
直接測定セル室に当つて測定セル室の温度を変動
させることを回避して煙突効果を安定に持続さ
せ、安定性よく被測定ガスをサンプリングするこ
とができる。 また、ケースは被測定ガスの部分的な濃度むら
を平均化するバツフアタンクの役割をもはたすも
のである。なお、置換時間、応答時間はケースを
設けることによりその調節の余地がなくなるもの
ではなく測定セル室Sと雰囲気との温度差を調節
することにより、またガス通過部分である測定セ
ル室Sのガス導入管Z1またはガス導出管Z2の
通過面積またはケース11のガス取入口12など
の調節により、調節することができる。 このような本実施例に基づく実験の結果、ステ
ツプ入力に対する90%応答値までの応答時間は約
1分ないし約8分程度とすることができた。なお
外部から測定セル室Sを加温することにより、応
答速度をさらに向上させることもできる。
Embodiments of the present invention will be described in detail based on the drawings. FIG. 1 is a schematic diagram showing an embodiment of the present invention. In the figure, parts having the same functions as in FIG. 2 are designated by the same reference numerals. Inside the case 11, there are light source chambers L1 and L2 at the bottom, a measurement cell chamber S and a reference cell chamber V above the light source chambers L1 and L2, and a detection chamber D1 above the measurement cell chamber S and reference cell chamber V.
D2 is placed. Sector in Figure 2
CH and drive motor M are omitted in this figure. The gas inlet Z1 and gas outlet Z2 of the measurement cell chamber S are now open into the case 11. Therefore, the gas to be measured inside the measurement cell chamber S is heated without the need for any additional equipment by using the light source originally required for this analyzer as a convection source, causing thermal expansion, decreasing its density, rising, and causing the gas to rise to the upper part. The gas is discharged into the case 11 from the provided gas outlet Z2. On the other hand, the atmosphere inside the case 11 is introduced from the gas introduction port Z1 provided at the bottom. This atmosphere is therefore continuously released and introduced into the measuring cell chamber S due to the chimney effect. moreover,
The atmosphere inside the case 11 is communicated with the outside atmosphere through a gas intake port 12 and a gas outlet port 13. In this way, the external atmosphere is introduced into the case 11 without using a gas extraction device that forcibly samples the gas to be measured using a pump or the like, and furthermore, due to the temperature difference inside and outside the measurement cell chamber S, the external atmosphere is continuously The concentration of the component gas to be measured is measured. Furthermore, by accommodating the measurement cell chamber S in the case 11, the mutual temperature balance is maintained to suppress the influence of fluctuations in outside temperature, and the wind directly hits the measurement cell chamber. The chimney effect can be maintained stably by avoiding temperature fluctuations, and the gas to be measured can be sampled with good stability. The case also serves as a buffer tank that averages out local concentration unevenness of the gas to be measured. The replacement time and response time cannot be adjusted by providing a case, but by adjusting the temperature difference between the measurement cell chamber S and the atmosphere, and by adjusting the temperature difference between the measurement cell chamber S and the atmosphere. It can be adjusted by adjusting the passage area of the inlet pipe Z1 or the gas outlet pipe Z2, the gas intake port 12 of the case 11, etc. As a result of experiments based on this embodiment, the response time to a 90% response value to a step input could be set to about 1 minute to about 8 minutes. Note that the response speed can be further improved by heating the measurement cell chamber S from the outside.

【考案の効果】[Effect of the idea]

以上に説明したように本考案においては、ガス
取入口とガス取出口を有するケース内に赤外線光
源を有する光源室と測定セル室と検出室とを収容
し、測定セル室内に照射される赤外線による加熱
に基づく煙突効果によつて、被測定ガスを測定セ
ル内に吸入するようにしたので、特別にガス抽出
装置を用いることなく、測定セル室への被測定ガ
スの導入、および測定セル室からの被測定ガスの
排出が簡単かつ安定に行えるうえ、製作費が節減
されるなどその効果は極めて顕著である。
As explained above, in the present invention, a light source chamber having an infrared light source, a measurement cell chamber, and a detection chamber are housed in a case having a gas inlet and a gas outlet. Since the gas to be measured is sucked into the measurement cell by the chimney effect based on heating, it is possible to introduce the gas to be measured into the measurement cell chamber and from the measurement cell chamber without using a special gas extraction device. The gas to be measured can be easily and stably discharged, and the manufacturing cost is reduced, which is extremely effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例を示す概略構成図、第
2図は従来技術による赤外線ガス分析計の概略構
成図、第3図はガス抽出装置の従来例の概略構成
図である。 11……ケース、12……ガス取入口、13…
…ガス取出口、L1,L2……光源室、S……測
定セル室、D1……検出器、Z1……ガス導入
孔、Z2……ガス導出孔。
FIG. 1 is a schematic diagram showing an embodiment of the present invention, FIG. 2 is a schematic diagram of an infrared gas analyzer according to the prior art, and FIG. 3 is a schematic diagram of a conventional example of a gas extraction device. 11... Case, 12... Gas intake port, 13...
...Gas outlet, L1, L2...Light source chamber, S...Measurement cell chamber, D1...Detector, Z1...Gas introduction hole, Z2...Gas outlet hole.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ガス取入口とこのガス取入口よりも上側に設け
られたガス取出口とを有するケースと、このケー
ス内に配置され赤外線光源を有する光源室と、前
記ケース内に配置され前記赤外線光源から生じた
赤外線が照射される測定セル室と、前記測定セル
室を透過した赤外線が照射される検出室とを備
え、前記ケース内において前記測定セル室の下側
に前記光源室を設置し、かつ前記ケース内におい
て前記測定セル室の上側に前記検出室を設置し、
前記測定セル室の下部にガス導入口を設け、かつ
前記測定セル室の上部にガス導出口を設け、前記
光源を熱源とする前記測定セル室における煙突効
果のみに基づいて、前記ケースのガス取入口およ
び前記測定セル室のガス導入口を介して前記測定
セル室に被測定ガスが吸入され、前記測定セル室
のガス導出口から測定セル室内の被測定ガスが排
出されるようにしたことを特徴とする赤外線ガス
分析装置。
a case having a gas inlet and a gas outlet provided above the gas inlet; a light source chamber disposed within the case and having an infrared light source; a measurement cell chamber to which infrared rays are irradiated; and a detection chamber to which infrared rays transmitted through the measurement cell chamber are irradiated; the light source chamber is installed below the measurement cell chamber in the case, and the case installing the detection chamber above the measurement cell chamber in the interior;
A gas inlet is provided in the lower part of the measurement cell chamber, and a gas outlet is provided in the upper part of the measurement cell chamber, and the gas intake of the case is performed based only on the chimney effect in the measurement cell chamber using the light source as a heat source. The gas to be measured is drawn into the measurement cell chamber through the inlet and the gas inlet of the measurement cell chamber, and the gas to be measured in the measurement cell chamber is discharged from the gas outlet of the measurement cell chamber. Features of infrared gas analyzer.
JP1977097799U 1977-07-23 1977-07-23 Expired JPS6116517Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1977097799U JPS6116517Y2 (en) 1977-07-23 1977-07-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1977097799U JPS6116517Y2 (en) 1977-07-23 1977-07-23

Publications (2)

Publication Number Publication Date
JPS5425881U JPS5425881U (en) 1979-02-20
JPS6116517Y2 true JPS6116517Y2 (en) 1986-05-21

Family

ID=29032968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1977097799U Expired JPS6116517Y2 (en) 1977-07-23 1977-07-23

Country Status (1)

Country Link
JP (1) JPS6116517Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5657422A (en) * 1979-10-15 1981-05-19 Mitsubishi Electric Corp Automatic cleaner

Also Published As

Publication number Publication date
JPS5425881U (en) 1979-02-20

Similar Documents

Publication Publication Date Title
US8130379B1 (en) Gas analyzer
Stevens et al. Measurement of tropospheric OH and HO2 by laser‐induced fluorescence at low pressure
US8125626B2 (en) Hybrid gas analyzer
GB1242482A (en) Improvements in or relating to exhaust gas analysis
US2345090A (en) Mercury detecting method and apparatus
GB1256010A (en) Infra-red gas analyser unit
EP3011310A1 (en) System for analyzing mercury
CN206725432U (en) A kind of non-spectral formula infrared gas sensor for how regional and more gasmetries
Soltau Testing the thermal performance of uncovered solar collectors
CA2742728C (en) Gas analyzer
CA1170079A (en) High-precision method and apparatus for in-situ continuous measurement of concentrations of gases and volatile products
JPS6116517Y2 (en)
US5563330A (en) Method and device for measuring the concentration of a detector gas in a measuring gas containing an interfering gas
JP3206240U (en) Analysis equipment
US3178572A (en) Ultra-violet radiation absorption analysis apparatus for the detection of mercury vapor in a gas
US3234380A (en) Infrared analyzer with means responsive to a detector output to control radiant energy emission from a reference source
JPS60231137A (en) Optical gas densitometer
JPS6190056A (en) Detection meter for measurement
Trevitt An infrared hygrometer with on-line temperature compensation
JPS59197837A (en) Optical isotope gas analyzing device
US3074308A (en) Spectrometry apparatus
CN208654025U (en) Infrared module high-precision detection constant temperature system
CN220289400U (en) Open circuit detection system for simultaneously detecting greenhouse gas and water vapor concentration in atmospheric environment
JPS5932922Y2 (en) gas analyzer
JPS6020039Y2 (en) Infrared gas detection device